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Abstract
This monograph explains how to construct families of
square wave duty cycle transient heating curves based on
the “single pulse” transient response. The standard
approximate formulations (derived as truncated series
solutions from linear superposition) are developed, and
resulting error is discussed (including why these formulas
are guaranteed to be conservative). Also, the complete
infinite series solution is summed assuming a form arising
from thermal RC (resistor/capacitor) networks. This results
in closed−form expressions for maximum peak steady−state,
minimum peak steady−state, and (thus) peak−to−peak
steady−state junction temperature excursions. Limitations
of the RC−derived solution are discussed, namely fit
accuracy and short−time response.

Glossary of Symbols
a “on” time of duty cycle, or pulse width

(see also “t”); also, delay, from start of period
until “on’’ time, of generalized periodic 
square pulse

b delay, from start of period until “off’’ time, of
generalized periodic square pulse

C’s thermal capacitances in general

d duty cycle as fraction of unity (=a/p)

F(a,b,p) response to generalized periodic square pulse

G(t) generalized periodic power input function

H(a,p,n) square wave “peak” (relative maximum
response) at end of nth cycle

f frequency of square wave
(inverse of its period, i.e., 1/p)

i,j summation indices

p period of square wave
(inverse of its frequency, i.e. 1/f)

r(t) normalized single−pulse transient response,
having unity value at steady−state

r(t,d) normalized square wave response, expressed as
a function of pulse width and duty cycle

Q,Qavg power, instantaneous or average

R(t) single−pulse transient response, having
dimensions of thermal resistance

R� steady−state thermal resistance
(final value of single−pulse transient response)

R(t,d) square wave “peak” response, expressed as a
function of pulse width and duty cycle

Ri thermal “resistance” (amplitude) of ith term of
RC model single−pulse transient response

R’s thermal resistances in general

t time, the abscissa of the transient response
curve; also, pulse width (“on” time)

�i time constant of ith term of RC model transient
solution

V(a,p,n) square wave “valley” (relative minimum
response) at end of nth cycle

Y(t,d) square wave “valley” response
(intercycle minimum at steady−state)

�(t,d) peak−to−peak (i.e., peak to valley) steady−state
square wave response

INTRODUCTION AND BACKGROUND FORMULAS
There are two different formulas for peak junction

temperature of square wave, constant duty cycle
semiconductor operation sometimes found in
manufacturer’s data sheets – often accompanying a plotted
family of “duty cycle” curves on a thermal transient
response chart (such as in Figure 1).

r(t, d) � d � (1−d) * r(t) (eq. 1)

r(t, d) � d � (1−d) * r�t � t
d
�� r(t)−r� t

d
� (eq. 2)

Equation 2 is often seen in the form:

r(t, d) � d � (1−d) * r(t � p) � r(t)−r(p) (eq. 3)

where the period, p, is explicit (but may be confusing, as it
is not an explicit parameter, but follows from the interrelated
definitions of t, d, and p).

APPLICATION NOTE
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Figure 1. Family of Peak Heating Curves for a Semiconductor Device
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As will be shown, these formulas turn out to be “first
order” and “second order” approximations to the exact
solution to the problem. The problem with these standard
formulations is that although they are guaranteed to be
conservative (not necessarily in itself a problem), the
amount of conservative error is essentially unknown. The
problem with the “exact” solution (i.e., the infinite series
from which these approximations arise) is that it is
computationally very slow.  Numerical experiments suggest
that the second order formula lowers the first order result by
as much as 6%, and that further refinements (i.e.,
progressively higher−order approximations) probably
lower the final result by no more than another couple of
percent. However, since the infinite series (exact solution)
is non−alternating, the error cannot be easily bounded.

As an alternative, it is often the case that an equivalent
thermal RC−network which fits the experimental
single−pulse heating curve is available. When this is so, the
single−pulse curve has, in effect, been described by a
summation of exponential terms having amplitudes and
time constants* as follows:

R(t) �
m

�
i � 1

Ri(1−e
− t
�i ) (eq. 4)

Beginning with this exponential expression for the
single−pulse heating curve, a relatively simple closed−form
solution to the steady−state peak temperature can be derived.
It predicts “exact” values quite in line with the
computationally intractable infinite series, yet it is fully as

fast to calculate as either of the approximate formulas
already discussed. Its main drawback, however, is that for
times shorter than the fastest time−constant of the model, the
RC network is known to significantly underestimate the
response; hence the square wave responses are, not
surprisingly, equally poor. (Interestingly, perhaps, the limit
is correct as the pulse width goes exactly to zero, for any duty
cycle. Where it departs significantly is for finite pulse widths
between zero and the minimum time constant of the
exponential formulation.)

Whatever approach is taken, there are implications for
accuracy of results, and efficiency of execution. For
instance, Microsoft Excel (or a similar spreadsheet−based
computational aid) is readily available to many customers.
LabVIEW� may be available to some, or possibly
Mathematica® or MatLab. The following table summarizes
the major tradeoffs in approach.

*In passing, we note that these amplitudes represent the
resistances of the rungs of a non−grounded−capacitor thermal
RC network, and the time constants are the RC products of the
R and C values of each rung. However, this type of network,
where the C’s are connected between rungs − rather than being
attached between each rung and thermal “ground” − has no
physical significance, whereas the grounded−capacitor networks
have physical meaning. Further, these amplitudes have only a
vague correspondence to the resistances of a truly physically
significant network. Unfortunately, there is no correspondingly
simple mathematical expression for the transient response in
terms of the physically significant resistors and capacitors. The
justification for the non−grounded−capacitor model is purely the
convenience of its simple mathematical expression.
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Table 1. Comparison of Square Wave Fixed Duty Cycle Peak Temperature Curve Methods

First Order Second Order Infinite Series RC−Exact

Accuracy Conservative/Poorly
Bounded

Conservative/Poorly
Bounded

Good; Limited by
experimental noise

Good; Limited by RC
model’s accuracy

Computational Speed Very Fast Very Fast Very Slow Very Fast

Excel Complexity Easy Awkward, but it’s
done already

Intractable without
complex macros

Easy

LabVIEW Complexity Easy Easy Not trivial, but it’s
done already

Easy

Noise Immunity Good Sensitive Sensitive Good

Main Limitations Accuracy Accuracy Speed and Noise
Sensitivity

Short−time response;
requires RC model

The Infinite Series Solution
The first thing to do is to convert the “standard” formulas

back from a normalized to a dimensionalized form. Though
there is a certain elegance to the normalized forms, in
practice the only thing you accomplish by putting real
package data into a normalized form is that you give the
customer another step to perform in using the information –
namely, unnormalizing it again so he can make real
temperature calculations. Indeed, there is no reason
whatsoever to expect that the same curve measured on one
device in one particular application, will somehow
magically apply to another, different device (or worse, the
same device but in a different mounting application), simply
by “normalizing” them both to a common value of unity at
some arbitrarily chosen time. Perhaps this has been done in
the past because the data was so thoroughly derated,
safety−factored, and guard−banded, that there was indeed
one basic transient curve that applied equally (poorly!) to
every semiconductor device. It is certainly not to be
expected that the same die in two different packages (say a
TO92 vs. an SO−8) will follow the same normalized curve
just because they both start at zero and end at unity – unless
it should happen that the final dimensionalized steady−state
value was the same for both packages. What is certain, is that
the same die in two different packages will follow exactly
the same dimensionalized transient response for the first few
milliseconds, until the heat is out of the silicon and nearby
leadframe, and has entered into the differing package
structure farther out. Thus, if the final steady−state values
are different (which is almost as certain), then the
normalized responses cannot possibly be the same at the
sub−millisecond range.

Equations 1 and 2 can be re−dimensionalized by
multiplying through by the steady−state thermal resistance,
R�.

R(t, d) � d · R�� (1−d) · R(t) (eq. 5)

R(t, d) � d · R�� (1−d) · R�t � t
d
�� R(t)−R� t

d
� (eq. 6)

Given R(0) � 0 and R(�) � R�, it may be observed that
both of these equations have as limits:

lim
t � 0 R(t, d) � d · R�
lim

t � �R(t, d) � R�

Now let us consider a typical single−pulse transient
response (also called the “heating curve”), as shown in
Figure 2. This describes the rise in temperature above
starting equilibrium (“normalized” in a way, by dividing
through by power input) as a function of how long (constant)
power has been applied, as in Figure 3. It thus can be seen
that this temperature rise represents the effect of a square
“pulse” of power, because we’re only interested in how hot
it gets up through the instant the pulse is turned off.

R(t)

t

Figure 2. Single Pulse Heating Curve

Q

t

Figure 3. Power Input Corresponding to Single
Pulse Heating Curve
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Whether the pulse is actually turned off at time t or is left
on, the curve has the same value up through that instant. This
has the effect of making the single−pulse heating curve the
limiting case of a zero−percent duty cycle, as it is generally
seen on the charts. In other words, as is easily seen from
Equation 4, and less easily from Equation 5,

R(t, 0) � R(t) (eq. 7)

Why is this single−pulse heating curve so valuable? There
are other fairly “basic” transient responses which could be
used to characterize a device (the impulse response, for
instance); but the single−pulse response permits us to
estimate the response of the device to any other waveform,
albeit with a little effort in even moderately complicated
situations. It does allow us to address as directly as possible
the closely related situation of an infinite train of square
waves. All this arises because of the principle of “linear
superposition.” For linear superposition to apply, we must
be willing to make the following assumptions: (1) certain
material properties are constant (that is, density, heat
capacity, and thermal conductivity) − at least over the
practical temperature ranges with which we concern
ourselves in typical semiconductor applications; (2) there is
no “internal heat generation” within the various material
domains. This latter restriction is significant, though
perhaps not so severe as might immediately be thought.
What it amounts to in our problem is that heat input to (or
exit from) the system can occur only at the boundaries; to

wit, the “active” surface of the silicon chip, though buried
deeply inside the package, counts as a boundary. Given these
assumptions, the Fourier heat conduction equation (a partial
differential equation in spatial and time coordinates) is
linear. This means that a linear combination of solutions is
also a solution. A linear combination means multiplying a
solution by a constant (positive or negative), and adding it
to (or subtracting it from) any other solution, and obtaining
a new result that satisfies the governing equation just as
perfectly as did the individual, separate solutions. Since we
have the solution to the square−edged constant power input
problem, we may thus obtain the solution to any other
problem which can be represented by a linear combination
of square−edged power inputs. Some examples will clarify
the principles.

Example 1: A single pulse which is actually turned off (as
opposed to that which generated the single pulse heating
curve). Using linear superposition, it should be easy to see
that we can generate a single, finite duration pulse, by
starting with a constant power applied at the beginning of the
pulse, and then, at the appropriate later moment,
superimposing a negative−going pulse of equal amplitude −
illustrated in Figure 4. So we see that the temperature
response will be a similar combination of the single−pulse
heating curve starting at time zero, and then subtracting it
from itself at a later time.

Q

a t

equals
Q

t

plus
Q

a

t

Figure 4. A Finite Pulse of Power, Decomposed into Two Infinite Steps of Constant Power

R(t)

t

R(t)

t

R(t−a)

R(t)

a
t

equalsplus

Figure 5. Temperature response of a finite pulse of power (constructed from superposition of two
single pulse responses).

a
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Example 2: Two pulses with different amplitudes and durations. Figure 6 illustrates the decomposition of the two pulses into
four infinite steps of constant power. Note different amplitudes and starting times.

Q1

Q2

a b c

t

Q1

Q2

−Q1
−Q2

a

b

c

t

is made up of

Figure 6. Two Finite Pulses Decomposed into Infinite Steps

R(t)
R(t)

Figure 7. Temperature response constructed for two finite pulses (constructed from
superposition of four single pulse responses).

results in this

Example 3: A short ramp can be constructed from as many smaller infinite steps as necessary for desired resolution in time
or temperature, as illustrated in Figure 8.

P

a

t

P

a t

is made up of

Figure 8. A Finite Ramp Decomposed into Several Infinite Steps

t

Q

a

t

Q

a

results in this

Figure 9. Temperature response constructed for finite ramp (constructed from superposition of
many single pulse responses).
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For the linear superposition of the small steps in Figure 9,
note that the single−pulse response is scaled by a small
amount for the small positive contributions, and a full−scale
single subtraction is made for the negative going pulse to
“turn off” the ramp.

Example 4: An arbitrary pulse; hopefully by this point the
superposition technique should contain no surprises. An
arbitrary pulse (Figure 10), or train of pulses, is simply

handled by starting smaller, incremental steps of power,
either positive or negative, at whatever times and with
whatever amplitudes are appropriate for approximating the
shape to the required resolution and accuracy. Once begun,
each step response continues forever. In practice, obviously,
this becomes computationally cumbersome, but it is
worthwhile to consider before we move on to the final
example (i.e., the square wave).

Q

a

t

is made up of
Q

Figure 10. An Arbitrary Pulse Decomposed into Several Infinite Steps

t

Q Q

t

results in this

Figure 11. Temperature Response Constructed for Arbitrary Pulse of Figure 10

It may be noted that if the elemental step inputs (hence
responses) are made of equal amplitude, but spaced at
variable starting intervals so as to best follow the desired
input, and if the basic step response is tabulated to reach
steady−state at some finite time, then a computational
shortcut results. Pairs of positive and negative going
responses, once they reach steady−state, cancel out exactly
and may be dropped from the list of responses which must
be tracked and carried along. If an infinite train of pulses is
being modeled, in fact, this list grows infinitely long unless
such a shortcut is taken. Alternatively (especially if equal
amplitude elements are not convenient), as each elemental
response reaches its individual steady−state, its final value
can simply be summed into an accumulating steady−state
“constant,” and only the elements which have not yet
reached steady−state need to be carried along. Consider,
however, the massive computations involved in a typical
transient response: A tabulated “single−pulse response”
curve typically spans several orders of magnitude, for
instance, from 1.0 microsecond out to 10 seconds (thus six
orders of magnitude). If one is modeling a pulse train whose
period is 10 microseconds, then each elemental response
will have to be carried along for a million terms until it can
be rolled into the accumulating constant value (or cancelled

out with an equal and opposite amplitude response). We see
therefore, that although the superposition scheme is
fundamentally straightforward, it may be computationally
unwieldy for any but the most simple (and probably finite)
power inputs.

Example 5: The constant duty cycle, infinite square wave.
Our final example is actually the problem which we will
follow through to specific numerical conclusions, namely an
infinite train of square waves comprising a fixed duty cycle
power input. We will characterize the train in a couple of
interrelated ways.

t = 0

Q
Qavg

a

p

Figure 12. Fixed Duty Cycle Square Wave Defined
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Each cycle of the wave has a period p, of which the first
portion is the “on” interval a (also called the pulse width).
From these quantities we can define the duty cycle factor, d.
Equation 8 shows the interrelationships between p, a, and d.

d � a
p p � a

d
a � d · p (eq. 8)

Also note that the average power is related to the peak
power by the duty cycle, as:

Qavg � d · Q (eq. 9)

For convenience, we shall define time zero to correspond
to the rising edge of the first pulse from which we begin our
computations. There is also a matter of convention in
plotting the resulting responses, i.e., the choice of the
horizontal axis. By convention, this time axis, usually
denoted t, is the pulse width. So in certain formulas, we may
find a t where we might otherwise have found an a, or vice
versa. We now may set about calculating the quasi−steady
response of an infinite train of such pulses. Two slightly
different approaches will be taken.

Method 1–Pulse train applied to system initially at
ambient

The first approach is to begin simply from an unpowered
initial state, where the starting temperature is known –
namely ambient (and may for convenience be defined as
zero, since we’re looking for temperature rises above this

value). We then tally up the responses from an ever growing
list of individual cycles, until the first pair of plus and minus
have reached steady−state and thus cancel each other out
exactly. At that point, we must, by numerical definition, be
at steady−state, since each subsequent pair of plus and minus
responses will also cancel out as we add in two fresh pairs
for the next cycle. This process is illustrated in Figure 13.
Note that because we’re always dealing with equal
amplitudes of positive and negative going steps, we can
work directly with the single−pulse transient response
function, without worrying about scaling it by any particular
power. In effect, we’re computing directly the response to an
average power of d, since each pulse represents a peak
power of unity.

At the falling edge of the second pulse in the illustration,
we can tally up the responses of two previously begun
positive responses, and subtract off one previously begun
negative response, to get the accumulated “peak”
temperature at that instant. Similarly, at the rising edge of the
third pulse in the illustration, we can tally up the responses
of two previously begun positive responses, and subtract off
two previously begun negative responses, to get the
accumulated “valley”. So the “peaks” are what come from
the summed responses at the falling edges, and the “valleys”
will come from the sums at the rising edges. Usually, of
course, we’re interested in the peaks.

t = 0

Q

R(p)

R(a)

R(p+a)

R(a)

−R(p−a)

−R(p)

R(2p)

R(p)

t

−R(p−a)

−R(2p−a)

Figure 13. Building Response to Fixed Duty Cycle Square Wave

t = 0

Q

R(a)
R(p+a) − R(p) + R(a)

R(p) − R(p−a) R(2p) − R(2p−a)
+ R(p) − R(p−a)

t

Figure 14. Response Starting from Ambient Initial Condition
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From the beginnings of formulas tallied up in Figure 14,
with careful attention to the summation ranges, we can
generalize as follows: The steady−state peak temperature
after the nth pulse will be given by:

H(a, p, n) �

n

�
j � 1

R[(j−1)p � a]−
n−1

�
j � 1

R[jp] (eq. 10)

and similarly, the steady−state “valley” temperature after the
nth complete cycle will be given by:

V(a, p, n) �

n

�
j � 1

R[jp]−

n

�
j � 1

R[jp−a] (eq. 11)

The limiting cases will be found as n approaches infinity.
For the peaks,

R(t, d) � lim
n � �H(t, p, n) (eq. 12)

and for the valleys,

Y(t, d) � lim
n � �V(t, p, n) (eq. 13)

One useful further refinement is to observe that the terms
in the summations can be paired. In the “peak” temperature
formula, since the first positive summation has one more
term than the negative summation, we can choose whether
to pull out separately the first term or the last one, and pair
what’s left over. If we pull off the last (nth) term of the first
summation, we have:

−
n−1

�
j � 1

R[jp]

(eq. 14)

� R[(n−1)p � a] �
n−1

�
j � 1

{R[jp]−R[(j−1)p � a]}

H(a, p, n) � R[(n−1)p � a] �
n−1

�
j � 1

R[(j−1)p � a]

So in the limit, as the number of terms approaches infinity
(or we reach the end of the finite tabulation of R(t) and have
therefore reached steady−state), we can say:

R(t, d) � R�−

�

�
j � 1

{R[jp]−R[(j−1)p � a]} (eq. 15)

Let us now make the physically reasonable assumption
that R(t) is a monotonically increasing function (that is to
say, it always gets hotter the longer you heat it). Then it must
be true that each term of the summation is a positive number,
i.e., because:

jp 	 (j−1)p � a
(eq. 16)then

R[jp] 	 R[(j−1)p � a]

hence each term of the summation lowers the result with
respect to value accumulated without it. Graphically, this
formula can be interpreted as shown in the Figure 15. The
peak temperature for any specific duty cycle can be obtained
by taking the steady−state value, and subtracting the sum of
all the portions of the single−pulse heating curve of the “off”
periods for that specific pulse width.

Returning to Equation 10, our second option was to
separate the j = 1 term from the first summation and pair the
remainder like this (note the need to re−index the first
summation):

H(a, p, n) � R[a] �

n

�
j � 2

R[(j−1)p � a]−
n−1

�
j � 1

R[jp]

(eq. 17)� R[a] �
n−1

�
j � 1

R[jp � a]−
n−1

�
j � 1

R[jp]

� R[a] �
n−1

�
j � 1

{R[jp � a]−R[jp]}

Again, if R(t) is monotonically increasing, then:

R[jp � a] 	 R[jp] (eq. 18)

and these restructured summation terms likewise are
positive definite. Once again, in the infinite limit,

R(t, d) � R[a] �

�

�
j � 1

{R[jp � a]−R[jp]} (eq. 19)

R� R(2p)−R(p+a)

R(p)−R(a)

R(3p)−R(2p+a)

R(5p)−R(4p+a)

R(4p)−R(3p+a)

t

5p5pa p 2p 3p 4p
4p+a3p+a2p+ap+at = 0

Figure 15. First Graphical Interpretation of “Peak” Duty Cycle Response
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This formulation of the result has a particularly “intuitive”
interpretation. Recall that we started with a system at
ambient, that is, unpowered thermal equilibrium, and began
to excite it with a square wave power input starting at time
zero. Obviously R[a] is simply the single pulse response at
the end of the first applied pulse. Then, each R[a + jp] is the
single−pulse response at the end of the “on” pulse segment
of each subsequent cycle, whereas each R[jp] is the
single−pulse response at the beginning of each cycle (just
before the associated pulse is turned on). This is essentially
the complement of Equation 15, and the graphical
interpretation is also the complement – i.e., instead of taking
the total steady−state response and subtracting the spaces
between the pulses, simply add up the spaces occupied by
the pulses themselves, as shown in the Figure 16.

From this interpretation, it should be evident that as the
period of the wave train gets small, each individual segment
of the heating curve can be approximated by a small, straight
line of width p along the time axis, hence each “on” element
has length d�p. Thus (Figure 17), whatever vertical distance
is spanned by the segment for each cycle, the vertical

contribution of the “on” portion must be d times that span.
Since the total vertical span for the entire heating curve is
R�, then the total contribution of all segments to the peak
duty cycle response must be d�R�. This short−period (or
high frequency) “limiting value” of the duty cycle response
is certainly no surprise. Yet it helps us intuitively grasp that
even for very fast power cycling of a device, the
quasi−steady−state peak temperature is determined not
solely by the short−time region of the single−pulse heating
curve. It of necessity includes substantial contributions of
the curve (roughly a fraction of d) all the way out to the
longest measured response times.

Similarly, as the period lengthens with respect to the
shortest−time response measured (and even more
specifically, as the pulse width a grows), the initial pulse
consumes a larger and larger fraction of the total response
curve, and the subsequent pulses obviously contribute less
and less. We then can also see why the detailed shape of the
curve will interact significantly with the period and the duty
cycle, in forming the peak duty cycle response at times
intermediate to the shortest and longest times.

5p5pa p 2p 3p 4p
4p+a3p+a2p+ap+at = 0

t

R(a)

R(a+p)−R(p)

R(a+2p)−R(2p)
R(a+3p)−R(3p)

R(a+5p)−R(5p)

R(a+4p)−R(4p)

Figure 16. Second Graphical Interpretation of “Peak” Duty Cycle Response

d � R3

R3

R2

R1

d � R2

d � R1

d�p d�p d�p

a p p+a 2p 2p+a

p p

Figure 17. For Small p, Treating Heating Curve as Straight Line Segments
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Though likely of less practical interest, we may follow
similar reasoning to restate the “valley” response formula
and graphically represent its construction from the
single−pulse response in Figure 18. Note the significant
difference between the solutions as far as the time−points of
interest. For the “valley” response, we need to extract
information from the single−pulse response at the beginning

of each heating period (as before), but then at a pulse−width
time preceding each pulse (refer again back to Figure 13),
rather than following each pulse. From Equations 11 and 13,
we quickly obtain:

Y(t, d) �

�

�
j � 1

{R[jp]−R[jp−a]} (eq. 20)

5pp 2p 3p 4p
4p−a3p−a2p−ap−a

t = 0
5p−a

t

R(p)−R(p−a)

R(2p)−R(2p−a)

R(3p)−R(3p−a)

R(4p)−R(4p−a)

R(5p)−R(5p−a)

Figure 18. Graphical Interpretation of “Valley” Duty Cycle Response

Method 2–Pulse train applied to system at constant
power equilibrium

The second approach to generating the formula for peak
temperature response is to begin at powered equilibrium.
Unless the duty cycle is 100%, we can be assured that the peak
temperature (i.e., the intercycle maximum) will be higher

than the constant−power equilibrium temperature, and the
valley temperature (i.e., the intercycle minimum) will be
lower. According to the linear superposition principle, the
temperature changes relative to this equilibrium, will be
identical to those of the same cyclical power input having an
average power of zero, as illustrated below.

Actual Duty Cycle and Response Superposition of Average
and Disturbance

Tavg

0

Q

Qavg = d�Q
0

(1−d)�Q

−d�Q

Power shifted
to average zero

Tavg due to Qavg

“Peak’’

“Valley’’

Figure 19. Equivalence of Non−Zero Average Response, and Superposition of Constant Average
Plus Zero−Average Disturbance

We know that the temperature rise due to the average
power will be given by:

d · Q · R� (eq. 21)

As before (see especially Example 2 above), we obtain the
transient response to the zero−averaged−power cycling by a
superposition of positive and negative−going power steps,
as indicated in Figure 20.
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Zero−average square wave is formed from these steps

Q
(1−d)�Q

−Q

+Q
(1−d)�Q

−Q

Figure 20. Construction of Zero−Power Averaged Square Wave from Steps

Consequently, just as we found in Example 2, we obtain
the response by summing the step responses of the
individual positive and negative going components. All but
the initial step have equal amplitudes of 
Q. Only the initial
rising edge is different: that step has an amplitude of
(1−d)Q. If all we desired was a first−order estimate of the
peak temperature, therefore, all we would need to do is add
the pulse response at time a to the average, that is:

T1 � d · Q · R�� (1−d) · Q · R(t) (eq. 22)

or, normalizing relative to the peak power (dividing through
by Q)

R1(t, d) � d · R�� (1−d) · R(t) (eq. 23)

which is simply Equation 5, previously derived from
“standard” Equation 1.

We can improve on this first order estimate by adding in
the contributions of additional steps. For reasons which
should become clear shortly, let us add these in by pairs, to
keep things balanced. Let us step out to time (p+a), and tally
up the various contributions. From the initial step, we have:

(1−d) · Q · R(p � a) (eq. 24)

From the first negative−going step (which started at time
a and has lasted one full period p), we have:

−Q · R(p) (eq. 25)

and from the second positive going pulse which started at
time p and has lasted for duration a:

−Q · R(a) (eq. 26)

If we tally these up, plus the initial average temperature
rise, we obtain:

T2 � d · Q · R�� (1−d) · Q · R(p � a)−Q · R(p)
(eq. 27)� Q · R(a)

again dividing through by Q to yield units of thermal
resistance, we get:

R2(t, d) � d · R�� (1−d) · R(p � a)−R(p) � R(a)
(eq. 28)

which, except for the use of the parameters a and p (in lieu
of t and d), and a reordering of the last two terms, is precisely
Equation 6, which itself came from the “standard”
Equation 2.

We have thus generated the formulas stated at the outset.
Better, though, we see whence they arise, and can fairly
easily generalize them. In particular, it should now be
evident that we could continue to add in pairs of negative and
positive going pulses, and calculate the peak temperature at
the edge of the last pulse added in. For instance, we can
quickly generate the expression taking us out to the third
pulse:

R3(t, d) � d · R�� (1−d) · R(2p � a)−R(2p)

(eq. 29)� R(p � a)−R(p) � R(a)

and extending the equation into a fully general form, we can
now say:

Rn(t, d) � d · R�� (1−d) · R[(n−1)p � a]

(eq. 30)
�

n−1

�
j � 1

{R[(j−1)p � a]−R[jp]}

or, by reordering the terms under the summation and
changing the external sign, we have:

�
n−1

�
j � 1

{R(jp)−R[(j−1)p � a]}
(eq. 31)

Rn(t, d) � d · R�� (1−d) · R[(n−1)p � a]

As before, with monotonically increasing R(t) each
summation term is positive definite, and thus we can state
with certainty that all Rn(t,d) for n>1 are smaller than the
first−order estimate of the peak temperature from
Equation 5 or 23. Indeed, every additional term will reduce
further the estimate of the peak temperature. This
conclusion is one important result which was sought from
the outset.

Our final task is to explore the limit of Equation 31 as n
goes to infinity. It should be clear that:

lim
n � �R[(n−1)p � a] � R� (eq. 32)
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therefore, utilizing this in the second term of Equation 31 as
we replace the upper limit of the summation with infinity, we
have:

R(t, d) � d · R�� (1−d) · R�

(eq. 33)
�

�

�
j � 1

{R(jp)−R[(j−1)p � a]}

(eq. 34)

R(t, d) � d · R�� R�� d · R�

�

�

�
j � 1

{R(jp)−R[(j−1)p � a]}

so:

(eq. 35)R(t, d) � R��

�

�
j � 1

{R(jp)−R[(j−1)p � a]}

which is identical to Equation 19 derived earlier in
Method 1. Thus, whether starting from uniform ambient or
constant−power equilibrium, we find the same result in the
infinite time limit.

Peak−to−Peak (Peak to Valley) Temperature Difference
Taking the difference between Equation 19, the peak

temperature, and Equation 20, the valley temperature, we
have a direct expression for the total temperature excursion
experienced by the device when operating at steady−state
under the influence of a constant duty cycle square wave.

R(t, d) � R[a] �

�

�
j � 1

{R[jp � a]−R[jp]} (eq. 19)

Y(t, d) �

�

�
j � 1

{R[jp]−R[jp−a]} (eq. 20)

so:

(eq. 36)
�(t, d) � R[a] �

�

�
j � 1

�R[jp � a]−R[jp]� �

�

�
j � 1

�R[jp]−R[jp−a]� � R[a] �

�

�
j � 1

�R[jp � a] � R[jp−a]−2R[jp]�

It may be seen that if R(t) changes relatively slowly and
smoothly, then the terms of this summation should go to zero
fairly quickly. Since the value of R is taken just before and
just after each jp, the two values should average out to the
value at each jp, and the summation terms become merely
the “error” in this statement. For what it’s worth, for small
duty cycles (a small compared to p) the resulting summation
may be recognized as essentially a central difference
approximation for the second derivative of the single−pulse
heating curve, that is to say:

(eq. 37)�(t, d)  R[a] � a2
�

�
j � 1

�2R(t)

�t2
t � jp

For slowly varying R(t), this tells us what we probably
already knew, namely that the peak−to−valley temperature
excursions are approximated by the single−pulse response
based on the pulse width.

Limitations of the Infinite Series Solution
What can be said about how many terms of Equation 31

or 35 are required in order to obtain a given accuracy?
Unfortunately, very little. All we can say from either
formulation is that we’re starting with some initial
approximate value and subtracting away the same series of
values. In the case of (31), there are only a finite number of
“corrections” (dictated by our choice of n, which also
dictates how much lower is the starting value from R�).
Since these are the same n corrections as the first n terms of
the series in (35), and the starting value is lower for (31) than
for (35), we conclude that it will take more terms of (35) to
get to the same value we had in (31). We have little idea,
however, of how many more terms of (35) it might take to get
to the value of (31)’s finite approximation, nor how much
lower (35)’s final value might go after an infinite number of
terms are subtracted away. Without detailed numerical
knowledge of the shape of the single−pulse curve, there is
little else we can say. It is tempting to think that successive
terms provide progressively smaller corrections. To a
certain extent this must be true, because with each
correction, there is yet less of the remaining difference left.
However, we can never be sure that the very next term after
the one we just computed won’t consume the entire
remainder of the difference (which might be considerably
more than the magnitude of the term just before).

There is also the problem of numerical “noise.” Unless
we’re working with a mathematical model of the thermal
characteristics to begin with, any computation of the value
R[(j−1)p+a] requires that we make some assumption about
the behavior of the function between discrete, tabulated
values. Typically, a tabulated single−pulse response
curve will have values at, say, 0.1, 0.2, 0.4, 0.7,
and 1.0 milliseconds. What value do we use for
0.53 milliseconds? Do we linearly interpolate between 0.4
and 0.7, or logarithmically interpolate, or just what? And
these tabulated values themselves will necessarily introduce
round−off error at best, or experimental variation at worst,
so our finite or infinite series summation of values
interpolated between these discrete values will reflect
peculiar accumulations of error or round−off at intervals
harmonically related to the pulse width and period of
interest. Numerical experimentation with real and
hypothetical tabulated single−pulse curves demonstrates
that however “smooth” and monotonic is the starting curve,
the R1 approximation tends to be similarly smooth.
However, the R2 and all higher order approximations tend
to exhibit unrealistic wobbles in the computed response to
other duty cycles − wobbles so large that the computed
response may not even remain monotonically increasing!
This includes effectively “infinite” series where the
computations are carried out until every pair of terms ends
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up in the truly “steady−state” tail of the table. This also
seems to hold true whether linear or logarithmic
interpolation is performed between tabulated points. Can we
get away with using only the R1 approximation? Perhaps,
though again, numerical experimentation with real transient
response curves demonstrates that there can be as much as
a 6% overestimate of R(t,d) in R1 over R2.

The RC Network Solution
From the foregoing discussion, it seems that the amount

of error and the possibility of accumulating numerical
round−off, etc., in the series solution to this problem are not
insignificant. It was suggested that some of this difficulty
might be lessened if one were working with a mathematical
model of the single−pulse curve rather than a tabulated,
purely experimentally derived curve. In this next section, we
will explore a specific mathematical model, namely an
exponential series equivalent to the single−pulse response,
earlier presented as Equation 4:

R(t) �
m

�
i � 1

Ri(1−e
− t
�i ) (eq. 4)

Note that in the limit,

lim
t � �R(t) �

m

�
i � 1

Ri (eq. 38)

There are two key features or advantages of this model
over a tabulated function. First, we can make some precise
statements about the way in which successive terms of the
various formulas derived earlier fall off with time (i.e., they
will fall off exponentially, which means the error can be
bounded precisely, if it turns out necessary). Second, we
need make no decision about interpolation methods,
because this “decision” has already been made for us simply
in the choice of the exponential function. We can compute
the value of R(t) to any precision we desire, at as precise a
point in time as we desire. Because we will be able to derive
a closed−form solution, however, we will see that neither the
details of the error fall−off, nor the precision of the
calculations, will be issues of any consequence at all.

What of the accuracy of the model with respect to
experimental measurements, that is, the “fit” of the model to
the data? Certainly if the fit is only good to within a few
percent, we should not expect our computed square wave
responses to be any better. However, if the fit of the model
to the experimental data rivals the raw experimental noise
level (generally quite feasible), then we should be able to
rely on this exponential model to provide noise−free values
of the response – and even better monotonicity of derived
responses than we obtained with the series solutions based
on tabulated data.

Closed Form of Peak Temperature for RC Network
Let us now pursue a closed−form solution to the fixed duty

cycle square wave response based on the model of
Equation 4. Because the series solutions derived previously
consist simply of linear combinations of R(t), it should be
evident that we can momentarily simplify matters by
considering but a single term (Equation 4). Whatever
conclusions we reach from that analysis, we may then
simply sum them up to obtain the total result. We start,
therefore, with Equation 19, which constructed the solution
as the sum of the portions of the single−pulse response
occupied by the “on” pulse widths. Recall:

R(t, d) � R[a] �

�

�
j � 1

{R[jp � a]−R[jp]} (eq. 19)

Let us also make explicit use of a previously suggested,
but heretofore inconsequential, feature of the single−pulse
response, namely that it begin at zero. Specifically, let us
assume that for all real devices,

R(0) � 0 (eq. 39)

This is certainly a thermodynamically sensible
requirement – until energy has been applied for a finite
period of time, the temperature rise must remain zero.
Making this stipulation, we can subtract Equation 39 from
Equation 19,

(eq. 40)R(t, d)−0 � R[a]−R(0) �

�

�
j � 1

{R[jp � a]−R[jp]}

and absorb the leading terms into the summation by
extending the index to zero, yielding:

(eq. 41)R(t, d) �

�

�
j � 0

{R[jp � a]−R[jp]}

We are now ready to substitute in for the function R(t) a
single term from Equation 4, thus:

(eq. 42)Ri(t, d) �

�

�
j � 0

�Ri�1−e
−

jp � a
�i �−Ri�1−e

−
jp
�i��

Expanding, collecting terms constant with respect to
index j, and removing them from the summation, we obtain
the following:

(eq. 43)

Ri(t, d) �

�

�
j � 0

�Ri−Rie
−

jp � a
�i −Ri � Rie

−
jp
�i�

�

�

�
j � 0

�Ri�e−
jp
�i −e

−
jp � a

�i ��

�

�

�
j � 0

�Ri�1−e
− a
�i�e−

jp
�i�

� �i�1−e
− a
�i�

�

�
j � 0

e
−

jp
�i
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Then utilizing the identity 
�

�
j � 0

zj � 1
1−z

 , our final

expression for the contribution of each term of Equation 4 is:

(eq. 44)Ri(t, d) � Ri
1−e

− a
�i

1−e
− p

�i

Summing them together for the entire m−term RC
network response, we thus obtain:

(eq. 45)

R(t, d) �
m

�
i � 1

Ri
1−e

− a
�i

1−e
− p

�i

or in terms of (t,f) as:

R(t, d) �
m

�
i � 1

Ri
1−e

− t
�i

1−e
− 1

f�i

This can also be written in terms of t and d, as in:

(eq. 46)R(t, d) �
m

�
i � 1

Ri
1−e

− t
�i

1−e
− t

d�i

Observe that as t gets small, because 1−e−x � x, this
formula reduces to:

(eq. 47)

lim
t � 0 R(t, d) �

m

�
i � 1

Ri

t
�i
t

d�i

�
m

�
i � 1

Rid

� d
m

�
i � 1

Ri

So if the sum of the amplitudes of the RC network terms
equals the steady−state thermal resistance of the system (as
it should, if the model is any good), then we have the
expected limit for high frequency response of the solution.
Further, at the other extreme (as t gets large), all the
exponential terms vanish, and the solution degenerates as it
should to exactly:

(eq. 48)lim
t � �R(t, d) �

m

�
i � 1

Ri

Closed Form of “Valley” Temperature for RC Network
In an almost identical manner we can generate the closed

form solution for the intercycle minimum temperature of the
fixed duty cycle square wave. Starting with Equation 20:

Y(t, d) �

�

�
j � 1

{R[jp]−R[jp−a]} (eq. 20)

and substituting in a single term of the RC solution for R(t),
we have:

(eq. 49)Yi(t, d) �

�

�
j � 1

�Ri�1−e
−

jp
�i�−Ri�1−e

−
jp−a
�i ��

With minor differences, we manipulate as before to this
point:

(eq. 50)Yi(t, d) � Ri�e
a
�i −1�

�

�
j � 1

e
−

jp
�i

and now utilize another identity, 
�

�
j � 1

z−j � 1
z−1

, to obtain

the expression:

(eq. 51)Yi(t, d) � Ri
e

a
�i −1

e
p
�i −1

or, explicitly in terms of t and d,

(eq. 52)Yi(t, d) � Ri
e

t
�i −1

e
t

d�i −1

Then, finally, summing over all the terms of Equation 5,
we have:

(eq. 53)Yi(t, d) �
m

�
i � 1

Ri
e

t
�i −1

e
t

d�i −1

Unfortunately, with the positive exponential terms, there
may be computational limitations. It therefore is much more
numerically robust to rewrite the equation as follows*:

(eq. 54)

Y(t, d) �
m

�
i � 1

Rie
�1−1

d
� t
�i

1−e
− t

�i

1−e
− t

d�i

or in terms of period and on−time:

Y(t, d) �
m

�
i � 1

Rie
a−p
�i

1−e
− a

�i

1−e
− p

�i

*For instance, the largest argument permitted for the exponential
function in the 2003 release of Excel is 709, resulting in a value of
approximately 1E308. In an RC network model whose smallest
time constant is 1E−6, we will therefore reach the 71st term and
thus exceed the computational capability of Excel before we’ve
gotten to even 1E−3! However, Excel will happily accept −1E307 as
a valid argument for the same function, returning the value 0.
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where each exponential argument is negative definite. As
with the peak temperature expression, for high frequency
waves we expect the valleys to approach the average
temperature. To confirm this, here we observe that as t gets
small, ex−1 � x, so this formula reduces to:

(eq. 55)

lim
t � 0 Y(t, d) �

m

�
i � 1

Ri

t
�i
t

d�i

�
m

�
i � 1

Rid

� d
m

�
i � 1

Ri

On the other hand, as t gets large, the exponential terms
dominate, leading to:

(eq. 56)

lim
t � �Y(t, d) �

m

�
i � 1

Ri
e

t
�i

e
t

d�i

�
m

�
i � 1

Ri�e
t
�i�

−�1
d

−1�

Therefore, for d < 1 the outer exponent is negative, the
inner term gets large, hence:

(eq. 57)lim
t � �Y(t, d) � 0

which we should expect. In other words, for any finite duty
cycle less than 100%, if you make the cycle’s period long
enough (by making the pulse width large enough), the
device will cool back to ambient during the off portion of
each cycle, i.e., the valley temperature is ambient.

Finally, if d = 1, we see immediately from Equation 53
that:

(eq. 58)lim
t � �Y(t, 0) �

m

�
i � 1

Ri

This, also, we expect. It means that for a 100% duty cycle
(power is never turned off), we reach the steady−state
thermal resistance and the device never cools at all.

As our last exercise in utilizing the RC model for the
square wave analysis, let us compute the peak−to−valley
steady−state excursions. To do so, subtract Equation 54
from Equation 46 to obtain:

(eq. 59)�(t, d) �
m

�
i � 1

Ri�1−e
�1−1

d
� t
�i� 1−e

− t
�i

1−e
− t

d�i

RC Predictions for Generalized Square Wave
It was shown in the previous section that an RC model can

be summed over an infinite number of cycles to obtain the
peak and valley temperatures of the “steady−state” system.
A straightforward application of the same method allows us
to use the RC model to predict the temperature at any point
in time of a steady−state system excited by a periodic square
wave. Hence we may also calculate the temperature at any
time within a cycle after an infinite number of cycles of any
periodic waveform (as in Figure 10). First, consider the
“generalized” square wave shown in Figure 21.

Two things distinguish this from the square wave input
(Figure 12) previously analyzed for the duty cycle chart.
First, the pulse is not assumed to turn on at the beginning of
the cycle (i.e., we need to be able to place a component of a
more general waveform anywhere within a cycle); second,
we would like to be able to compute the response of the
system at any time t during the cycle, not necessarily at any
particular edge of any particular component of the input
waveform. If we first consider the fraction of the general
cycle where t is greater than b (hence also greater than a), and
(as before) recognize that the response after an infinite
number of cycles is the cumulative summation of all the “on”
pulses minus the cumulative summation of all the “off” pulses
(all relative to the same position within a cycle), we can write:

(eq. 60)F(a, b, p) �

�

�
j � 0

R[t−a � jp]−

�

�
j � 0

R[t−b � jp]

t − Arbitrary time of interest

b − Pulse turns off

p 2p

a − Pulse turns on

p − Period of waveform

Q
nth cycle decomposed into two steps

Q
t

p

b

a

−Q

Figure 21. Generalized Square Wave
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For clarity, we now replace the transient response R(t)
with just a single term of the RC network expansion (which

will subsequently be summed over all terms of the network),
to obtain:

(eq. 61)

Fi(a, b, p, t, i) � Ri

�

�
j � 0

��1−e
−

t−a � jp
�i �� �1−e

−
t−b � jp

�i ��

Fi(a, b, p, t, i) � Ri

�

�
j � 0

�e−
jp
�i �e

b−t
�i −e

a−t
�i ��

(eq. 62)

� Ri�e
b−t
�i −e

a−t
�i �

�

�
j � 0

�e−
p
�i�

j

� Ri�e
b−t
�i −e

a−t
�i

1−e
−

p
�i

�

So now summing over all the terms of the RC network
model, we have:

(eq. 63)

F(a, b, p, t) �
m

�
i � 1

Ri�e
b−t
�i −e

a−t
�i

1−e
−

p
�i

� good for b � t �p,

computable for all t � b.

Indeed, if Equation 63 is used, as is, to compute results for
values of t>p, what one finds is that the cumulative response
keeps falling until eventually it returns to zero, as t increases
from p to infinity. The problem is that once the infinite sum
has been executed, the original periodicity

(eq. 64)F(a, b, p � t, t) � F(a, b, p, t)

is merely implied, as there is nothing, in effect, to turn the
pulse back on again after it has turned off at time t=b. (To
emphasize, observe that Equation 63 is now but a finite sum
over a finite RC model; the infinity of cycles and their
periodicity has been consumed in the denominator, which no
longer has any explicit periodicity.)

Now, as was discussed previously, potentially positive
exponential arguments (as in the numerator of Equation 63)
cause computational difficulties. Clearly, so long as t>b
(hence t>a), Equation 63 yields negative exponentials and
everything is computationally smooth, and it correctly
predicts the net transient response for all times greater than
b, on up through time p+a (which is when the loss of true
periodicity in Equation 63 first affects the results). But the
solution of Equation 63 for the range p�t<p+a is precisely
the response we seek for the period between 0�t<a, which
is where we have positive exponential arguments in
Equation 63. So the simple modification of Equation 63 by
subtracting p from the numerators’ exponential arguments,
shifts the solution from the beginning of the next cycle back
to the beginning of the nominal cycle. We may thus state:

(eq. 65)

F(a, b, p, t) �
m

�
i � 1

Ri�e
b−t−p
�i −e

a−t−p
�i

1−e
− p

�i

� good (computable)

only for 0 � t < a.

The remaining range that must be considered is a�t<b.
It will be left as an exercise to the reader to show that the
following correctly handles the situation:

(eq. 66)
F(a, b, p, t) �

m

�
i � 1

Ri�1 �
e

b−t−p
�i −e

a−t
�i

1−e
− p

�i

�
good (computable) only for a�t<b.

RC Predictions for Steady−State of Arbitrary
Waveform

We may now expand this generalized single square
pulse solution into a more complex application of power.
If a general periodic waveform is constructed from square
pulses (all having different a’s and b’s, and magnitudes,
Q, but a common p), the principle of linear superposition
gives us:

(eq. 67)G(t) �
n

�
k � 1

QkF(ak, bk, p, t)

We may thus make a direct computation of the
steady−state temperature profile resulting from any periodic
excitation (refer back to Figure 10), assuming that one is
able to satisfactorily approximate the desired periodic
waveform with a series of square pulses.

Consider the following example, with the periodic power
input of Figure 22 applied to the RC model given in the table
to the right.
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1.4 W

1.25 W

0.2 W

1.3 ms
1.0 ms

2.3 ms 4.3 ms

6.0 ms

Cycle repeats every 6 ms

12 ms

1.00E−6

1.00E−5

1.00E−4

1.00E−3

1.00E−2

1.00E−1

1.00E+0

1.00E+1

1.00E+2

1.00E+3

0.01104

0.012806

0.069941

0.275489

0.019806

1.128566

3.539626

5.423616

12.08694

16.2933

tau
(sec)

R
[�C/W]

Figure 22. 

Applying Equations 65, 66, and 63 to each of the three
separate portions of each of three separate square pulses
comprising the repeated pattern, and Equation 66 to

superimpose their effects, we find the following temperature
response:
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Figure 23. 

What makes this example particularly interesting is that
the peak temperature (during a steady−state cycle) occurs at
the end of the second pulse, which has a lower power, and
even a small gap of zero power, between it and the higher
power pulse immediately preceding it in the cycle. Knowing
that the single pulse response is proportional to power, and
that the peak temperature always occurs at the end of a

square pulse (even when infinitely repeated), might easily
lead one to overlook the possibility demonstrated here. In
other words, for a generalized periodic waveform, even
when constructed of (or perhaps approximated by) just a
small number of square sub−components, one does well to
compute the response through the entire range of a cycle, not
at just the “obvious” points.
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Multiple Interacting Junctions
Just as the linear superposition technique allows us to

calculate the temperature response of a single−junction
device to relatively complicated power inputs, starting with
the basic single−pulse heating curve, we can use linear
superposition to predict temperature response of a junction
to multiple other heat sources. The main additional
complexity which must be introduced, is that we must have
single−pulse heating responses for each interaction of
interest. That is, not only the response of each junction to its
own heating, but the response of each junction to
step−heating applied to every other powered junction in the
system. Then the temperature at any given junction at any
specific time, is the linear superposition of its response to the
power applied at all junctions (including itself) summed up
over all preceding time history. If different junctions are
“turned on” at different times, we simply offset the

contributions in time, just as we did when a single junction’s
response was determined by adding or subtracting its own
single−pulse responses accumulated over the entire
preceding time history. Likewise, as junctions are turned off,
their heating responses, scaled and subtracted from the
accumulating total, contribute just as they did in the
single−junction case. The bookkeeping is obviously a little
more challenging, but there is nothing different in principle.
It should be easy to see, however, that as the power inputs get
“interesting,” this method will become cumbersome. For
instance, powering two junctions with square wave trains, if
the two are of differing frequency, cannot be handled simply
by superimposing the duty cycle curves developed in
isolation (even when the interaction heating curve is
known). These sorts of problems are much better suited to
a SPICE type simulation utilizing the thermal RC model of
the system.
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