FDMC8878

N-Channel POWERTRENCH® MOSFET 30 V, 16.5 A, 14 m Ω

This N-Channel MOSFET is a rugged gate version of ON Semiconductor's advanced PowerTrench process. It has been optimized for power management applications.

Features

- $R_{DS(on)} = 14 \text{ m}\Omega \text{ (Max.)} @ V_{GS} = 10 \text{ V}, I_D = 9.6 \text{ A}$
- $R_{DS(on)} = 17 \text{ m}\Omega \text{ (Max.)} @ V_{GS} = 4.5 \text{ V}, I_D = 8.7 \text{ A}$
- Low Profile 0.8 mm Max in MLP 3.3 x 3.3
- These Devices are Pb-Free and are RoHS Compliant

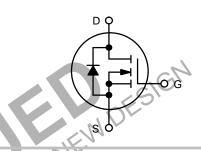
Application

• DC – DC Conversion

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

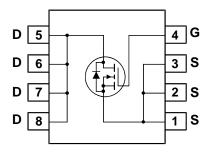
Parameter	r	Symbol	Value	Unit
Drain-to-Source Voltage		V _{DS}	30	V
Gate-to-Source Voltage		V _{GS}	±20	V
Continuous Drain Current	T _C = 25°C (Package limited)	I _D	16.5	A
	T _C = 25°C (Silicon limited)		38	S
	T _A = 25°C (Figure 1)	PC	9.6	EF
Drain Current	Pulsed	(ID	60	Α
Power Dissipation	$T_C = 25^{\circ}C$	P _D	31	W
	T _A = 25°C (Figure 1)	SEI	2.1	
Operating and Storage Junct Range	tion Temperature	T _J , T _{STG}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	4	°C/W
Thermal Resistance, Junction–to–Ambient (Figure 1)	$R_{\theta JA}$	60	

ON


ON Semiconductor®

www.onsemi.com

WDFN8 CASE 511DH

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 1 of this data sheet.

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Mark	Package Reel Size Tape Width Qu		Quantity	
FDMC8878	FDMC8878	MLP 3.3 x 3.3	13″	12 mm	3000 units

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
OFF CHARA	CTERISTICS		•			
BV _{DSS}	Drain-to-Source Breakdown Voltage	$I_D = 250 \mu\text{A}, V_{GS} = 0 \text{V}$	30	-	_	V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C	-	20	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V	-	-	1	μΑ
		V _{DS} = 24 V, V _{GS} = 0 V, T _J = 125°C	_	-	100	
I _{GSS}	Gate-to-Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	_	-	±100	nA
ON CHARAC	TERISTICS					
$V_{GS(th)}$	Gate-to-Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = V_{DS}$	1	1.7	3	V
ΔBV _{DSS} /ΔT _J	Gate-to-Source Threshold Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C	-	-5.7	-	mV/°C
R _{DS(on)}	Drain-to-Source On Resistance	V _{GS} = 10 V, I _D = 9.6 A		9.6	14,0	mΩ
		V _{GS} = 4.5 V, I _D = 8.7 A	-	12.1	17.0	
		V _{GS} = 10 V, I _D = 9.6 A, T _J = 125°C	-	13.5	20.0	
9FS	Forward Transconductance	$V_{DS} = 5 \text{ V}, I_{D} = 9.6 \text{ A}$	11:	35	-	S
DYNAMIC CH	HARACTERISTICS		Mr			
C _{iss}	Input Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	i i	1000	1230	pF
C _{oss}	Output Capacitance	TOP S	5/1	183	255	pF
C _{rss}	Reverse Transfer Capacitance	DELONS	12	118	180	pF
Rg	Reverse Transfer Capacitance	f = 1 MHz	11,-	1.1	-	Ω
SWITCHING	CHARACTERISTICS	MIN JOU'EOU				
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 15 \text{ V}, I_D = 9.6 \text{ A},$	_	8	16	ns
t _r	Rise Time	$V_{GS} = 10 \text{ V, R}_{GEN} = 6 \Omega$	_	4	10	
t _{d(off)}	Turn-Off Delay Time	MILL	_	20	36	
t _f	Fall Time		_	3	10	
Q _{g(tot)}	Total Gate Charge	$V_{GS} = 10 \text{ V}, V_{DD} = 15 \text{ V},$	_	18	26	nC
Q _{gs}	Gate-to-Source Gate Charge	I _D = 9.6 A	_	2.8	-	
Q _{gd}	Gate-to-Drain "Miller" Charge		_	3.9	-	
	RCE DIODE CHARACTERISTICS		-	-		
V _{SD}	Source-to-Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 9.6 A (Note 2)	-	0.8	1.2	V
t _{rr}	Reverse Recovery Time	I _F = 9.6 A,	-	23	35	ns
Q _{rr}	Reverse Recovery Charge	di/dt = 100 A/μs	_	14	21	nC
		-	-			

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
R_{θJA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{θJC} is guaranteed by design while R_{θCA} is determined by the user's board design.

a. 60°C/W when mounted on a 1 in² pad of 2 oz copper

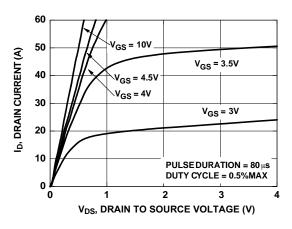

b. 135°C/W when mounted on a minimum pad of 2 oz copper

Figure 1.

Figure 2.

2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Figure 3. Gate Charge Characteristics

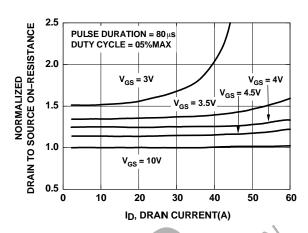
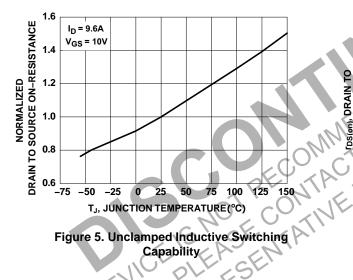
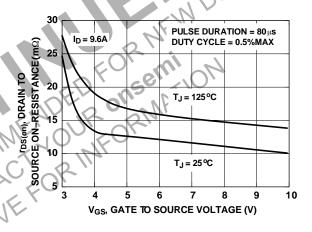




Figure 4. Capacitance vs. Drain to Source Voltage

Figure 6. Maximum Continuous Drain Current vs. Ambient Temperature

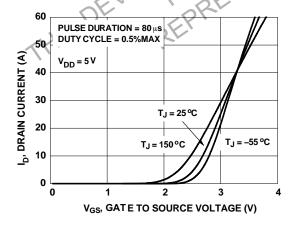


Figure 7. Forward Bias Safe Operating Area

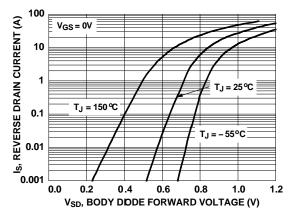


Figure 8. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

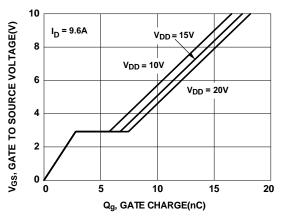


Figure 9. On-Region Characteristics

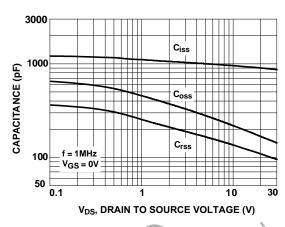
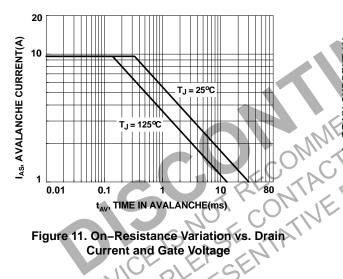



Figure 10. Transfer Characteristics

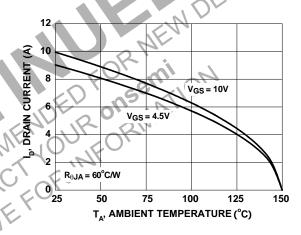


Figure 12. Body Diode Forward Voltage **Variation vs. Source Current and Temperature**

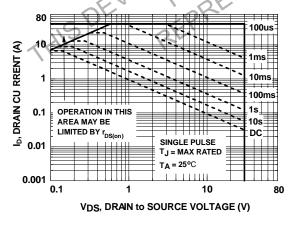


Figure 13. Capacitance Characteristics

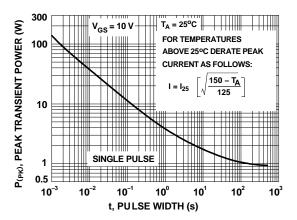
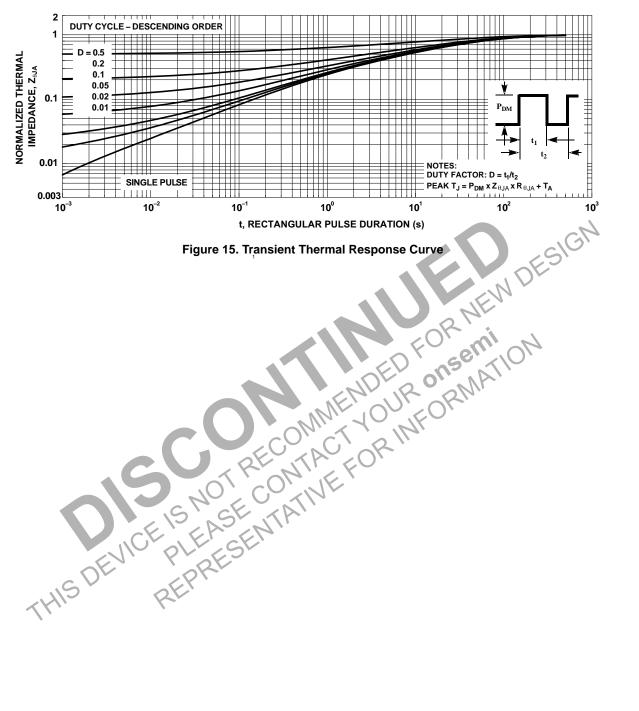
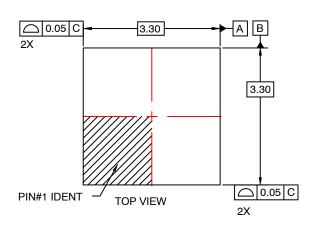
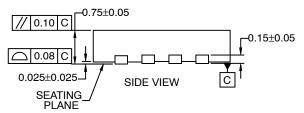



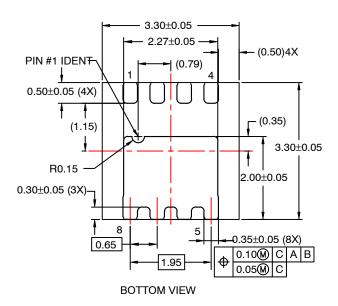
Figure 14. Gate Charge Characteristics

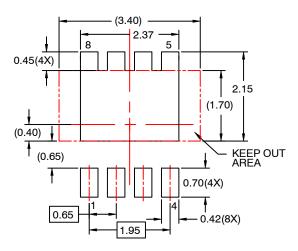
FDMC8878

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)




POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC.




WDFN8 3.3x3.3, 0.65P CASE 511DH ISSUE O

DATE 31 JUL 2016

RECOMMENDED LAND PATTERN

NOTES:

- A. DOES NOT CONFORM TO JEDEC REGISTRATION MO-229
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.

DOCUMENT NUMBER:	98AON13625G	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	WDFN8 3.3X3.3, 0.65P		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales