SiC Simulations with Physical & Scalable Models

Tips and Applications

Didier Balocco EMEA Business Marketing Engineer

Public Information © onsemi 2022

Content

- Introduction : Why Physical & Scalable models are the Best ?
- Physical & Scalable Simulation Model Capabilities : Tips and Interesting Results
 - Die Nodes Access Inside the Package : What is happening internally ?
 - Corner Models : Nothing is Perfect...
 - Electro-Thermal Simulations : Using Cauer Networks.
 - Switching Losses vs V_{GS} , Package and Structure : Using Double Pulse Measurement
- Topologies Simulations with Physical & Scalable Models (Virtual Prototyping)
 - Flying Capacitor Boost : DC-DC deep analysis
 - I-NPC vs T-NPC : Which is the best cell ?
 - 6-Pack Boost Active Front End or 3-Phase Grid Power Factor Corrector
- Conclusion and References

Why Physical & Scalable models are the Best?

Physically Based SPICE Models for SiC MOSFETs

Each zone inside the physical structure is modeled by a device. Each device equation considers dimensions and physics quantities

- Current density, Electrical field, Temperature, ...

- Contains
 - SiC Physics Equations
 - One model per Technology
 - Electro-Thermal
 - Can predict performances of not available parts...

Benefits

- Accurate, consistent, and correlated with process variation modeling
- Best IC industry standard practice

onsemi

SuperJunction Output Capacitor (Coss) Simulation

X It is clear the behavioral model cannot capture the nearly 3-decade drop in output capacitance inherent to all Super-Junctions

• With Physical & Scalable Model

 Physical & Scalable well predicts the 3-decade drop in Coss.

Resonant Transition Simulation under Constant Current

Coss comparison

Resonant Transition

Physical & Scalable Simulation Model Capabilities

Tips and Interesting Results

Die Nodes Access Inside the Package

What is happening internally ?

Access Die Nodes

• Schematic

- Internal node manes :
 - Ends with a 'i'
 - In SIMetrix : like 'Qn:xy:di'

• Useful to study package parasitic impedances effects on waveforms...

Drain-to-Source voltage differences

Light-colored = Die nodes Dark-colored = Pin nodes

• Turn-ON

Less overvoltage stress on the die than seen on the pins

Turn-OFF

Gate-to-Source voltage differences vs External Gate Resistor

Onsemi

Gate-to-Source voltage differences vs External Gate Resistor

Impact...

- The delays between external gate signal and internal gate signal when crossing the Threshold are :
 - For Rg = 5 Ω \longrightarrow Delay = 30 ns
 - For Rg = 2 Ω \longrightarrow Delay = 70 ns...
- It is a large difference !
- With High Internal Gate Resistance, In Half- or Full-Bridge, Wrong delays can lead malfunction...
 - Due to the bad information available when looking to external gate signal only.

MOSFET with HIGH internal Rg (Details)

Corner Models

Nothing is Perfect...

Corner Models

- Models online are made and calibrated to give nominal or typical values
- Parameters have Gaussian distribution

- Corner models are the :
 - Maximum threshold device
 - &
 - Minimum threshold device.
- What happens if we parallel them ?

Buck stage waveforms with Corner Models

Turn-ON **Turn-OFF** nternal Vgs QH0 10 10 Internal Vgs QH1 Gate-to-Source Voltages / V During Turn-OFF, Internal Vgs QH2 Voltages / V 8 QH0 and QH2 Common Drive Voltage Internal Vgs QH0 Internal Vgs QH1 restart to conduct. 6 6 nternal Vgs QH2 It may be link to ð Common Drive Voltage 4 nductor Cuurent (Y1) Gate to-Sou Gate-to-Source Drain QH0 (Y1) 2 network 2 Drain QH1 (Y1) Drain QH2 (Y1) (Internal+External) 0 Switching Node (Y2) coupling (Y2) (Y1) Y2) (Y1) 700 700 Inductor Cuurent (Y I Drain QH0 (Y1) 40 40 600 600 I Drain QH1 (Y1) Switching Node / V 200 100 200 100 \triangleleft I Drain QH2 (Y1) 30 ≺ 30, -Currents Switching Node (Y2) Currents // 20 10 10 100 100 0 0 0 98.2 98.4 98.6 98.8 99.0 99.2 99.4 98.0 92.2 92.4 92.6 92.8 93 <u>9</u>2 Time/us Time/us 100ns/div 200ns/div

Buck stage waveforms with Corner Models

Light-colored = Die nodes Dark-colored = Pin nodes

Onsemi

Buck stage waveforms with Corner Models

- We can see a lot of ringing on all external Gate-to-Kelvin Source waveforms...
- When QH0 and QH2 re-start to conduct, we have a peak of voltage above 2V (the threshold) on the internal Gate-to-Source waveforms.

Light-colored = Die nodes Dark-colored = Pin nodes

Buck stage waveforms with Corner Models

Energies (µJ)

Onsemi

Electro-Thermal Simulations

Using Cauer Networks.

Electro-Thermal simulations

- We can simulate thermal behaviors using the following equivalences :
 - Power flow => Current
 - Temperature => Voltage
- Thermo-Electrical models have 2 extra pins :
 - Tcase = Case temperature
 - Tj = Junction temperature

• Thermo-Electrical models internal :

Electro-Thermal simulations : ΔT_{J-C}

Onsemi

Electro-Thermal simulations : Heat Sink with Cauer network

Switching Losses vs V_{GS}, Package and Structure

Using Double Pulse Measurement

Double Pulse Measurement Setup

Waveforms

onsemi

Double Pulse Measurement Setup

Conventions

- Script
- You can also use the waveform viewer math functions :
 - Multiply Voltage and Current = Losses
 - Integrate Losses
 - Measure using cursors the difference in between the two triggering points
- In our case, a script doing the previous steps has been created to measure Eon, Eoff, and many other parameters... at once.

V_{GS} values' Influence

Setup : NDSH50120C (50 A, 1200 V, D3) freewheeling diode NTH4L022N120M3S (22 m Ω , 1200 V, M3S) Switching MOSFET Test point : 800 V / 40 A / 5 Ω External Gate Resistor

V _{GS} Low/Off	V _{GS} High/On	Turn-on	Turn-off
0 V	12V	686.73 μJ	168.08 μJ
-3 V	12 V	685.52 μJ	109.03 μJ
0 V	15 V	467.44 μJ	168.75 μJ
-3 V	15V	461.23 μJ	108.92 μJ
0 V	18 V	376.66 µJ	168.56 μJ
-3 V	18 V	369.35 μJ	109.18 μJ

Structure Influence

Setup : NDSH50120C (50 A, 1200 V, D3) Quarter-brick only NTH4L022N120M3S (22 m Ω , 1200 V, M3S) MOSFET Test point : 800 V / 40 A / 5 Ω External Gate Resistor

Structure	Quarter-Bridge	Half-Bridge
Turn-on	369 μJ	421 µJ
Turn-off	109 µJ	117 µJ

As SiC Schottky diode has less reverse current than SiC P-N Junction Body diode, Quarter-Bridge shows better results because there is less losses due to less reverse current flow.

Package Influence

Setup : NDSH50120C (50 A, 1200 V, D3) freewheeling diode NTH4L022N120M3S (22 m Ω , 1200 V, M3S) Switching MOSFET Test point : 800 V / 40 A / 5 Ω External Gate Resistor

Package	TO247-3L	TO247-4 L	D2Pak-7L
Turn-on	1115 μJ	421 µJ	483 μJ
Turn-off	257 µJ	117 µJ	111 µJ
Total	1372 μJ	538 μJ	594 μJ

Kelvin Packages show more than Half switching losses.

Topologies Simulations with Physical & Scalable Models

Flying Capacitor Boost, I-NPC vs T-NPC, 6-Pack Boost Active front End

Flying Capacitor Boost

DC-DC deep analysis

Flying Capacitor Boost

- Single Input Single output
- Stacked Switches and Diodes
- Operates like an interleaved topology
- Example :
- 700 V in, 1100 V out
- 30 kW
- 30 kHz switching frequency
- Using M3S 1200V MOSFETs
- Using D1 30A 1200V Diodes

Flying Capacitor Boost waveforms

Flying Capacitor Boost Turn-ON and Turn-OFF zoom

External Gate Resistor	Negative peak I(DH)	Negative peak I(DL)
$Rg = 2.5 \Omega$	-29.3 A	-30.6 A
$Rg = 5 \Omega$	-27.8 A	-28.4 A
$Rg = 10 \Omega$	-22.3 A	-22.3 A

Onsemi

Flying Capacitor Boost performances

Losses using Current flowing out of Tcase

I-NPC vs T-NPC

Which is the best cell ?

I-NPC vs T-NPC : Quick comparison

- Comparison setup : Buck stage
 - 400 V in, 200 V / 20 A out
 - Switching frequency around 100 kHz (Self oscillating PWM)
 - D1 or D2 diodes = 50A / 650V
 - M2 MOSFET = 15 m Ω / 650V
 - M3S MOSFET = 22 m Ω / 1200V

Topology	I-NPC	I-NPC	I-NPC	A-NPC	A-NPC	T-NPC	SR T-NPC	SR T-NPC
QsH	M2	M2	M3S	M2	M3S	M3S	M3S	M3S
	32.6 W	18.7 W	7.8 W	36.3 W	7.7 W	8.6 W	6.5 W	8.6 W
QdH/DH	D1	D2	D2	M2	M3S	M3S	M2	M3S
	11.5 W	10.9 W	10.9 W	18.1 W	18.8 W	50.4 W	61.4 W	26.2 W
QmH	M2	M2	M2	M2	M3S	M3S	M2	M3S
	4.4 W	4.3 W	4.3 W	4.4 W	6.2 W	3.0 W	2.2 W	3.1 W
Total	48.5 W	33.9 W	23.0 W	58.8 W	32.7 W	62 W	70.1 W	37.9 W

Onsemi

6-Pack Boost Active Front End

Or 3-Phase Grid Power Factor Corrector

6-Pack Boost Active Front End

- 230 Vrms 3-Phase 50 Hz Grid input
- 950 V 50 kW output
- 72 kHz Switching frequency
- 80 μH inductor, 10 m Ω ESR, 70 pF //
- 60 μ F capacitor, 2.5m Ω ESR
- D-Q control with Sine PWM
- FeedForward Duty cycle prediction
- 3rd Harmony Injection

6-Pack Boost Active Front End : Waveforms

• With 3rd Harmonic Injection

6-Pack Boost Active Front End : Losses Cycle by Cycle

Public Information © onsemi 2022

6-Pack Boost Active Front End : Average Losses over Grid Cycle

 Without 3rd Harmonic Injection QAH Power Losses : 83.5584W QAL Power Losses : 83.5516W QBH Power Losses : 83.55W QBL Power Losses : 83.5384W QCH Power Losses : 83.5505W QCL Power Losses : 83.5402V Same Total Losses Power Losses : 501.289W

 With 3rd Harmonic Injection QAH Power Losses : 83.6955W QAL Power Losses : 83.6902W QBH Power Losses : 83.6783W QBL Power Losses : 83.6803W QCH Power Losses : 83.6782W QCL Power Losses : 83.6865W Total

Power Losses : 502.109W

Onsemi

Conclusion

- **onsemi** simulation models offer unique features like :
 - Access to internal nodes
 - Accurate results for device have large non-linearities over several decades
- We have seen how to set Electro-Thermal simulations and get more out of them :
 - Junction temperature rise,
 - Heat propagation and Average Losses using power flow.
- Topologies simulations and analysis can bring very useful information like :
 - Junction temperature rise,
 - Losses analysis (switching energy, reverse current effect, R_{DS(on)} variations, ...)
 - Impact of parasitic components on Silicon Carbide devices performances
- Physical & Scalable models make virtual prototyping much more real.

Onsemí

Intelligent Technology. Better Future.

Follow Us @onsemi

www.onsemi.com

Bibliography or References

- [1] An Introduction to Physical Scalable Models for Wide Bandgap Power Semiconductor Part One (Blog article) <u>https://www.onsemi.com/blog/industrial-cloud-power/wide-band-gap-ecosystem-part-i</u>
- [2] Wide Bandgap Power Semiconductor: Silicon Carbide MOSFET Models Part Two (Blog Article) https://www.onsemi.com/blog/industrial-cloud-power/wide-band-gap-ecosystem-switches-disruptive-environments
- [3] Wide Bandgap Semiconductor Simulation Model Verification Part Three (Blog Article) https://www.onsemi.com/blog/industrial-cloud-power/wide-bandgap-semiconductor-simulation-model-verification
- [4] Physically Based, Scalable SPICE Modeling Methodologies for Modern Power Electronic Devices (White paper) https://www.onsemi.com/pub/Collateral/TND6260-D.PDF
- [5] SPICE Modeling Tutorial (Tutorial) <u>https://www.onsemi.com/pub/collateral/tnd6248-d.pptx</u>
- [6] Physically Based, Scalable SPICE Modeling Methodologies for Modern Power Electronic Devices (Video) <u>https://www.onsemi.com/video/physically-based-scalable-spice-modeling-methodologies-for-modern-power-electronic-devices</u>
- [7] How to use Physical and Scalable Models with SIMetrix, OrCAD and LTSpice (Application note) https://www.onsemi.com/pub/collateral/and9783-d.pdf
- [8] Using Physical and Scalable Simulation Models to Evaluate Parameters and Application Results (White paper) https://www.onsemi.com/pub/collateral/tnd6330-d.pdf
- [9] Simulate with Physical and Scalable Discrete Models...What could we get ? (Tutorial) <u>https://www.onsemi.com/pub/Collateral/TND6329-D.PDF</u>
- [10] Using Physical and Scalable Simulation Models to Evaluate Parameters and Application Results (Video) <u>https://www.onsemi.com/video/using-physical-and-scalable-simulation-models-to-evaluate-parameters-and-application-results</u>
- [11] Usage of SIMetrix to Study MOSFETs Thermal Behaviors on Heatsink (Application note) https://www.onsemi.com/pub/collateral/and90096-d.pdf