Universal Input, 20 W, LED Ballast Evaluation Board User's Manual

ON Semiconductor®

http://onsemi.com

EVAL BOARD USER'S MANUAL

Circuit Description

The NCP1351 controller provides for a low cost, variable frequency, flyback converter. It incorporates a very low quiescent current allowing for high value resistors to be used as a start-up circuit direct from the HV rail.

The design comprises and input filter, bridge rectifier (using low cost 1N4007 diodes), bulk capacitors and line inductor in π -filter arrangement, the power stage, rectifier diode and smoothing capacitors. Feedback is CVCC, constant current drive for the LED's with a constant voltage in the event of an open circuit output.

In order to stay below IEC6100-3-2 Class C, the design has been optimized at < 25 W, so assuming 80% efficiency the maximum output power is ~ 20 W.

Key Features

- Wide Input Voltage Range 85 Vac to 265 Vac
- Small Size, and Low Cost
- Good Line Regulation
- High Efficiency
- Overload and Short Circuit Protection

Figure 1. NCP1351 Board

Device	Application	Input Voltage	Output Power	Topology	I/O Isolation
NCP1351	Solid State Lighting	85-265 Vac	20 W	Flyback	Yes

Table 1. OTHER SPECIFICATIONS

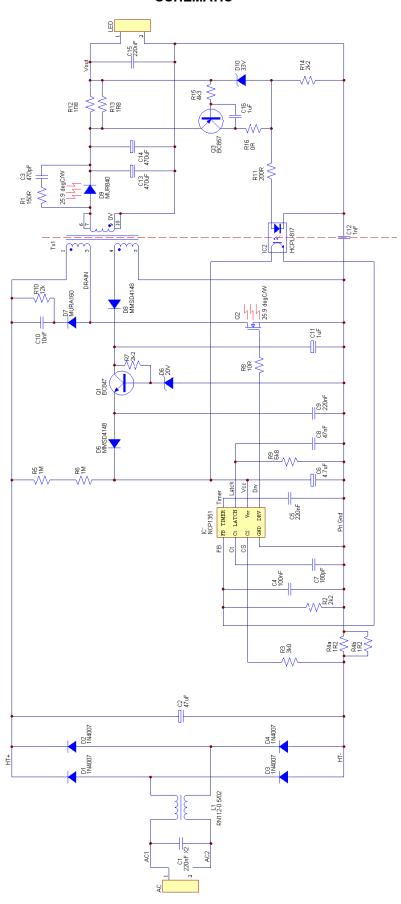

	Output 1
Maximum Output Voltage	33 V
Ripple	Not Given
Nominal Curretn	700 mA
PFC (Yes/No)	No
Target Efficiency	80% at Nominal Load
Max Size	125 x 37 x 35 mm
Operating Temp Range	0 to +70°C
Cooling Method/Supply Orientation	Convection
Signal Level Control	No

Table 2. NUMBER OF LED'S IN SERIES

	350 mA	700 mA	1 A	1.5 A
LUXEON® I	11	_	*	-
LUXEON® III	10	6	4	*
LUXEON [®] Rebel	10	6	4	*
LUXEON [®] K2	11	6	4	2
Cree XLamp® XR-E	12	8	5	*
Cree XLamp® XP-E	12	8	*	*
OSRAM Platinum DRAGON®	12	7	5	*
VZ (D10)	45 V	33 V	22 V	12 V
R12 & R13	3R6	1R8	1R2	0R8

^{*}Out of LED Specification

SCHEMATIC

LED Current

The light output of an LED is determined by the forward current so the control loop will be constant current, with a simple Zener to limit the maximum output voltage.

Typical forward voltages vary by LED supplier, below are the nominal forward voltage characteristics of the LUXEON[®] K2 at different operating currents.

I _F	V _F
350 mA	3.42 V
700 mA	3.60 V
1000 mA	3.72 V
1500 mA	3.85 V

Driving eight LED's at 700 mA thus gives an output power of 20.2 W at 28.8 V.

The output current is sensed by a series resistance, once the voltage drop across this reaches the baseemitter threshold of the PNP transistor current flows in the opto-coupler diode and thus in the FB pin of the NCP1351.

The LED current is thus set by:

$$I_{\text{LED}} = \frac{0.6 \text{ V}}{R_{\text{SENSE}}} \tag{eq. 1}$$

Total sense resistor power dissipation is:

$$P_{D} = I_{LED} \times 0.6 V \tag{eq. 2}$$

So for 700 mA we need a 0.9 Ω sense resistor capable of dissipating 420 mW, two 330 mW surface mount resistors, 1.8 Ω each in parallel, are used.

Inductor Selection

In a flyback converter the inductance required in the transformer primary is dependant on the mode of operation and the output power. Discontinuous operation requires lower inductance but results in higher peak to average current waveforms, and thus higher losses. For low power designs, such as this ballast, the inductance is designed to be just continuous (or just discontinuous) under worst case conditions, that is minimum line and maximum load.

The specification for this ballast is as follows:

- Universal Input 85 Vac to 265 Vac
- 25 W Maximum Input Power PFC Limit
- Assuming 80% Efficiency 20 W Output Power
- 700 mA Output Current
- 100 kHz Operation at Full Load

This gives us a minimum DC input voltage of 120 V, there will be some sag on the DC bulk capacitors so an allowance will be made for this by using 80 V as the minimum input voltage, including MOSFET drop etc.

First we need to calculate the turn's ratio, this is set by the MOSFET drain rating, line voltage and reflected secondary voltage. Since this is a constant current circuit we are

designing, with a varying output voltage, we need the maximum output voltage.

- $V_{IN(max)}$ is the Maximum Rectified Input = 375 V
- $V_{IN(min)}$ is the Minimum Rectified Input = 80 V
- V_{OUT} is 35 V (20 W @ 700 mA is 29 V plus a Margin for Safety)

With a 600 V MOSFET and derating of 80%, our maximum allowable drain voltage is:

$$V_{D(max)} = 600 \times 0.8 = 480 V$$
 (eq. 3)

And thus headroom, V_{CLAMP} for the reflected secondary voltage and leakage spike of:

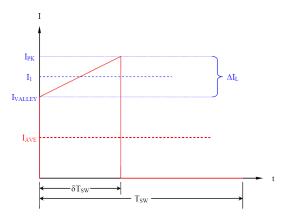
$$V_{CLAMP} = V_{D(max)} - V_{IN(max)} = 480 - 375 =$$

$$= 105 V$$
(eq. 4)

Good results are obtained if we set V_{CLAMP} at ~150% of the reflected secondary:

$$k_{C} = \frac{V_{CLAMP} \times N}{(V_{OUT} + V_{f})} = 1.5$$
 (eq. 5)

• $V_f = 0.7 \text{ V}$ as we will need a High Voltage Diode


Re-arranging for N:

$$N = \frac{N_S}{N_P} = \frac{1.5 \times (35 + 0.7)}{105} = 0.51$$
 (eq. 6)

We will use a ratio of 0.5 or 2:1, this will give a good transformer construction.

We can now calculate the maximum duty cycle running in CCM:

$$\begin{split} \delta_{\text{MAX}} &= \frac{V_{\text{OUT}}}{V_{\text{OUT}} + V_{\text{IN(min)}} N} = \\ &= \frac{(35 + 0.7)}{(35 + 7) + 80 \times 0.5} = 0.47 \end{split}$$
 (eq. 7)

Looking at the waveform of the current flowing in the primary of the inductor (above) if we define a term k equal to:

$$k = \frac{\Delta I_{L}}{I_{L}}$$
 (eq. 8)

And use the equation:

$$L = \frac{\left(V_{IN(min)} \delta_{MAX}\right)^2}{f_{SW} kP_{IN}}$$
 (eq. 9)

Then we can determine the inductance we require.

If k = 2 then we are in boundary conduction mode as the ripple current equals twice the average pulse current, so setting k to 2:

$$L = \frac{\left(80 \times 0.47\right)^2}{100 \times 10^3 \times 2.0 \times 25} = 283 \,\mu\text{H} \tag{eq. 10}$$

Thus we can now find the primary ripple current assuming operation in boundary conduction mode:

$$\begin{split} \Delta I_L &= \frac{V_{IN(min)} \; T_{ON}}{L} = \frac{V_{IN(min)} \; \delta_{max}}{L f_{SW}} = \\ &= \frac{80 \times 0.47}{283 \times 10^{-6} \times 100 \times 10^3} = 1.32 \; A \end{split} \tag{eq. 11}$$

The average input current, IAVE, is:

$$I_{AVE} = \frac{P_{IN}}{V_{IN(min)}} = \frac{25}{80} = 313 \text{ mA}$$
 (eq. 12)

The average pulse current, I_1 , is:

$$I_1 = \frac{I_{\text{AVE}}}{\delta_{\text{max}}} = \frac{0.313}{0.47} = 662 \text{ mA} \tag{eq. 13}$$

Demonstrating that ΔI_L does equal twice I_1 and that the peak primary current is 1.32 A.

We can calculate the RMS current in the MOSFET and sense resistor for dissipation purposes. For a stepped-sawtooth waveform of this type the equation is:

$$I_{RMS} = I_1 \sqrt{\delta} \sqrt{1 + \frac{1}{3} \left(\frac{\Delta I_L}{2I_1}\right)^2}$$
 (eq. 14)

Thus:

$$I_{RMS} = 0.665 \times \sqrt{0.47} \times \sqrt{1 + \frac{1}{3} \left(\frac{1.32}{2 \times 0.665}\right)^2} =$$

$$= 526 \text{ mA}$$
(eq. 15)

We can also determine the current sense resistor, allowing for a drop across the resistor of 0.8 V:

$$R_{SENSE} = \frac{V_{DROP}}{I_{PK}} = \frac{0.8}{1.32} = 0.61 \Omega$$
 (eq. 16)

The total power dissipation is:

$$P_{D(sense)} = I_{RMS}^{2} \times R_{SENSE} = 0.526^{2} \times 0.61 \cong$$

$$\cong 170 \text{ mW}$$
(eq. 17)

Two 1.2 Ω resistors in parallel will be used as sub 1 Ω resistors typically cost more.

The threshold voltage for the current sense is set by an offset resistor; this has a bias current of 270 μA in it so we can determine the resistor value:

$$R_{\text{OFFSET}} = \frac{V_{\text{SENSE}}}{I_{\text{BIAS}}} = \frac{0.8}{270 \times 10^{-6}} \cong 3.0 \text{ k}\Omega \qquad \text{(eq. 18)}$$

Rectifier Snubber

Testing demonstrated the need for snubbing on the rectifier as there was a large amount of ringing present after the rectifier turns off.

The snubber consists of a resistor and capacitor in series, and knowing the junction capacitance and ringing frequency we can determine the necessary values:

$$R_s = \sqrt{\frac{L}{C_j}}$$
 (eq. 19)

$$C_s = \frac{2\pi \sqrt{LC_j}}{R_s}$$
 (eq. 20)

Knowing that:

$$f = \frac{1}{2\pi \sqrt{LC_i}}$$
 (eq. 21)

We can determine L, the stray inductance which then allows us to calculate the necessary snubber resistor.

- f = 14.5 MHz (Measured on Oscilloscope)
- C_i = 80 pF (Datasheet Figure for MUR840 at 62 V)

$$L = \frac{1}{4C_{j}(\pi f)^{2}} =$$

$$= \frac{1}{4 \times 80 \times 10^{-12} \times (\pi \times 14.5 \times 10^{6})^{2}} = \text{ (eq. 22)}$$

$$= 1.51 \, \mu H$$

$$R_s = \sqrt{\frac{1.51 \times 10^{-6}}{80 \times 10^{-12}}} = 137 \,\Omega \tag{eq. 23}$$

$$C_s = \frac{2 \times \pi \times \sqrt{1.51 \times 10^{-6} \times 80 \times 10^{-12}}}{137} = \tag{eq. 24}$$

$$= 504 pF$$

The nearest standard values are 470 pF and 140 Ω , inserting these into the circuit eliminated the ringing due to the rectifier.

Auxiliary Winding

Normally in a flyback converter the auxiliary winding would be in the form of a flyback winding, i.e. in phase with the output winding, and thus provide a semi-regulated voltage to supply the controller. As this ballast is current controlled and the output voltage can vary over a considerable range depending on the number of LED's connected, a forward phased winding is used. The auxiliary will therefore vary with line rather than output voltage. Since neither option could supply sufficient volts at low input/output voltage whilst still staying below the maximum $V_{\rm CC}$ figure of 28 V, a voltage regulator is used formed by Q1 and D6. Below ~20 V the regulator does nothing other than act as a small volt drop, however as the voltage rises it clamps the voltage to around 20.7 V, since the current is very low into the $V_{\rm CC}$ pin there is very little loss.

MAGNETICS DESIGN DATA SHEET

Project/Customer: ON Semiconductor
Part Description: 25 W Transformer

Schematic ID: -

Core Type: EE25

Core Gap: Gap for 250 µH

Inductance: 250 µH

Bobbin Type: NIC 10-Pin Vertical

Windings (In Order):

Winding # / Type Turns / Material / Gauge / Insulation Data

N1, Primary Start on pin 1 and wind 20 turns, of 0.28 mm triple insulated wire (e.g. Tex-E), in one neat layer across the

entire bobbin width. Finish on pin 2.

N2, Secondary Start on pins 9&10 and wind 20 turns, of 0.8 mm Grade II ECW, distributed evenly across the entire

bobbin width. Finish on pins 6&7.

N3, Primary Start on pin 2 and wind 20 turns, of 0.28 mm triple insulated wire (e.g. Tex-E), in one neat layer across the

entire bobbin width. Finish on pin 3.

N4, Primary (Aux) Start on pin 4 and wind 5 turns, of 0.28 mm triple insulated wire, in one neat layer spread evenly across

the entire bobbin width. Finish on pin 5.

Sleeving and insulation between primary and secondary as required to meet the requirements of double insulation.

Primary leakage inductance (pins 6&7 and 9&10 shorted together) to be < 6 μ H.

NIC part number: NLT282224W3P4020S5P10F

Hipot: 3 kV between pins 1, 2, 3, 4 & 5 and pins 6, 7,8, 9 & 10 for 60 seconds.

Schematic

Table 3. BILL OF MATERIALS

Ref	Part Type / Value	Comment	Footprint	Description	Manufacturer	Part Number
C1	220 nF X2	275 VAC	18 x 10 mm, 15 mm Pitch	X-class EMI Suppression Capacitor	NIC	NPX224M275VX2MF
C2	47 μF	400 V	Ø16 mm, 7.5 mm Pitch	General Purpose High Voltage Electrolytic	NIC	NRE-H470M400V16X31.5F
СЗ	470 pF	100 V X7R	1206	Ceramic Chip Capacitor	NIC	NMC1206X7R471K100F
C4	100 nF	50 V X7R	0603	Ceramic Chip Capacitor	NIC	NMC0603X7R104K50F
C5	220 nF	50 V X7R	0805	Ceramic Chip Capacitor	NIC	NMC0805X7R224K50F
C6	4.7 μF	35 V	Ø5 mm, 2 mm Pitch	General Purpose Low Voltage Electrolytic	NIC	NRWA4R7M50V5X11F
C7	180 pF	50 V NP0	0603	Ceramic Chip Capacitor	NIC	NMC0603NPO181J50F
C8	47 nF	50 V X7R	0603	Ceramic Chip Capacitor	NIC	NMC0603X7R473K50F
C9	220 nF	50 V X7R	0805	Ceramic Chip Capacitor	NIC	NMC0805X7R224K50F
C10	10 nF (0.01 μF)	1 kV	1210	Ceramic Chip Capacitor	JOHANSON	102S41W103KV4E
C11	1 μF	50 V	Ø5 mm, 2 mm Pitch	General Purpose Low Voltage Electrolytic	NIC	NRWA1R0M50V5X11F
C12	1 nF	Y1	Radial, Pitch 10 mm	Ceramic Y-class Capacitor	Murata	DE1E3KX102MN4AL01
C13	470 μF	63 V	Ø12.5 mm, 5 mm Pitch	Miniature Low Impedance Electrolytic	NIC	NRSZ471M63V12.5X25F
C14	Not Inserted	-	-	-	-	-
C15	220 nF	100V X7R	1206	Ceramic Chip Capacitor	NIC	NMC1206X7R224K100F
C16	1 μF	50 V	1206	Ceramic Chip Capacitor	NIC	NMC1206X7R105K50F
D1	1N4007	1 A, 1000 V	Axial	Axial Lead, Standard Recovery	ON Semiconductor	1N4007RLG
D2	1N4007	1 A, 1000 V	Axial	Axial Lead, Standard Recovery	ON Semiconductor	1N4007RLG
D3	1N4007	1 A, 1000 V	Axial	Axial Lead, Standard Recovery	ON Semiconductor	1N4007RLG
D4	1N4007	1 A, 1000 V	Axial	Axial Lead, Standard Recovery	ON Semiconductor	1N4007RLG
D5	MMSD4148	200 mA, 100 V	SOD-123	Switching Diode	ON Semiconductor	MMSD4148T1G
D6	20 V	1.5 W	SMA	Zener Diode	ON Semiconductor	1SMA5932BT3G
D7	MURA160	1 A, 600 V	SMA	Ultrafast Rectifier	ON Semiconductor	MURA160T3G
D8	MMSD4148	200 mA, 100 V	SOD-123	Switching Diode	ON Semiconductor	MMSD4148T1G
D9	MUR840 (MUR860 - Alt)	8 A, 400 V	TO-220	Ultrafast Power Rectifier	ON Semiconductor	MUR840G
D10	33 V	5%, 200 mW	SOD323	Zener Diode	ON Semiconductor	MM3Z33VT1G
IC1	NCP1351B	-	SOIC8	Variable Off-time PWM Controller	ON Semiconductor	NCP1351BDR2G
IC2	HCPL-817	Wide Pitch	HCPL-817-300E	Opto-coupler HCPL-817	Agilent	HCPL-817-W0AE
L1	-	-	WE-LF 662/SH	Common Mode Choke	Wurth/Midcom	744 662 0027
AC	2-Way	5 mm Pitch	-	Screw Terminal	Keystone	8718
LED	2-Way	5 mm Pitch	-	Screw Terminal	Phoenix	1985881
M1	25.9°C/W	-	-	Heatsink	Aavid	577102B00000G
M2	25.9°C/W	-	-	Heatsink	Aavid	577102B00000G
Q1	BC847	45 V	SOT-23	General Purpose NPN	ON Semiconductor	BC847ALT1G
Q2	IRFBC40A	600 V	TO-220	MOSFET	IR	IRFBC40A
Q3	BC857	-45 V	SOT-23	General Purpose PNP	ON Semiconductor	BC857ALT1G
R1	150R	0.33 W, 5%	1210	Resistor Thick Film NRC	NIC	NRC25J151F
R2	2k2	0.1 W, 5%	0603	Resistor Thick Film NRC	NIC	NRC06J222F
R3	3k0	0.1 W, 5%	0603	Resistor Thick Film NRC	NIC	NRC06J302F
R4a	1R2	1 W, 5%	2512	Resistor Thick Film NRC	NIC	NRC100J1R2F
R4b	1R2	1 W, 5%	2512	Resistor Thick Film NRC	NIC	NRC100J1R2F
R5	1M	0.5 W, 5%	Axial	Metal Film Resistor	Vishay	SFR2500001004J-R500

Table 3. BILL OF MATERIALS

Ref	Part Type / Value	Comment	Footprint	Description	Manufacturer	Part Number
R6	1 M	0.5 W, 5%	Axial	Metal Film Resistor	Vishay	SFR2500001004J-R500
R7	2k2	0.125 W, 5%	0805	Resistor Thick Film NRC	NIC	NRC10J222BF
R8	10R	0.25 W, 5%	1206	Resistor Thick Film NRC	NIC	NRC12J100F
R9	6k8	0.1 W, 5%	0603	Resistor Thick Film NRC	NIC	NRC06J682TRF
R10	12k	2 W, 5%	Axial	Carbon Film Resistor	NIC	NCF200J123TRF
R11	200R	0.125 W, 5%	0805	Resistor Thick Film NRC	NIC	NRC10J201F
R12	1R8	0.33 W, 1%	1210	Resistor Thick Film NRC	NIC	NRC25J1R8F
R13	1R8	0.33 W, 1%	1210	Resistor Thick Film NRC	NIC	NRC25J1R8F
R14	2K2	0.125 W, 5%	0805	Resistor Thick Film NRC	NIC	NRC10J222BF
R15	4k3	0.125 W, 5%	0805	Resistor Thick Film NRC	NIC	NRC10J432F
R16	0 Ω Short	0.125 W	0805	Resistor Thick Film Chip	Vishay	CRCW08050000Z0EA
Tx1	25 W LED Transformer	-	NIC 10 Pin Vertical	25 W Flyback Transformer	NIC	NLT282224W3P4020S5P10F

COMPONENT PLACEMENT AND PCB LAYOUT

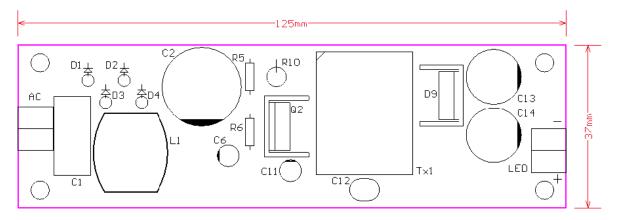


Figure 2. Top View

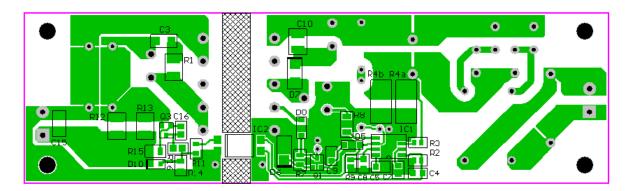


Figure 3. Bottom View

TYPICAL OPERATIONAL RESULTS

Figure 4. Drain Waveform at 120 Vac and 230 Vac

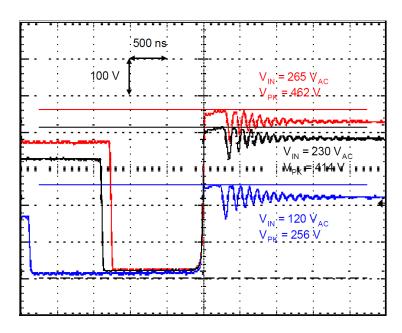


Figure 5. Turn-off in Detail at 120 Vac, 230 Vac and 265 Vac

TYPICAL EVALUATION RESULTS

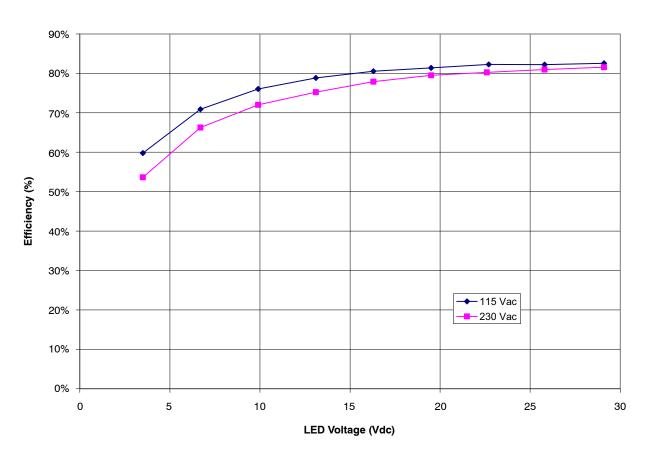


Figure 6. Efficiency vs. Line and Load @ 700 mA $T_a = 21^{\circ} C/70^{\circ} F$

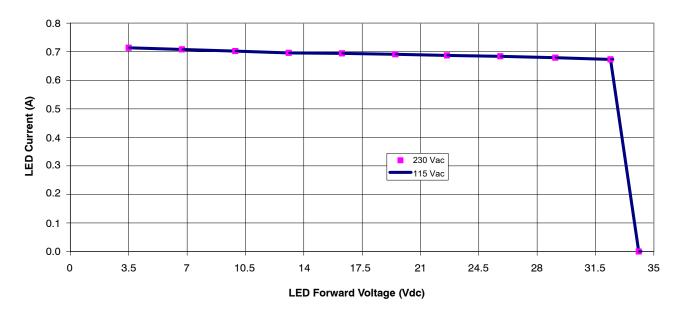


Figure 7. Current Regulation vs. Forward Voltage @ 700 mA $T_a = 21^{\circ}C/70^{\circ}F$

Modifying the Board for Other LED Currents

The constant current constant voltage secondary control loop is very flexible and is implemented using a PNP (Q3) with a pair of current sense resistors (R12 & R13) to regulate the current and provide control of the optocoupler to the NCP1351. In addition, there is a maximum voltage control loop that is implemented using zener D10. To modify this circuit for alternate current/voltage configurations, these components should be modified. The table on the front page shows several other possible configuration options. Note because this design is ultimately power limited based on the transformer design and FET used, as the current decreases,

the maximum voltage capability increases. For example, for 20 W output, the maximum voltage at 350 mA could be as high as 57 Vdc. Under UL1310, Class 2 power supplies for use in dry/damp environments are allowed to have a maximum output voltage of 60 Vdc. On the demo board, Q3 is implemented using a BC857 transistor which has a maximum $V_{\rm CEO}$ of -45 Vdc. If a higher operating voltage is required, this transistor can be changed to a BC856 (maximum $V_{\rm CEO}$ of -65 Vdc). The figure below shows the current regulation performance for a nominal 350 mA output current with the component changes as noted.

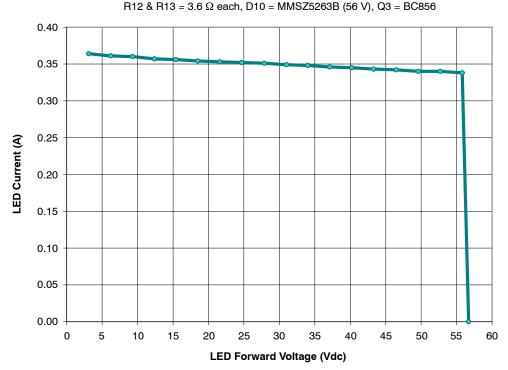


Figure 8. Typical Current Regulation vs. Load, T_a = 21°C/70°F

LUXEON is a registered trademark of Philips Lumileds Lighting Company and Royal Philips Electronics of the Netherlands.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

The evaluation board/kit (research and development board/kit) (hereinafter the "board") is not a finished product and is not available for sale to consumers. The board is only intended for research, development, demonstration and evaluation purposes and will only be used in laboratory/development areas by persons with an engineering/technical training and familiar with the risks associated with handling electrical/mechanical components, systems and subsystems. This person assumes full responsibility/liability for proper and safe handling. Any other use, resale or redistribution for any other purpose is strictly prohibited.

THE BOARD IS PROVIDED BY ONSEMI TO YOU "AS IS" AND WITHOUT ANY REPRESENTATIONS OR WARRANTIES WHATSOEVER. WITHOUT LIMITING THE FOREGOING, ONSEMI (AND ITS LICENSORS/SUPPLIERS) HEREBY DISCLAIMS ANY AND ALL REPRESENTATIONS AND WARRANTIES IN RELATION TO THE BOARD, ANY MODIFICATIONS, OR THIS AGREEMENT, WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING WITHOUT LIMITATION ANY AND ALL REPRESENTATIONS AND WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, AND THOSE ARISING FROM A COURSE OF DEALING, TRADE USAGE, TRADE CUSTOM OR TRADE PRACTICE.

onsemi reserves the right to make changes without further notice to any board.

You are responsible for determining whether the board will be suitable for your intended use or application or will achieve your intended results. Prior to using or distributing any systems that have been evaluated, designed or tested using the board, you agree to test and validate your design to confirm the functionality for your application. Any technical, applications or design information or advice, quality characterization, reliability data or other services provided by **onsemi** shall not constitute any representation or warranty by **onsemi**, and no additional obligations or liabilities shall arise from **onsemi** having provided such information or services.

onsemi products including the boards are not designed, intended, or authorized for use in life support systems, or any FDA Class 3 medical devices or medical devices with a similar or equivalent classification in a foreign jurisdiction, or any devices intended for implantation in the human body. You agree to indemnify, defend and hold harmless onsemi, its directors, officers, employees, representatives, agents, subsidiaries, affiliates, distributors, and assigns, against any and all liabilities, losses, costs, damages, judgments, and expenses, arising out of any claim, demand, investigation, lawsuit, regulatory action or cause of action arising out of or associated with any unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of any products and/or the board.

This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and may not meet the technical requirements of these or other related directives.

FCC WARNING – This evaluation board/kit is intended for use for engineering development, demonstration, or evaluation purposes only and is not considered by **onsemi** to be a finished end product fit for general consumer use. It may generate, use, or radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment may cause interference with radio communications, in which case the user shall be responsible, at its expense, to take whatever measures may be required to correct this interference.

onsemi does not convey any license under its patent rights nor the rights of others.

LIMITATIONS OF LIABILITY: **onsemi** shall not be liable for any special, consequential, inclidental, indirect or punitive damages, including, but not limited to the costs of requalification, delay, loss of profits or goodwill, arising out of or in connection with the board, even if **onsemi** is advised of the possibility of such damages. In no event shall **onsemi**'s aggregate liability from any obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any.

The board is provided to you subject to the license and other terms per **onsemi**'s standard terms and conditions of sale. For more information and documentation, please visit www.onsemi.com.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales