

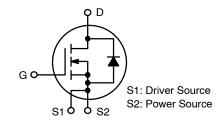
Silicon Carbide (SiC) MOSFET - EliteSiC, 53 mohm, 1700 V, M1, TO-247-4L NVH4L050N170M1

Features

- Typ. $R_{DS(on)} = 53 \text{ m}\Omega$ @ $V_{GS} = 20 \text{ V}$
- Ultra Low Gate Charge (Q_{G(tot)} = 105 nC)
- High Speed Switching with Low Capacitance (C_{oss} = 98 pF)
- 100% Avalanche Tested
- These Devices are Pb-Free and are RoHS Compliant

Typical Applications

- Automotive On Board Charger
- Automotive DC–DC Converter for EV/HEV


MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	1700	V
Gate-to-Source Voltage			V_{GS}	-15/+25	V
Recommended Operation Values T _C < of Gate-to-Source Voltage		T _C < 175°C	V_{GSop}	-5/+20	V
Continuous Drain Current (Note 1)	Steady State	T _C = 25°C	I _D	45	Α
Power Dissipation (Note 1)			P _D	333	W
Continuous Drain Current (Note 1)	Steady State	T _C = 100°C	I _D	32	Α
Power Dissipation (Note 1)			P _D	167	W
Pulsed Drain Current (Note 2)	T _C = 25°C t _p = 100 μs		I _{DM}	147	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Continuous Source Current (Body Diode)			I _S	77	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 22.8 A, L = 1 mH) (Note 3)			E _{AS}	260	mJ
Maximum Lead Temperature for Soldering (1/25" from case for 10 s)		TL	270	ç	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Single pulse, limited by max junction temperature.
- 3. EAS of 260 mJ is based on starting T_J = 25°C; L = 1 mH, I_{AS} = 22.8 A, V_{DD} = 120 V, V_{GS} = 18 V.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
1700 V	76 mΩ @ 20 V	45 A

N-CHANNEL MOSFET

MARKING DIAGRAM

H4L050N170M1 = Specific Device Code

A = Assembly Location

Y = Year WW = Work Week ZZ = Lot Traceability

ORDERING INFORMATION

Device	Package	Shipping
NVH4L050N170M1	TO-247-4L	30 Units / Tube

THERMAL CHARACTERISTICS

Parameter	Symbol	Max	Unit
Junction-to-Case - Steady State (Note 1)		0.45	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•					
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	1700	_	_	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 1 mA, referenced to 25°C	-	0.5	-	V/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 1700 V, T _J = 25°C	-	-	100	μΑ
		V _{GS} = 0 V, V _{DS} = 1700 V, T _J = 175°C (Note 5)	_	-	1	mA
Gate-to-Source Leakage Current	I _{GSS}	V _{GS} = +25/-15 V, V _{DS} = 0 V	-	_	±1	μΑ
ON CHARACTERISTICS (Note 2)						
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 10 \text{ mA}$	1.8	3.1	4.3	V
Recommended Gate Voltage	V_{GOP}		-5	_	+20	V
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 20 V, I _D = 35 A, T _J = 25°C	-	53	76	mΩ
		V _{GS} = 20 V, I _D = 35 A, T _J = 175°C (Note 5)	_	112	-	
Forward Transconductance	9FS	V _{DS} = 20 V, I _D = 35 A (Note 5)	-	23	-	S
CHARGES, CAPACITANCES & GATE RES	ISTANCE					
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 1000 V	_	2063	-	pF
Output Capacitance	C _{OSS}	(Note 5)	_	98	_	
Reverse Transfer Capacitance	C _{RSS}	1	_	7.9	-	
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -5/20 \text{ V}, V_{DS} = 1000 \text{ V},$	-	105	-	nC
Gate-to-Source Charge	Q_{GS}	I _D = 35 A (Note 5)	_	31	-	
Gate-to-Drain Charge	Q_{GD}		_	24	-	
Gate-Resistance	R_{G}	f = 1 MHz	-	2.1	-	Ω
SWITCHING CHARACTERISTICS						
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = -5/20 \text{ V}, V_{DS} = 1200 \text{ V},$	-	14	-	ns
Rise Time	t _r	I_D = 35 A, R_G = 3.9 Ω inductive load (Note 4) and (Note 5)	_	22	-	
Turn-Off Delay Time	t _{d(OFF)}		_	44	1	
Fall Time	t _f		_	13	-	
Turn-On Switching Loss	E _{ON}		_	803	-	μЈ
Turn-Off Switching Loss	E _{OFF}		_	198	-	
Total Switching Loss	E _{tot}		-	1001	-	
SOURCE-DRAIN DIODE CHARACTERIST	ics					
Continuous Source-Drain Diode Forward Current	I _{SD}	$V_{GS} = -5 \text{ V}, T_J = 25^{\circ}\text{C}$	_	_	77	Α
Pulsed Source-Drain Diode Forward Current (Note 2)	I _{SDM}		_	_	404	
Forward Diode Voltage	V_{SD}	$V_{GS} = -5 \text{ V}, I_{SD} = 35 \text{ A}, T_{J} = 25^{\circ}\text{C}$	_	4.3	-	V
Reverse Recovery Time	t _{RR}	V _{GS} = -5/20 V, I _{SD} = 35 A,	-	27	-	ns
Reverse Recovery Charge	Q _{RR}	dl _S /dt = 1000 A/μs (Note 5)	_	233	_	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. EON / EOFF result is with body diode.

5. Defined by design, not subject to production.

TYPICAL CHARACTERISTICS



Figure 1. On-Region Characteristics

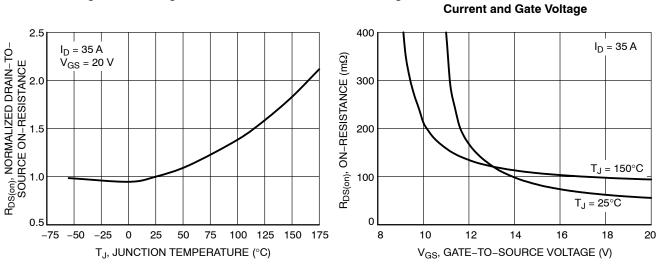


Figure 3. On-Resistance Variation with Temperature

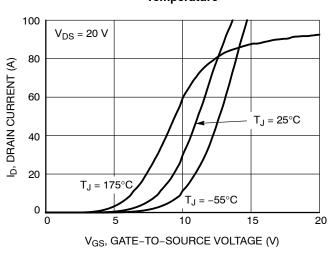


Figure 5. Transfer Characteristics

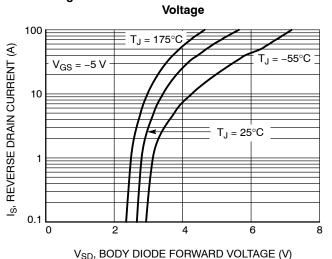


Figure 4. On-Resistance vs. Gate-to-Source

Figure 6. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS

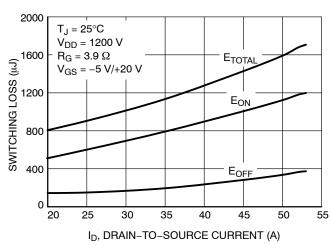


Figure 7. Switching Loss vs. Drain-to-Source Current (25°C)

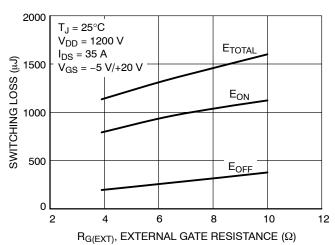
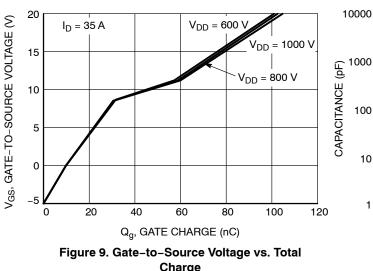
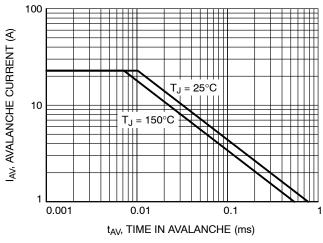



Figure 8. Switching Loss vs. External Gate Resistance


TYPICAL CHARACTERISTICS

1000 100 $C_{r\underline{s}\underline{s}}$ 10 f = 1 MHz $V_{GS} = 0 V$ 0.1 10 100 1000 V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

Charge

Figure 10. Capacitance vs. Drain-to-Source Voltage

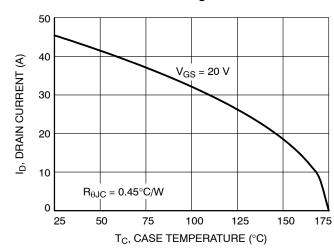
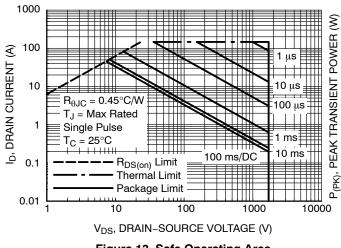



Figure 11. Unclamped Inductive Switching Capability

Figure 12. Maximum Continuous Drain **Current vs. Case Temperature**

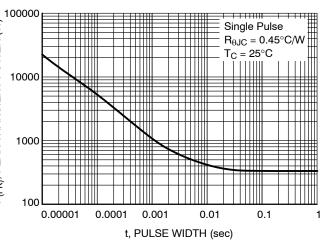


Figure 13. Safe Operating Area

Figure 14. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS

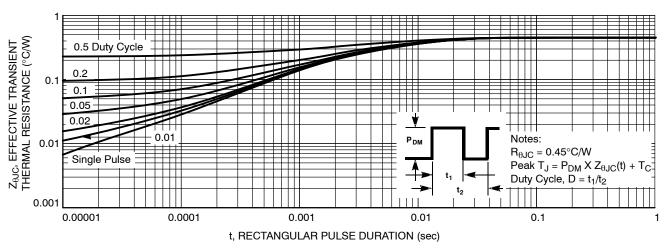
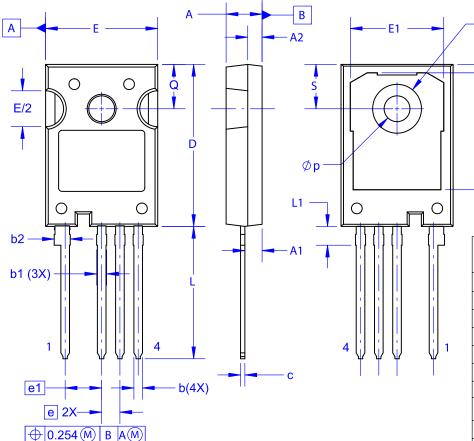


Figure 15. Junction-to-Case Thermal Response

 \emptyset p1


D1

D2

TO-247-4LD CASE 340CJ **ISSUE A**

DATE 16 SEP 2019

NOTES:

- A. NO INDUSTRY STANDARD APPLIES TO THIS PACKAGE.
 B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD
 FLASH, AND TIE BAR EXTRUSIONS.
 C. ALL DIMENSIONS ARE IN MILLIMETERS.
 D. DRAWING CONFORMS TO ASME Y14.5-2009.

DIM	MIL	LIMETER	S	
DIM	MIN	NOM	MAX	
Α	4.80	5.00	5.20	
A1	2.10	2.40	2.70	
A2	1.80	2.00	2.20	
b	1.07	1.20	1.33	
b1	1.20	1.40	1.60	
b2	2.02	2.22	2.42	
С	0.50	0.60	0.70	
D	22.34	22.54	22.74	
D1	16.00	16.25	16.50	
D2	0.97	1.17	1.37	
е	2.54 BSC			
e1	5	5.08 BSC		
E	15.40	15.60 15.8		
E1	12.80	13.00	13.20	
E/2	4.80	5.00	5.20	
L	18.22	18.42	18.62	
L1	2.42	2.62	2.82	
р	3.40	3.60	3.80	
p1	6.60	6.80	7.00	
Q	5.97	6.17	6.37	
S	5.97	6.17	6.37	

DOCUMENT NUMBER:	98AON13852G	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247-4LD		PAGE 1 OF 1	

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales