IntelliMAX ${ }^{\text {m }}$ Advanced Load Products
 FPF1007 - FPF1009

General Description

The FPF1007/8/9 are low R_{DS} P-Channel MOSFET load switches offered in a selection of $10 \mu \mathrm{~s}, 80 \mu \mathrm{~s}$, and 1 ms slew rate turn-on options for transient / in-rush current control. To support trends in mobile application requirements, the minimum operating input voltage has been reduced down to 1.2 V , the input current leakage has been minimized to extend battery life, and the ESD-protection has been designed to withstand a minimum of $8 \mathrm{kV}(\mathrm{HBM})$ and 2 kV (CDM).

The switch is controlled by an active-high logic input (ON pin), allowing direct interface with a low-voltage control signal. An internal ON pin pull-down resistor protects against unintentional device turn-on in the initial state. An on-chip pull-down resistor on the output is enabled when the switch is turned-off and provides quick, robust discharge of the output load.

Features

- 1.2 to 5.5 V Input Voltage Range
- Typical $\mathrm{R}_{\mathrm{ON}}=30 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
- Typical $\mathrm{R}_{\mathrm{ON}}=40 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$
- Fixed Three Different Turn-on Rise Time $10 \mu \mathrm{~s} / 80 \mu \mathrm{~s} / 1 \mathrm{~ms}$
- Low $<10 \mu \mathrm{~A}$ at $\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$ Quiescent Current
- Internal ON Pin Pull Down
- Output Discharge Function
- ESD Protection above 8000 V HBM and 2000 V CDM
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- PDAs
- Cell Phones
- GPS Devices
- MP3 Players
- Digital Cameras
- Peripheral Ports
- Hot-Swap Supplies
- Notebook Computers

WDFN6 2x2, 0.65P CASE 511CY

MARKING DIAGRAM

```
&E&E&Y
&Oxxx&C
&.&O&E&V
```

$\& \mathrm{E}$	$=$ Designates Space
$\& \mathrm{Y}$	$=$ Binary Calendar Year Coding Scheme
$\& \mathrm{O}$	$=$ Plant Code identifier
$\times x \mathrm{x}$	$=$ Device Specific Code
$\& \mathrm{C}$	$=$ Single digit Die Run Code
$\&$.	$=$ Pin One Dot
$\& \mathrm{~V}$	$=$ Eight-Week Binary Datecoding Scheme

ORDERING INFORMATION

See detailed ordering and shipping information on page 10 of this data sheet.
NOTE: Some of the devices on this data sheet have been DISCONTINUED. Please refer to the table on page 10.

Typical Application Circuit

Figure 1. Typical Application Circuit

Functional Block Diagram

Figure 2. Functional Block Diagram

Pin Configuration

(Bottom View)
Figure 3. Pin Configuration

PIN DESCRIPTIONS

Name	Type	
4,5	V OUT	Switch Output: Output of the power switch
2,3	$\mathrm{~V}_{\text {IN }}$	Supply Input: Input to the power switch and the supply voltage for the IC
6	GND	Ground
1	ON	ON/OFF Control Input

ABSOLUTE MAXIMUM RATINGS

Parameter	Min	Max	Unit
$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$, ON to GND	-0.3	6.0	V
Maximum Continuous Switch Current		1.5	A
Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}($ Note 1)		1.2	W
Storage Junction Temperature	-65	150	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	-40	85	${ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction to Ambient			86
Electrostatic Discharge Protection	${ }^{\circ} \mathrm{C} / \mathrm{W}$		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Package power dissipation on 1 square inch pad, 2 oz. copper board.

RECOMMENDED OPERATING RANGE

Symbol	Parameter	Min	Max	Unit
V_{IN}	Input Voltage	1.2	5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Ambient Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{I N}=1.2$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Test Condition		Min	Typ	Max	Unit
Basic Operation							
$\mathrm{V}_{\text {IN }}$	Operating Voltage			1.2		5.5	V
I_{Q}	Quiescent Current	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\text {ON }}=\text { Enabled } \end{aligned}$	$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$		8		$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$			15	
$\mathrm{I}_{\mathrm{Q} \text { (off) }}$	Off Supply Current	$\mathrm{V}_{\text {ON }}=\mathrm{GND}, \mathrm{V}_{\text {OUT }}=$ OPEN				1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SD (off) }}$	Off Switch Current	$\mathrm{V}_{\text {ON }}=$ GND, $\mathrm{V}_{\text {OUT }}=$ GND			0.1	1.0	$\mu \mathrm{A}$
R_{ON}	On-Resistance	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			30	40	$\mathrm{m} \Omega$
		$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$, $\mathrm{I}_{\text {IUUT }}=200 \mathrm{~mA}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$			40	55	
		$\mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			100	130	
		$\mathrm{V}_{\text {IN }}=1.2 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=200 \mathrm{~mA}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$			175	250	
		$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$, $\mathrm{I}_{\text {IOUT }}=200 \mathrm{~mA}, \mathrm{~T}_{\text {A }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		20		65	
RPD	Output Pull Down Resistance	$\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			60		Ω
$\mathrm{V}_{\text {IL }}$	ON Input Logic Low Voltage	$\mathrm{V}_{\mathrm{IN}}=1.2 \mathrm{~V}$ to 5.5 V				0.4	V
V_{IH}	ON Input Logic High Voltage	$\mathrm{V}_{\mathrm{IN}}=1.2 \mathrm{~V}$ to 5.5 V		1			V
	ON Input Leakage (On)	$\mathrm{V}_{\mathrm{ON}}=\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$				10	$\mu \mathrm{A}$
	ON Input Leakage (Off)	$\mathrm{V}_{\text {ON }}=\mathrm{GND}$				1	$\mu \mathrm{A}$

Dynamic
FPF1007

ton	Turn On Time	$\begin{aligned} & \mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{R}_{\mathrm{L} \text { _CHIP }}=60 \Omega, \\ & \text { Cout }=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	12	us
t_{R}	Rise Time		10	us
$\mathrm{t}_{\text {OFF }}$	Turn Off Time		40	us
t_{F}	Fall Time		15	us

FPF1008

ton	Turn On Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{R}_{\mathrm{L} \text { _CHIP }}=60 \Omega, \\ & \text { Cout }=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	125	$\mu \mathrm{s}$
t_{R}	Rise Time		80	$\mu \mathrm{s}$
toff	Turn Off Time		40	$\mu \mathrm{s}$
t_{F}	Fall Time		15	$\mu \mathrm{s}$

FPF1009

ton	Turn On Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{R}_{\mathrm{L}} \mathrm{CHIP}=60 \Omega, \\ & \mathrm{CouT}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	2	ms
t_{R}	Rise Time		1	ms
toff	Turn Off Time		40	$\mu \mathrm{s}$
t_{F}	Fall Time		15	$\mu \mathrm{s}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Figure 4. Quiescent Current vs. Input Voltage

T_{J}, JUNCTION TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$
Figure 6. Quiescent Current vs. Temperature

Figure 8. V_{ON} Low Voltage vs. Temperature

Figure 5. Quiescent Current vs. Temperature

Figure 7. V_{ON} Voltage vs. Input Voltage

Figure 9. V_{ON} High Voltage vs. Temperature

TYPICAL CHARACTERISTICS (continued)

Figure 10. On Pin Current vs. Temperature

Figure 12. FPF1007 $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\text {OFF }}$ vs. Temperature

Figure 14. FPF1009 $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$ vs. Temperature

Figure 11. RoN vs. $\mathbf{V}_{\text {IN }}$

Figure 13. FPF1008 $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$ vs. Temperature

Figure 15. FPF1007 trise $/ \mathrm{t}_{\text {FALL }}$ vs. Temperature

TYPICAL CHARACTERISTICS (continued)

Figure 16. FPF1008 trise $/ \mathrm{t}_{\text {FALL }}$ vs. Temperature

Figure 18. FPF1007 Turn-On Response

Figure 20. FPF1007 Turn-On Response (Cout $=1 \mu \mathrm{~F}$)

Figure 17. FPF1009 $\mathrm{t}_{\text {RISE }} / \mathrm{t}_{\text {FALL }}$ vs. Temperature

Figure 19. FPF1007 Turn-Off Response
Load current discharged through on-chip output discharge resistor

Figure 21. FPF1007 Turn-Off Response

TYPICAL CHARACTERISTICS (continued)

Figure 22. FPF1008 Turn-On Response

Figure 24. FPF1008 Turn-On Response (Cout $=4.7 \mu \mathrm{~F}$)

Figure 26. FPF1008 Turn-On Response
(Cout $=10 \mu \mathrm{~F}$)

Figure 23. FPF1008 Turn-Off Response
Load current discharged through on-chip output discharge resistor

Figure 25. FPF1008 Turn-Off Response

Figure 27. FPF1009 Turn-On Response

TYPICAL CHARACTERISTICS (continued)

Figure 30. FPF1009 Turn-Off Response

Figure 31. FPF1009 Turn-On Response (Cout $=100 \mu \mathrm{~F}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V}$)

Timing Diagram

where:

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{ON}}=\text { Turn-On Time } \\
& \mathrm{t}_{\text {OFF }}=\text { Turn-Off Time } \\
& \mathrm{t}_{\text {don }}=\text { Turn-On Delay Time } \\
& \mathrm{t}_{\text {doff }}=\text { Turn-Off Delay Time } \\
& \mathrm{t}_{\mathrm{R}}=\text { Rise Time } \\
& \mathrm{t}_{\mathrm{F}}=\mathrm{V}_{\text {OUT }} \text { Fall Time } \\
& \mathrm{t}_{\text {ON }}=\mathrm{t}_{\mathrm{R}}+\mathrm{t}_{\text {don }} \\
& \mathrm{t}_{\text {OFF }}=\mathrm{t}_{\mathrm{F}}+\mathrm{t}_{\text {doff }}
\end{aligned}
$$

Figure 32. Timing Diagram

ORDERING INFORMATION

Part Number	Switch RoN at 5.5 V (Typ.)	Rise Time (Typ.)	Output Discharge (Typ.)	ON Pin Activity	Top Mark	Shipping †
FPF1008	$30 \mathrm{~m} \Omega$, PMOS	$80 \mu \mathrm{~s}$	60Ω	Active HIGH	008	$3000 /$ Tape \& Reel

DISCONTINUED (Note 2)

FPF1007	$30 \mathrm{~m} \Omega$, PMOS	$10 \mu \mathrm{~s}$	60Ω	Active HIGH	007	$3000 /$ Tape \& Reel
FPF1009	$30 \mathrm{~m} \Omega$, PMOS	1 ms	60Ω	Active HIGH	009	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D
2. DISCONTINUED: These devices are not recommended for new design. Please contact your onsemi representative for information. The most current information on these devices may be available on www.onsemi.com. countries.

WDFN6 2x2, 0.65P
CASE 511CY ISSUE O

DATE 31 JUL 2016

RECOMMENDED
LAND PATTERN

NOTES:
A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC MO-229 REGISTRATION
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.

DOCUMENT NUMBER:	98AON13613G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	WDFN6 2X2, 0.65P		PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:
Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support
For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

