MOSFET - Power, N-Channel PowerTrench[®] Power Clip 25 V Asymmetric Dual

NTTFD1D8N02P1E

Features

- Small Footprint (3.3mm x 3.3mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- These Devices are Pb-Free and are RoHS Compliant

Typical Applications

- DC-DC Converters
- System Voltage Rails

MAXIMUM RATINGS (T _J = 25°C unless otherwise noted)										
Parar	neter		Symbol	Q1	Q2	Unit				
Drain-to-Source Volt	age		V _{DSS}	25	25	V				
Gate-to-Source Volt	age		V _{GS}	+16 -12	+16 -12	V				
Continuous Drain		$T_{C} = 25^{\circ}C$	I _D	61	126	А				
Current R _{θJC} (Note 3)	Steady	$T_{C} = 85^{\circ}C$		44	91					
Power Dissipation $R_{\theta JC}$ (Note 3)	State	$T_A = 25^{\circ}C$	P _D	25	36	W				
Continuous Drain		$T_A = 25^{\circ}C$	I _D	15	30	А				
Current R _{θJA} (Notes 1, 3)	Steady	$T_A = 85^{\circ}C$		11	21					
Power Dissipation $R_{\theta JA}$ (Notes 1, 3)	State	$T_A = 25^{\circ}C$	PD	1.6	2.0	W				
Continuous Drain		$T_A = 25^{\circ}C$	Ι _D	11	21	А				
Current R _{θJA} (Notes 2, 3)	Steady	$T_A = 85^{\circ}C$		8	15					
Power Dissipation $R_{\theta JA}$ (Notes 2, 3)	State	$T_A = 25^{\circ}C$	P _D	0.8	0.9	W				
Pulsed Drain Current	T _A = 25°0	C, t _p = 10 μs	I _{DM}	483	861	А				
Single Pulse Drain-to-Source Avalanche Energy Q1: $I_L = 15.8 A_{pk}$, L = 0.3 mH (Note 4) Q2: $I_L = 31.63 A_{pk}$, L = 0.3 mH (Note 4)			E _{AS}	37.3	150. 1	mJ				
Operating Junction and	d Storage	Temperature	T _J , T _{stg}	-55 to + 150		°C				
Lead Temperature for Purposes (1/8" from			ΤL	26	60	°C				

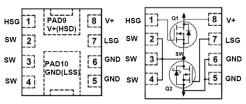
MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

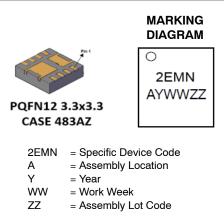
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Surface-mounted on FR4 board using a 1 in² pad size, 2 oz. Cu pad.
- 2. Surface-mounted on FR4 board using minimum pad size, 2 oz. Cu pad.

3. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted. Actual continuous current will be limited by thermal & electro-mechanical application board design. R_{BJC} is determined by the user's board design.

- Q1 100% UIS tested at L = 0.1 mH, IAS = 24.2 A.
 Q2 100% UIS tested at L = 0.1 mH, IAS = 48.1 A.
- 5. This device does not have ESD protection diode.




ON Semiconductor®

www.onsemi.com

FET	V _{(BR)DSS}	(BR)DSS R _{DS(ON)} MAX	
Q1	4.2 mΩ @ 10 V		61 A
QT	23 V	$5.3~\mathrm{m}\Omega$ @ $4.5~\mathrm{V}$	ULA
Q2	25 V	1.4 m Ω @ 10 V	126 A
Q2	23 V	1.8 mΩ @ 4.5 V	120 A

ELECTRICAL CONNECTION

ORDERING INFORMATION

Device	Package	Shipping [†]
NTTFD1D8N02P1E	PQFN8 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Q1 Max	Q2 Max	Unit
Junction-to-Case - Steady State (Notes 1, 3)	$R_{ extsf{ heta}JC}$	5.0	3.5	°C/W
Junction-to-Ambient - Steady State (Notes 1, 3)	R_{\thetaJA}	77	63	
Junction-to-Ambient - Steady State (Notes 2, 3)	$R_{\theta JA}$	158	132	

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condition	FET	Min	Тур	Max	Unit
OFF CHARACTERISTICS							

Drain-to-Source Breakdown	V _{(BR)DSS}	$V_{GS} = 0 V, I_D = 2$	V_{GS} = 0 V, I_D = 250 μ A		25			V
Voltage		V_{GS} = 0 V, I_D = 1 mA		Q2	25			v
Drain-to-Source Breakdown Voltage Temperature	V _{(BR)DSS} /	/ $I_D = 250 \ \mu$ A, ref to 25°C $I_D = 1 \ m$ A, ref to 25°C		Q1		16		m)//°C
Coefficient	IJ			Q2		16		mV/°C
Zero Gate Voltage Drain	I _{DSS}	V _{GS} = 0 V, V _{DS} = 20 V	$T_J = 25^{\circ}C$	Q1			10	
Current		$v_{DS} = 20 v$		Q2			10	μΑ
Gate-to-Source Leakage	I _{GSS}	$I_{GSS} = 0 V, V_{GS} = +16 V / -12 V$ $V_{DS} = 0 V, V_{GS} = +16 V / -12 V$		Q1			±100	nA
Current				Q2			±100	ПА

ON CHARACTERISTICS (Note 6)

Gate Threshold Voltage	V _{GS(TH)}	V_{GS} = V_{DS} , I_D = 190 μ A	Q1	1.2		2.0	V
		V_{GS} = V_{DS} , I_D = 310 μ A	Q2	1.2		2.0	v
Negative Threshold	V _{GS(TH)} /T _J	$I_D = 190 \ \mu A$, ref to $25^{\circ}C$	Q1		-4.4		m)//9C
Temperature Coefficient		$I_D = 310 \ \mu A$, ref to $25^{\circ}C$	Q2		-4.7		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V_{GS} = 10 V, I _D = 15 A	Q1		3.3	4.2	
		V_{GS} = 4.5 V, I _D = 13 A			4.2	5.3	
		V_{GS} = 10 V, I _D = 29 A	Q2		1.04	1.4	mΩ
		V_{GS} = 4.5 V, I _D = 26 A			1.34	1.8	
Forward Transconductance	9 FS	$V_{DS} = 5 V, I_{D} = 15 A$	Q1		105		s
		$V_{DS} = 5 \text{ V}, \text{ I}_{D} = 29 \text{ A}$	Q2		207		5
Gate-Resistance	R _G	$T_A = 25^{\circ}C$	Q1		0.54		Ω
			Q2		0.45		52

CHARGES, CAPACITANCES & GATE RESISTANCE

Input Capacitance	C _{ISS}		Q1	873	рF	
			Q2	2700	pi	
Output Capacitance	C _{OSS}		Q1	243	~ [
		V _{GS} = 0 V, V _{DS} = 13 V, f = 1 MHz	Q2	748	pF	
Reverse Transfer Capacitance	C _{RSS}		Q1	19	~ Г	
			Q2	48	pF	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

6. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%.

7. Switching characteristics are independent of operating junction temperatures.

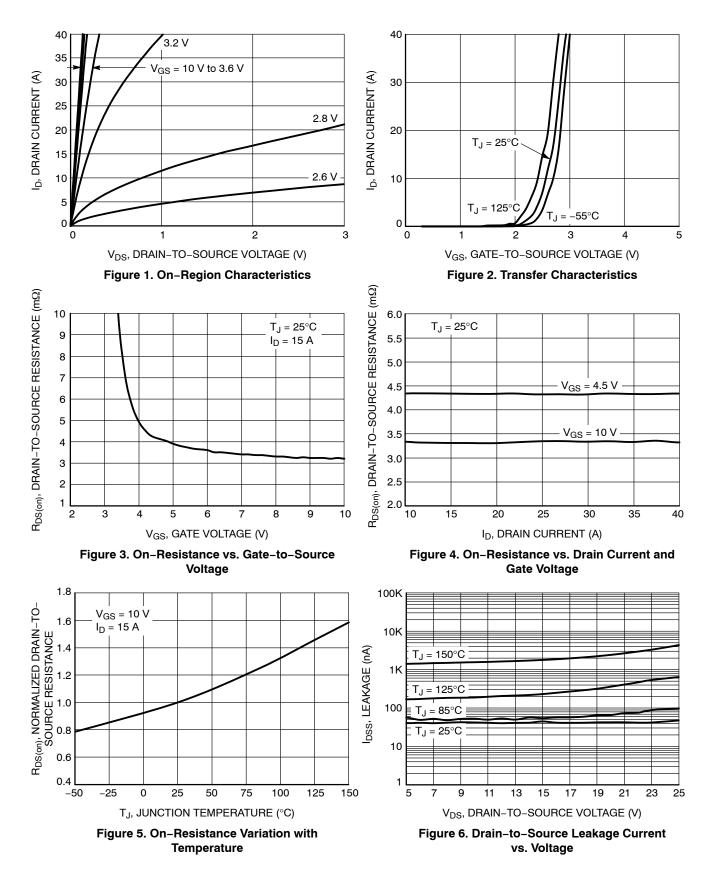
ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise specified)

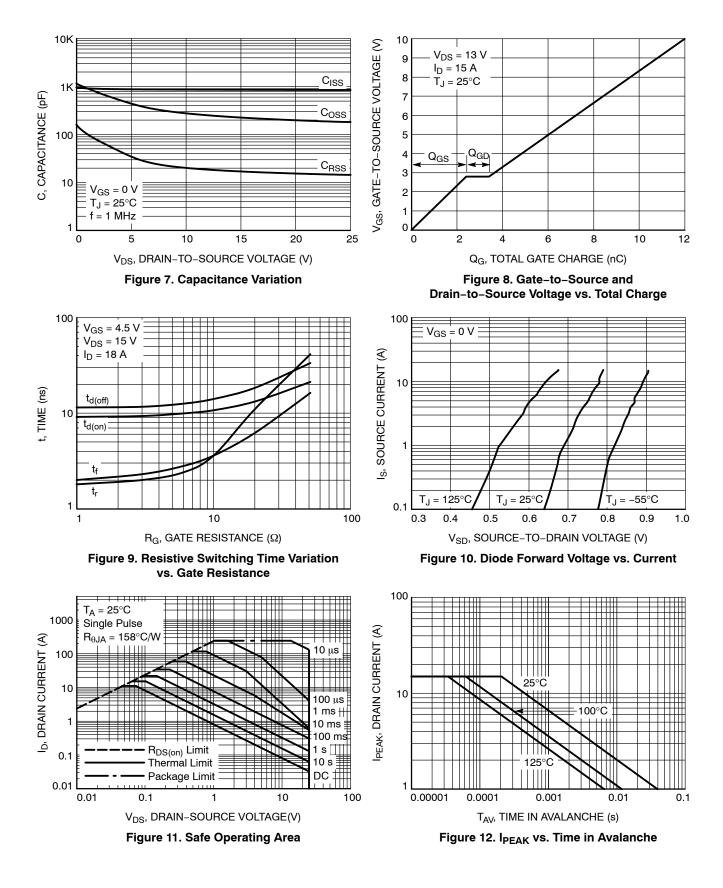
Parameter	Symbol	Test Condition	FET	Min	Тур	Max	Unit			
CHARGES, CAPACITANCES & GATE RESISTANCE										
Total Gate Charge	Q _{G(TOT)}		Q1		5.5		nC			
			Q2		17		lic			
Gate-to-Drain Charge	Q _{GD}	Q1: V _{GS} = 4.5 V, V _{DS} = 13 V; I _D = 15 A	Q1		1.0		nC			
		Q2: V_{GS}^{0} = 4.5 V, V_{DS}^{0} = 13 V; I_{D}^{0} = 29 A	Q2		2.7		lic			
Gate-to-Source Charge	Q _{GS}		Q1		2.4		nC			
			Q2		7.3		nc			
Total Gate Charge	Q _{G(TOT)}	Q1: V_{GS} = 10 V, V_{DS} = 13 V; I_{D} = 15 A	Q1		12		nC			
		Q2: V_{GS} = 10 V, V_{DS} = 13 V; I_{D} = 29 A	Q2		37.5		nC			

SWITCHING CHARACTERISTICS, VGS = 4.5 V (Note 7)

Turn-On Delay Time	t _{d(ON)}		Q1	9.5	20	
			Q2	19.1	ns	
Rise Time	tr		Q1	2.3	20	
		V_{GS} = 4.5 V Q1: I _D = 15 A, V _{DD} = 13 V, R _G = 6 Ω	Q2	6.6	ns	
Turn-Off Delay Time	t _{d(OFF)}	Q2: $I_D = 29 \text{ A}, V_{DD} = 13 \text{ V}, H_G = 6 \Omega$	Q1	12.6	20	
			Q2	26.3	ns	
Fall Time	t _f		Q1	2.7	20	
		T E	Q2	6.3	ns	

SWITCHING CHARACTERISTICS, VGS = 10 V (Note 7)


Turn-On Delay Time	t _{d(ON)}		Q1	6.6	20
			Q2	9.4	ns
Rise Time	t _r		Q1	1.1	20
		V_{GS} = 10 V Q1: I _D = 15 A, V _{DD} = 13 V, R _G = 6 Ω	Q2	2.3	ns
Turn-Off Delay Time	t _{d(OFF)}	Q1: $I_D = 13 \text{ A}, V_{DD} = 13 \text{ V}, R_G = 0.22$ Q2: $I_D = 29 \text{ A}, V_{DD} = 13 \text{ V}, R_G = 6 \Omega$	Q1	17.3	20
			Q2	37.6	ns
Fall Time	t _f		Q1	1.7	20
			Q2	5.2	ns


DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Diode Voltage	V _{SD}	$v_{GS} = 0 v,$	$T_J = 25^{\circ}C$	Q1	0.80	1.2	
		I _S = 15 A	T _J = 125°C		0.70		V
		V _{GS} = 0 V,	$T_J = 25^{\circ}C$	Q2	0.80	1.2	v
		$V_{GS} = 0 V,$ $I_{S} = 29 A T$	T _J = 125°C		0.69		
Reverse Recovery Time	t _{RR}		Q1	19		20	
		V _{GS} = 0 V Q1: I _S = 15 A, dI _S /dt =	100 4/00	Q2	35		ns
Reverse Recovery Charge	Q _{RR}	Q2: $I_S = 29 \text{ A}, dI_S/dt = Q2: I_S = 29 \text{ A}, dI_S = 29 \text{ A}, dI_S = 29 \text{ A}, dI_S = 29 $	Q1	6.0			
				Q2	21		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

6. Pulse Test: pulse width $\leq 300 \ \mu$ s, duty cycle $\leq 2\%$. 7. Switching characteristics are independent of operating junction temperatures.

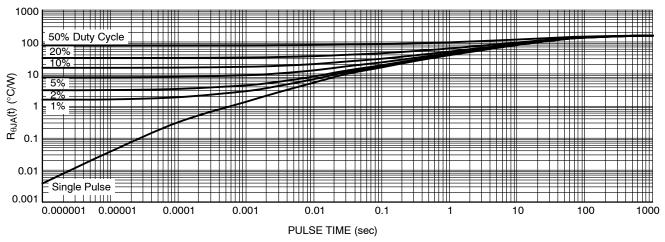
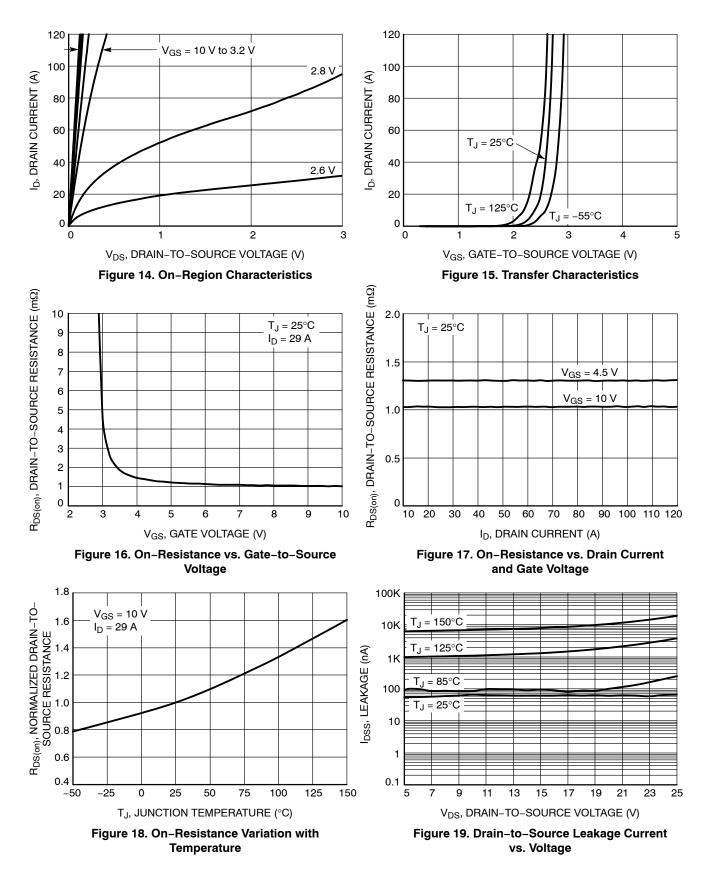
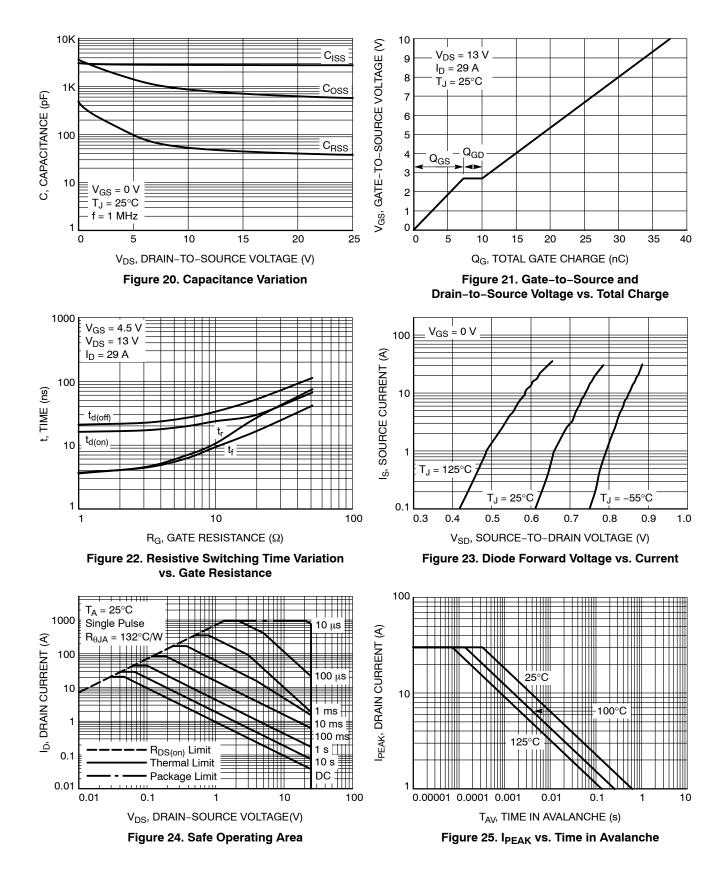




Figure 13. Thermal Characteristics

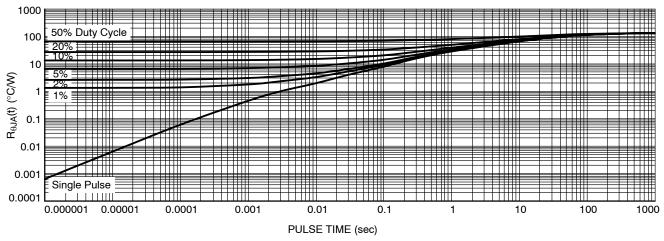
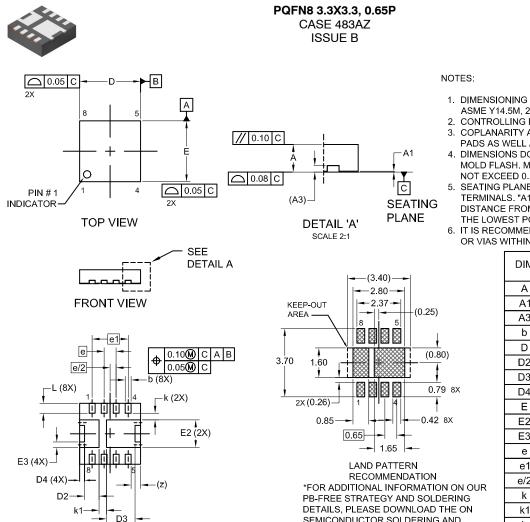



Figure 26. Thermal Characteristics

semi

BOTTOM VIEW

SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

DATE 14 FEB 2022

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- CONTROLLING DIMENSION: MILLIMETERS COPLANARITY APPLIES TO THE EXPOSED
- PADS AS WELL AS THE TERMINALS. 4. DIMENSIONS DO NOT INCLUDE BURSS OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM.
- 5. SEATING PLANE IS DEFINED BY THE TERMINALS. "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.
- 6. IT IS RECOMMENDED TO HAVE NO TRACES OR VIAS WITHIN THE KEEP OUT AREA.

DIM	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.70	0.75	0.80	
A1	0.00		0.05	
A3	0.20 REF			
b	0.27	0.32	0.37	
D	3.20	3.30	3.40	
D2	0.69	0.79	0.89	
D3	1.45	1.55	1.65	
D4	0.16	0.26	0.36	
E	3.20	3.30	3.40	
E2	1.40	1.50	1.60	
E3	0.30 REF			
е	0.65 BSC			
e1	1.95 BSC			
e/2	0.325 BSC			
k	0.36 REF			
k1	0.40 REF			
L	0.44	0.54	0.64	
Z	0.52 REF			

DOCUMENT NUMBER:	98AON13675G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION: PQFN8 3.3X3.3, 0.65P		PAGE 1 OF 1			
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.					

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>