

MOSFET - Power, Single N-Channel, STD Gate, SO8FL

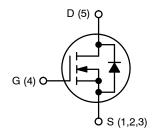
40 V, 1.3 mΩ, 195 A

NVMFWS1D3N04XM

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Small Footprint (5 x 6 mm) with Compact Design
- AECQ101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications


- Motor Drive
- Battery Protection
- Synchronous Rectification

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise stated)

Parameter		Symbol	Value	Unit
Drain-to-Source Voltage		V _{DSS}	40	V
Gate-to-Source Voltage	DC	V _{GS}	±20	V
Continuous Drain Current	T _C = 25°C	I _D	195	Α
	T _C = 100°C		138	
Power Dissipation	T _C = 25°C	P _D	90	W
Continuous Drain Current	T _A = 25°C	I _{DA}	40	Α
$R_{\theta JA}$	T _A = 100°C		28	
Pulsed Drain Current	$T_C = 25^{\circ}C$, $t_p = 10 \mu s$	I _{DM}	900	Α
Operating Junction and Storag Range	T _J , T _{STG}	-55 to +175	°C	
Source Current (Body Diode)	I _S	74.5	Α	
Single Pulse Avalanche Energy (I _{PK} = 11.1 A)		E _{AS}	306	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX	
40 V	1.3 m Ω @ V_{GS} = 10 V	195 A	

N-CHANNEL MOSFET

DFNW5 (SO-8FL) CASE 507BA

1D3N4W AYWZZ

1D3N4W = Specific Device Code

A = Assembly Location

Y = Year W = Work Week

ZZ = Assembly Lot Code

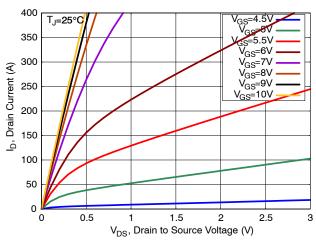
ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case (Note 2)	$R_{ heta JC}$	1.67	°C/W
Thermal Resistance, Junction-to-Ambient (Notes 1, 2)	$R_{\theta JA}$	40.1	

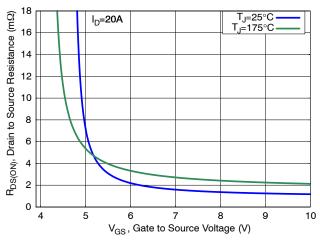
^{1.} Surface mounted on FR4 board using 650 mm², 2 oz Cu pad.


ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS	_					•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V, } I_D = 1 \text{ mA, } T_J = 25^{\circ}\text{C}$	40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$\Delta V_{(BR)DSS}/ \Delta T_J$	I _D = 1 mA, Referenced to 25°C		15		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 40 V, T _J = 25°C			10	μΑ
		V _{DS} = 40 V, T _J = 125°C			100	
Gate-to-Source Leakage Current	I _{GSS}	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
ON CHARACTERISTICS						
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 20 A, T _J = 25°C		1.17	1.3	mΩ
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 100 \mu A, T_J = 25^{\circ}C$	2.5		3.5	V
Gate Threshold Voltage Temperature Coefficient	$\Delta V_{GS(TH)}/ \Delta T_J$	$V_{GS} = V_{DS}$, $I_D = 100 \mu A$		-7.23		mV/°C
Forward Trans-conductance	9FS	V _{DS} = 5 V, I _D = 20 A		105		S
CHARGES, CAPACITANCES & GATE RE	SISTANCE					
Input Capacitance	C _{ISS}	V _{GS} = 0 V, V _{DS} = 25 V, f = 1 MHz		2459		pF
Output Capacitance	C _{OSS}			1578		
Reverse Transfer Capacitance	C _{RSS}			23.3		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DD} = 32 V; I _D = 50 A		38.6		nC
Threshold Gate Charge	Q _{G(TH)}			7.2		
Gate-to-Source Charge	Q _{GS}			11.3		
Gate-to-Drain Charge	Q_{GD}			7.4		
Gate Resistance	R_{G}	f = 1 MHz		0.72		Ω
SWITCHING CHARACTERISTICS						
Turn-On Delay Time	t _{d(ON)}	Resistive Load,		19.1		ns
Rise Time	t _r	$V_{GS} = 0/10 \text{ V}, V_{DD} = 32 \text{ V},$ $I_{D} = 50 \text{ A}, R_{G} = 0 \Omega$		6.2		
Turn-Off Delay Time	t _{d(OFF)}			30.4		
Fall Time	t _f			5.2		1
SOURCE-TO-DRAIN DIODE CHARACT	ERISTICS					
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 \text{ V}, I_S = 20 \text{ A}, T_J = 25^{\circ}\text{C}$		0.8		V
		V _{GS} = 0 V, I _S = 20 A, T _J = 125°C		0.65		
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, I _S = 50 A,		46		ns
Charge Time	ta	dl/dt = 100 A/μs, V _{DD} = 32 V		22		
Discharge Time	t _b			24		
Reverse Recovery Charge	Q_{RR}			55		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{2.} The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.


TYPICAL CHARACTERISTICS

400 V_{DS}=5V 350 V_{DS}=5V 300 V

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

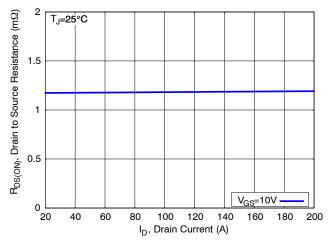
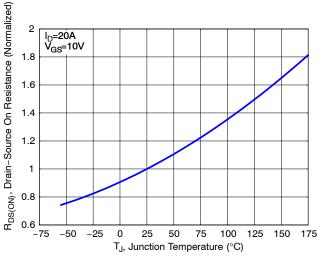



Figure 3. On-Resistance vs. V_{GS}

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

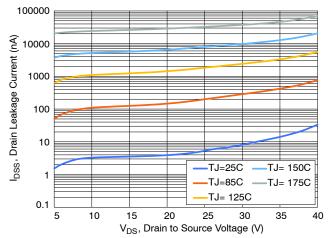


Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

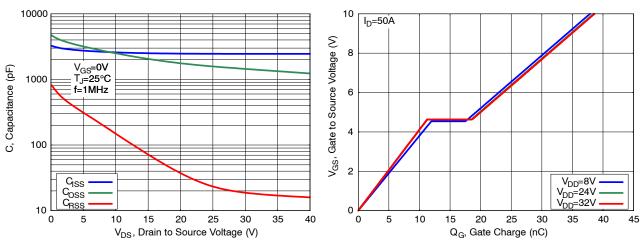


Figure 7. Capacitance Characteristics

Figure 8. Gate-to-Source Voltage vs. Total Charge

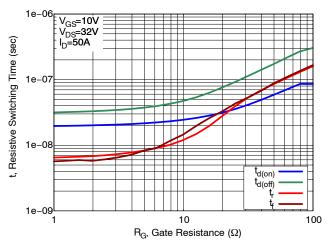


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

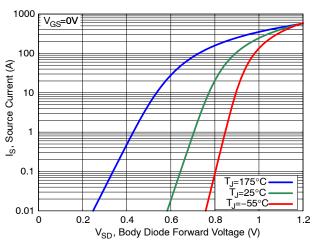


Figure 10. Diode Forward Voltage vs. Current

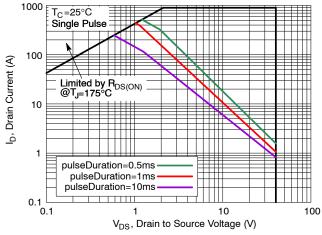


Figure 11. Safe Operating Area (SOA)

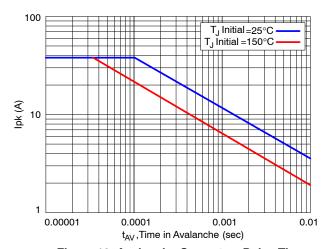


Figure 12. Avalanche Current vs Pulse Time (UIS)

TYPICAL CHARACTERISTICS

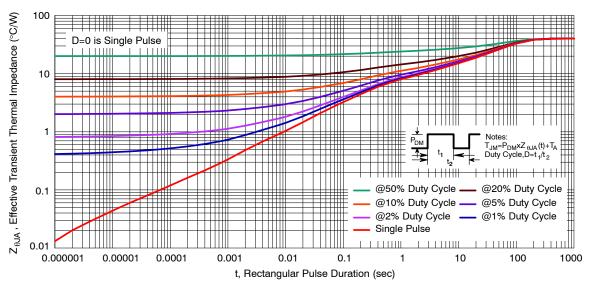
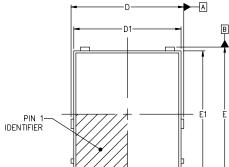


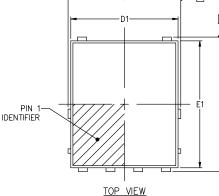
Figure 13. Transient Thermal Response

ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NVMFWS1D3N04XMT1G	1D3N4W	DFNW5 (Pb-Free)	1500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

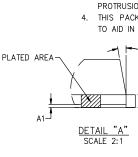



// 0.10 C

△ 0.10 C

DFNW5 4.90x5.90x1.00, 1.27P CASE 507BA **ISSUE C**

DATE 19 SEP 2024

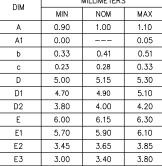


DETAIL A

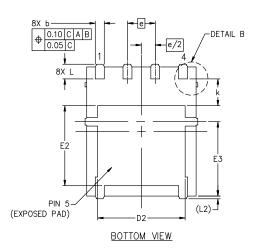
SIDE VIEW

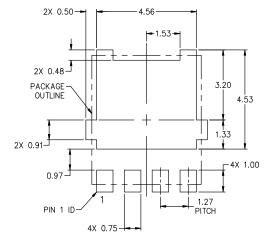
SEATING

PLANE



NO MOLD COMPOUND ON THE BOTTOM OF **DETAIL** TIE BAR. SCALE 2:1


NOTES:


- DIMENSIONING TOLERANCING TO ASME Y14.5M-2018.
- ALL DIMENSIONS ARE IN MILLIMETERS.
- .3. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
- THIS PACKAGE CONTAINS WETTABLE FLANK DESIGN FEATURES TO AID IN FILLET FORMATION ON THE LEADS DURING MOUNTING.

MILLIMETERS

L	0.00	0.15	0.50	
E1	5.70	5.90	6.10	
E2	3.45	3.65	3.85	
E3	3.00	3.40	3.80	
е	1.27 BSC			
k	1.20	1.35	1.50	
L	0.51	0.57	0.71	
L2	0.15 REF.			
θ	0.	6,	12*	

RECOMMENDED MOUNTING FOOTPRINT* *FOR ADDITIONAL INFORMATION ON OUR PD-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXXX = Specific Device Code

= Assembly Location Α Υ = Year

W = Work Week ZZ = Lot Traceability *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON26450H	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DFNW5 4.90x5.90x1.00, 1.27P		PAGE 1 OF 1	

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales