ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

User Guide for FEBFLS2100XS1CH_L12U160A

160 W LED Driver at Universal Line

Featured Fairchild Products: FL7930B, FLS2100XS

Direct questions or comments about this evaluation board to: "Worldwide Direct Support"

Fairchild Semiconductor.com

1

Table of Contents

1.	Introduction	3
	1.1. General Description of FL7930B	
	1.2. Features	
	1.3. Internal Block Diagram	4
	1.4. General Description of FLS2100XS	4
	1.5. Features	
	1.6. Internal Block Diagram	5
2.	Specifications for Evaluation Board	6
	Photographs	
4.	Printed Circuit Board	8
5.	Schematic	9
	5.1. Power Factor Controller (PFC) Part	9
	5.2. DC to DC Converter and CC / CV Control Part	
6.	Bill of Materials	
	 6.1. Main Board (PFC and DC-to-DC Converter) 6.2. Sub Board for CC / CV Control Part 	
7		
1.	Transformer Design	
	7.1. PFC Transformer (TM1)	
	7.2. LLC Resonant Converter Transformer (TM2)	
8.	Performance of Evaluation Board	15
	8.1. Overall System Efficiency	15
	8.2. Power Factor (PF)	16
	8.3. Constant Voltage and Current Regulation	17
	8.4. Overall Startup Performance	18
	8.5. Startup Performance of PFC	18
	8.6. Soft-Start Performance of PFC	
	8.7. Power On / Off Performance of DC-to-DC Converter Part	20
	8.8. AC Input Current	
	8.9. Normal Operation of PFC	
	8.10. Dynamic Performance of PFC	
	8.11. Dynamic Performance of DC-to-DC Converter	25
	8.12. Dynamic Performance of CC / CV Control	
	8.13. Hold-Up Time Test of DC-to-DC Converter	
	8.14. MOSFET Voltage and Current of DC-to-DC Converter	
	8.15. Secondary-Side Rectifier Diode Voltage and Current	27
	8.16. Operating Temperature	
9.	Revision History	29

This user guide supports the evaluation kit for the FL7930B and FLS2100XS, orderable as FEBFLS2100XS1CH_L12U160A. It should be used in conjunction with the FL7930B and FLS2100XS datasheets as well as Fairchild's application notes and technical support team. Please visit Fairchild's website at www.fairchildsemi.com.

1. Introduction

This document describes a proposed solution for an 160 W LED ballast, which consists of a boost converter for Power-Factor-Correction (PFC), DC-DC converter with LLC resonant converter, and LED-current and voltage-regulation circuitry. The input voltage range is 90 V_{RMS} – 265 V_{RMS} and there is one DC output with a constant current of 1.4 A at 115 V_{MAX}. The power supply mainly utilizes Fairchild semiconductor components: FL7930B CRM PFC controller, FLS2100XS half-bridge LLC controller, LM2904 op-amplifier for LED current and voltage control, FDP22N50N UniFETTM technology N-channel MOSFET, and FFPF08H60S "hyperfast" 2 rectifier. This document contains important information (e.g. schematic, bill of materials, printed circuit layout, and transformer design documentation) and the typical operating characteristics.

1.1. General Description of FL7930B

The FL7930B is an active Power Factor Correction (PFC) controller for low- and highpower lumens applications that operate in Critical Conduction Mode (CRM). It uses a Voltage Mode Pulse Width Modulator (PWM) that compares an internal ramp signal with the error amplifier output to generate a MOSFET turn-off signal. Because the Voltage Mode CRM PFC controller does not need rectified AC line voltage information, it saves the power loss of an input-voltage-sensing network necessary for a Current Mode CRM PFC controller. FL7930B provides over-voltage, open-feedback, over-current, inputvoltage-absent detection, and under-voltage lockout protections. The FL7930B can be disabled if the INV pin voltage is lower than 0.45 V and the operating current decreases to a very low level. Using a new variable on-time control method, Total Harmonic Distortion (THD) is lower than the conventional CRM boost PFC ICs. The FL7930B provides an additional OVP pin that can be used to shutdown the boost power stage when output voltage exceeds OVP level due to damaged resistors connected at the INV pin.

1.2. Features

- Low Total Harmonic Distortion (THD)
- Precise Adjustable Output Over-Voltage Protection (OVP)
- Open-Feedback Protection and Disable Function
- Zero-Current Detector (ZCD)
- 150 μs Internal Startup Timer
- MOSFET Over-Current Protection (OCP)
- Under-Voltage Lockout with 3.5 V Hysteresis (UVLO)
- Low Startup (40 μA) and Operating Current (1.5 mA)
- Totem-Pole Output with High-State Clamp
- +500 / -800 mA Peak Gate Drive Current
- SOP-8 Packaging

1.3. Internal Block Diagram

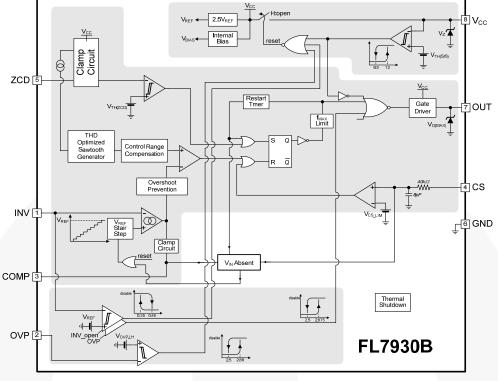


Figure 1. Block Diagram of FL7930B

1.4. General Description of FLS2100XS

The FLS2100XS power controller includes highly integrated power switches for medium- to high-power lumens applications. Offering everything necessary to build a reliable and robust half-bridge resonant converter, the FLS2100XS simplifies designs, improves productivity, and improves performance. The FLS2100XS series combines power MOSFETs with fast-recovery type body diodes, a high-side gate-drive circuit, an accurate current-controlled oscillator, frequency-limit circuit, soft-start, and built-in protection functions. The high-side gate-drive circuit has common-mode noise cancellation capability, which guarantees stable operation with excellent noise immunity. The fast-recovery body diode of the MOSFETs improves reliability against abnormal operation conditions, while minimizing the effects of reverse recovery. Using Zero-Voltage Switching (ZVS) dramatically reduces the switching losses and significantly improves efficiency. ZVS also reduces switching noise noticeably, which enables use of a small-sized Electromagnetic Interference (EMI) filter. The FLS2100XS can be applied to resonant converters.

1.5. Features

- Variable Frequency Control with 50% Duty Cycle for Half-Bridge Resonant Converter Topology
- High Efficiency through Zero-Voltage Switching (ZVS)
- Internal UniFETTM (0.51 Ω) with Fast-Recovery Body Diode
- Fixed Dead Time (350 ns) Optimized for MOSFETs
- Up to 300 kHz Operating Frequency
- Auto-Restart Operation for All Protections with External LVCC
- Protections: Over-Voltage Protection (OVP), Over-Current Protection (OCP), Abnormal Over-Current Protection (AOCP), Internal Thermal Shutdown (TSD)

1.6. Internal Block Diagram

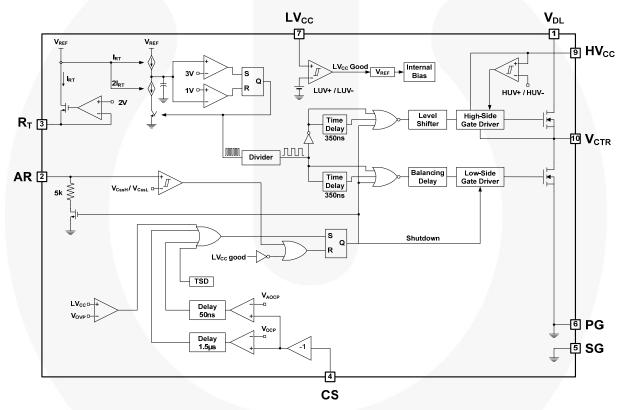


Figure 2. Block Diagram of FLS2100XS

2. Specifications for Evaluation Board

Description		Symbol	Value	Comments
		V _{IN.MIN}	90 V	Minimum Input Voltage
	Voltage	V _{IN.MAX}	265 V	Maximum Input Voltage
Input		V _{IN.NOMINAL}	110 V / 220 V	Nominal Input Voltage
	Frequency	f _{IN}	60 Hz / 50 Hz	Line Frequency
	Voltage	V _{OUT}	115 V	Nominal Output Voltage
Output	Current	I _{OUT}	1.4 A	Nominal Output Current
		CC Deviation	< 0.64%	Line & Load Regulation
		Eff _{85VAC}	88.34%	Efficiency at 85 V _{AC} Line Input Voltage
	Efficiency	Eff _{115VAC}	90.98%	Efficiency at 115 V _{AC} Line Input Voltage
	Efficiency	Eff _{235VAC}	94.73%	Efficiency at 235 V _{AC} Line Input Voltage
		Eff _{265VAC}	95.12%	Efficiency at 265 V _{AC} Line Input Voltage
		PF / THD _{85VAC}	0.989 / 14.15%	PF / THD at 85 V _{AC} Line Input Voltage
		PF / THD _{115VAC}	0.988 / 14.6%	PF / THD at 115 V_{AC} Line Input Voltage
PF/THD		PF / THD _{235VAC}	0.968 / 5.94%	PF / THD at 235 V_{AC} Line Input Voltage
		PF / THD _{265VAC}	0.952 / 6.26%	PF / THD at 265 V_{AC} Line Input Voltage

Table 1. Specifications for LED Lighting Lamp

All data of the evaluation board were measured under a condition where the board was enclosed in a case and external temperature was around 25°C.

3. Photographs

Figure 3. Top View (Dimensions: 225 mm (L) x 80 mm (W) x 30 mm (H))

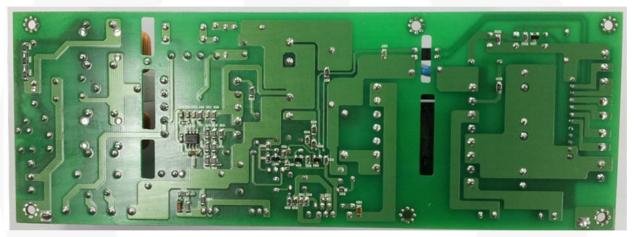


Figure 4. Bottom Views (Dimensions: 225 mm (L) x 80 mm (W) x 30 mm (H))

4. Printed Circuit Board

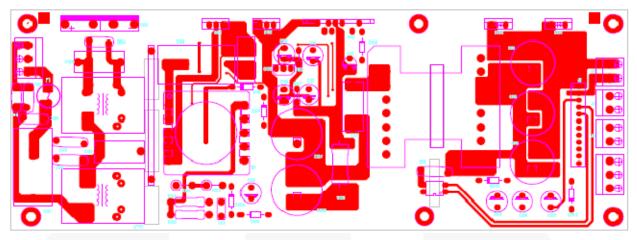


Figure 5. Top Pattern

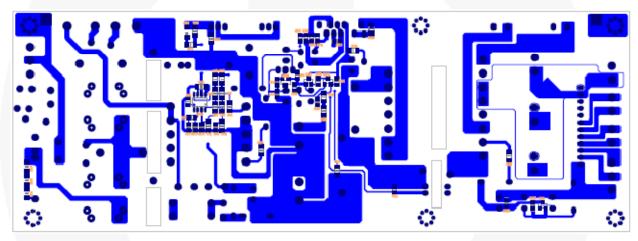


Figure 6. Bottom Pattern

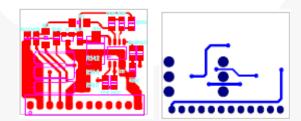
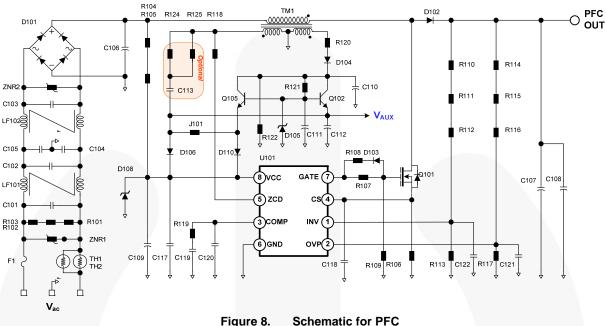
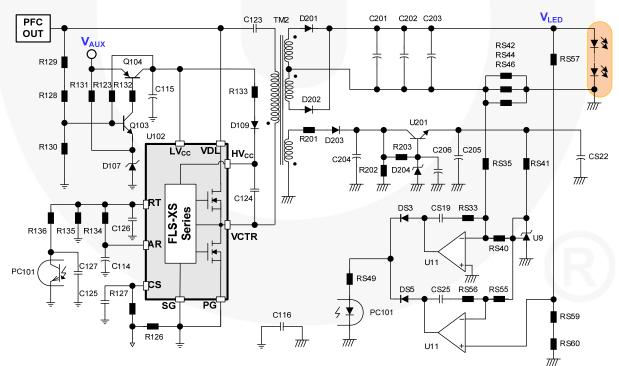



Figure 7. Top / Bottom Sub Board (CC / CV Contol Part) Pattern



5. Schematic

5.1. Power Factor Controller (PFC)

5.2. DC-to-DC Converter and CC / CV Control

6. Bill of Materials

ltem No.	Part Reference	Value	Qty.	Description
1	U101	FL7930B	1	8-SOP, Fairchild Semiconductor
2	U102	FLS2100XS	1	9-SIP, Fairchild Semiconductor
3	PC101	PC817	1	Opto-Coupler, Fairchild Semiconductor
4	C101, C102, C103	0.47 µF	3	X - Capacitor
5	C104, C105	4700 pF	2	Y - Capacitor
6	C106	0.68 µF / 630 V _{AC}	1	Film Capacitor
7	C107, C108	120 µF / 450 V	2	Electrolytic Capacitor
8	C109	22 µF / 50 V	1	Electrolytic Capacitor
9	C110, C112 C204, C205, C206	33 µF / 50 V	5	Electrolytic Capacitor
10	C111, C113	NC		No Connection
11	C114	10 µF / 16 V	1	Electrolytic Capacitor
12	C115	0.33 µF / 25 V	1	Electrolytic Capacitor
13	C116	3.3 nF	1	AC Ceramic Capacitor
14	C117	0.1 µF / 50 V	1	Chip Capacitor
15	C118	470 pF	1	Chip Capacitor
16	C119, C124	0.22 µF	2	Chip Capacitor
17	C120	47 nF	1	Chip Capacitor
18	C121, C122	1 nF	2	Chip Capacitor
19	C123	15 nF / 630 V	1	Film Capacitor
20	C125	100 pF	1	Chip Capacitor
21	C126	680 pF	1	Chip Capacitor
22	C127	12 nF	1	Chip Capacitor
23	C201, C202, C203	100 µF / 200 V	3	Electrolytic Capacitor
24	D101	D15XB60	1	Shindengen/Bridge Diode
25	D102, D201, D202	FFPF08H60S	3	Fairchild Semiconductor
26	D103	1N4148	1	LL-34, Fairchild Semiconductor
27	D104, D109, D110, D203	UF4007	4	Fairchild Semiconductor
28	D105, D204	1N4745	2	Fairchild Semiconductor
29	D107	1N4736	1	Fairchild Semiconductor
30	D106, D108	NC		No Connection
31	Q101	FDP22N50N	1	Fairchild Semiconductor
33	Q102, Q103, U201	Q2N2222A	3	SOT-23, Fairchild Semiconductor
34	Q105	2N2222A	1	TO-92, Fairchild Semiconductor
35	Q104	2N2907	1	SOT-23, Fairchild Semiconductor
36	R101, R102, R103, R128, R129	1 MΩ-J	5	SMD Resistor, 3216
37	R104, R105	69 kΩ	2	2 W

6.1. Main Board (PFC and DC-to-DC Converter)

6.1. Main Board (PFC and DC-to-DC Converter)

ltem No.	Part Reference	Value	Qty.	Description
38	R106	0.1 Ω	1	5 W
39	R107	47 Ω-J	1	SMD Resistor, 3216
40	R108	4.7 Ω -J	1	SMD Resistor, 3216
41	R109, R119, R131, R132, R203	10 kΩ-J	5	SMD Resistor, 3216
42	R110, R111, R112, R114, R115, R116	3.9 MΩ-J	6	SMD Resistor, 3216
43	R113	75 kΩ-J	1	SMD Resistor, 3216
44	R117	68 kΩ-J	1	SMD Resistor, 3216
45	R118	24 kΩ-J	1	SMD Resistor, 3216
46	R120, R133, R201	5.1 Ω-J	3	SMD Resistor, 3216
47	R121	33 kΩ-J	1	SMD Resistor, 2012
48	R122, R202	100 kΩ-J	2	SMD Resistor, 2012
49	R123	390 kΩ-J	1	SMD Resistor, 2012
50	R124, R125	NC		No Connection
51	R126	0.1 Ω	1	1 W
52	R127	1 kΩ-J	1	SMD Resistor, 2012
53	R130	47 kΩ-J	1	SMD Resistor, 2012
54	R134	2.7 kΩ-J	1	SMD Resistor, 2012
55	R135	7.5 kΩ-J	1	SMD Resistor, 2012
56	R136	2 kΩ-J	1	SMD Resistor, 2012
57	TH1, TH2	5D15	2	NTC
58	ZNR1, ZNR2	10D471	2	Varistor
59	TM1	280 µH	1	EER3019N-10
60	TM2	Lp = 850 μH Lr = 170 μH	1	EER3543-16
61	LF101, LF102	40 mH	2	Line Filter
62	F1	250 V / 5 A	1	Fuse
63	J101	NC		No Connection

6.2. Sub Board for CC / CV Control

Item No.	Part Reference	Value	Qty.	Description
1	U9	KA431SLMF	1	SOT-23, Fairchild Semiconductor
2	U11	LM2904	1	8-SOP
3	RS33	47 kΩ-J	1	SMD Resistor, 3216
4	RS35	18 kΩ-J	1	SMD Resistor, 3216
5	RS40	100 kΩ-J	1	SMD Resistor, 3216
6	RS41	4.7 kΩ-J	1	SMD Resistor, 3216
7	RS49	1 kΩ-J	1	SMD Resistor, 3216
8	RS55	120 kΩ-J	1	SMD Resistor, 3216
9	RS56	47 kΩ-J	1	SMD Resistor, 3216
10	RS57	330 kΩ-J	1	SMD Resistor, 3216
11	RS59	6.8 kΩ-J	1	SMD Resistor, 3216
12	RS60	510 Ω-J	1	SMD Resistor, 2012
13	CS19	220 nF	1	Chip Capacitor
14	CS25	220 nF	1	Chip Capacitor
15	CS22	10 µF / 25 V	1	Electrolytic Capacitor
16	DS3,DS5	1N4148	2	LL-34, Fairchild Semiconductor
17	RS42	NC		No Connection
18	RS44	0.1 Ω	1	2 W
19	RS46	NC		No Connection

7. Transformer Design

7.1. PFC Transformer (TM1)

- Core: EER3019N (SAMHWA PL-7)
- Bobbin: 10 pin

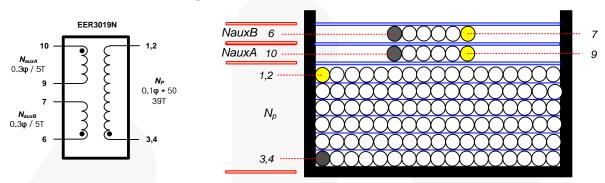


Figure 10. Transformer Specifications & Construction

Table 2. Winding Specifications

No.	Winding	Pin (S → F)	Wire	Turns	Winding Method	
1	Np	$3, 4 \rightarrow 1, 2$	$3, 4 \rightarrow 1, 2$ $0.1\phi \times 50$		Solenoid Winding	
2	Insulation: Polyester Tape t = 0.025 mm, 3-Layer					
3	NauxA $10 \rightarrow 9$		0.3φ	5 Ts	Solenoid Winding	
4		Insulation: Poly	este <mark>r Tape t = 0.0</mark> 2	25 mm, 3-Lay	rer	
5	NauxB	6→ 7	0.3φ	5 Ts	Solenoid Winding	
6	Insulation: Polyester Tape t = 0.025 mm, 3-Layer					

 Table 3.
 Electrical Characteristics

	Pin	Specification	Remark
Inductance	3, 4 – 1, 2	194 µH ±5%	100 kHz, 1 V

7.2. LLC Resonant Converter Transformer (TM2)

- Core: EER3543
- Bobbin: 16 pin

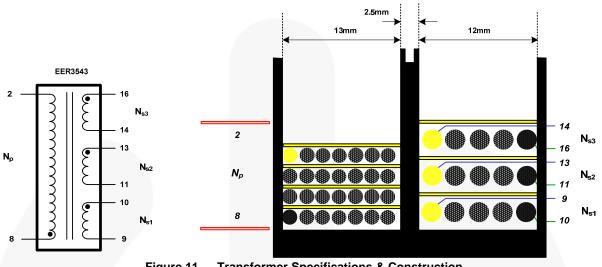


Figure 11. Transformer Specifications & Construction

Table 4. Winding Specifications

No.	Winding	Pin (S → F)	Wire	Turns	Winding Method		
1	Np	8 → 2	0.1φ × 20	36 Ts	Solenoid Winding		
2		Insulatio	n: Polyester Tape t = 0.025	mm, 3-Lay	er		
3	Ns1	10 → 9	0.3φ	3 Ts	Solenoid Winding		
4	Insulation: Polyester Tape t = 0.025 mm, 3-Layer						
5	Ns2	13 → 11	0.1ø×20	19 Ts	Solenoid Winding		
6		Insulatio	n: Polyester Tape t = 0.025	mm, 3-Lay	er		
7	Ns3	16 → 14	0.1φ×10	19Ts	Center Solenoid Winding		
8	Insulation: Polyester Tape t = 0.025 mm, 3-Layer						

Table 5. Electrical Characteristics

	Pin	Specification	Remark
Primary-Side Inductance (Lp)	2 – 8	630 µH ±5%	100 kHz, 1 V
Primary-Side Effective Leakage (L _R)	2 – 8	Maximum 135 µH	Short One of the Secondary Windings

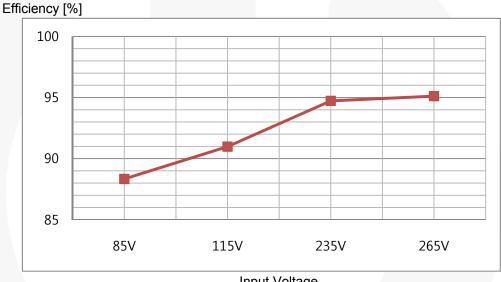

8. Performance of Evaluation Board

Table 6.	Test	Condition	&	Eaui	pments
		•••••••			P

Ambient Temperature	T _A = 25°C
	AC Source: ES2000S by NF
Test Equipment	Electronic Load: EML-05B by Fujitsu
Test Equipment	Power Meter: PM6000 by Voltech
	Oscilloscope: Wave-runner 104Xi by LeCroy

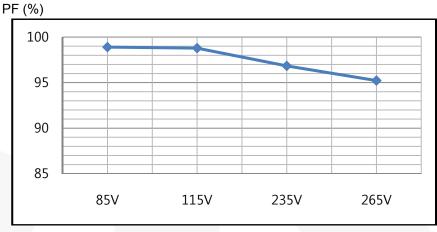
8.1. Overall System Efficiency

Figure 12 shows at least 88% overall system efficiency is achievable with universal input condition at rated output LED load.

Input Voltage

Figure 12. System Efficiency Curve

Table 7. System Efficiency


Input Voltage	85 V _{AC}	115 V _{AC}	235 V _{AC}	265 V _{AC}
Input Power [W]	183.16	177.90	170.75	170.06
Output Power [W]	161.80	161.86	161.75	161.75
Efficiency [%]	88.34	90.98	94.73	95.12

8.2. Power Factor (PF)

Figure 13 shows at least 95% power factor (PF) is achievable with universal input condition at rated output LED load.

Input Voltage

Figure 13. Power Factor Curve

Table 8. Power Factor

Input Voltage	85 V _{AC}	115 V _{AC}	235 V _{AC}	265 V _{AC}
Power Factor [%]	98.90	98.79	96.84	95.23
THD [%]	14.15	14.60	5.94	6.26

Figure 14 shows the current harmonic result at rated output power 160 W and input voltage $230 V_{AC}$ and 50 Hz condition based on IEC61000-3 Class-C for lighting application. This can meet the international regulation.

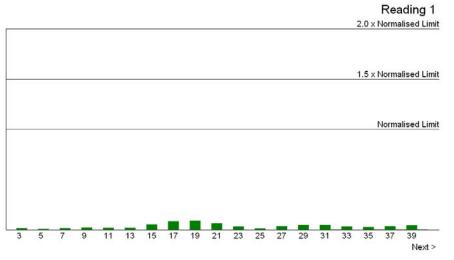


Figure 14. Total Harmonic Distortion (THD)

8.3. Constant Voltage and Current Regulation

Figure 15, Table 9, and Table 10 show the typical CC / CV performance on board; displaying very stable CC performance in wide input range.

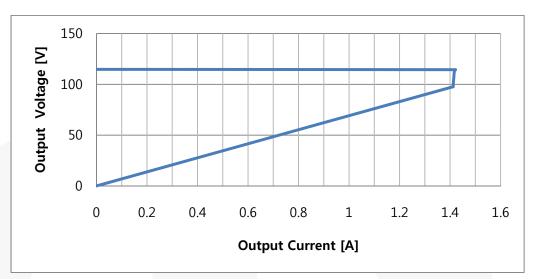
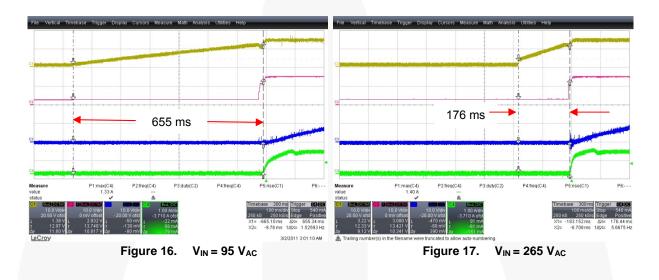


Figure 15. Constant Voltage and Current Regulation, Measured by E-Load [CR Mode]

Table 9.	Output Voltage I	Regulation	Performance
----------	------------------	------------	-------------

Output Voltage [V]	114.70	114.68	114.65	114.62	114.60	114.55	114.53
Output Current [mA]	115	211	311	419	511	707	803
Output Voltage [V]	114.48	114.47	114.43	112.37	106.63	101.48	97.65
Output Current [mA]	1015	1117	1313	1417	1415	1413	1413

Table 10.	Output Voltage and Current Regulation Performance in CV / CC Region
-----------	---


	Mode	CV Mode	CC Mode
CC/CV	Maximum Output	114.68 V	1.42 A
	Minimum Output	114.43 V	1.41 A
	Difference	0.25 V	0.01 A
	Average	114.56 V	1.42 A
	Deviation	0.22%	0.64%

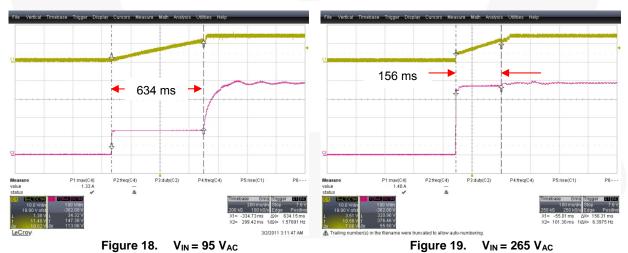
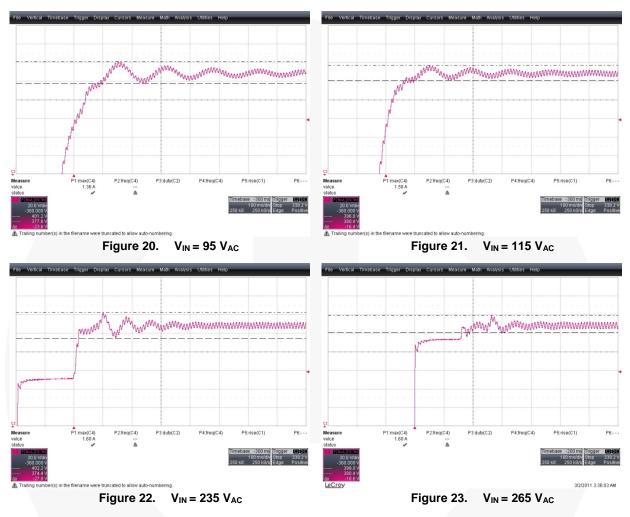

8.4. Overall Startup Performance

Figure 16 and Figure 17 show the overall startup performance including boost converter, LLC resonant converter, and CV / CC circuitry. The output load current starts flowing after about 655 ms and 176 ms for input voltage 90 V_{AC} and 265 V_{AC} condition when the AC input power switch is in turn-on; CH1: V_{CC_PFC} (10 V / div), CH2: V_{CC_LLC} (10 V / div), CH3: $V_{CC_CC/CV}$ (10 V / div), CH4: I_{LOAD} (1 A / div), time scale: 100 ms / div.

8.5. Startup Performance of PFC

Figure 18 and Figure 19 show the typical startup performance on PFC converter. It is possible to have a long startup time at 95 V_{AC} condition rather than 265 V_{AC} condition and this time depends on starting resistor and capacitor on board; CH1: V_{CC_PFC} (10 V / div), CH2: V_{PFC} (100 V / div), time scale: 200 ms / div.

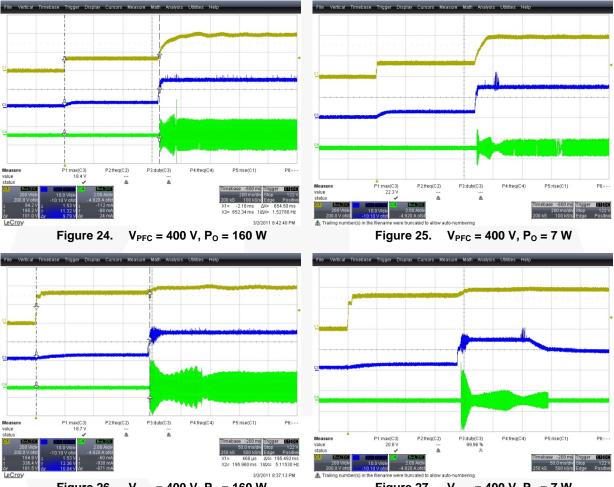


8.6. Soft-Start Performance of PFC

Figure 20 through Figure 23 show the soft-start performance with output power at 160 W. Measured PFC output voltage reaches from 396.8 V to 402.2 V at input voltage 95 V_{AC} and 265 V_{AC} conditions; CH2: V_{PFC} (20 V / div), time scale: 100 ms / div.

8.7. Power On / Off Performance of DC-to-DC Converter

Figure 24 through Figure 27 show the startup waveforms when input voltage source supplied first, then the V_{CC_LLC} of 16 V is applied from the auxiliary winding of the PFC transformer; CH1: V_{PFC} (200 V / div), CH3: V_{CC LLC} (10 V / div), CH4: I_{LLC} (2 A / div), time scale: 50 ms / div.



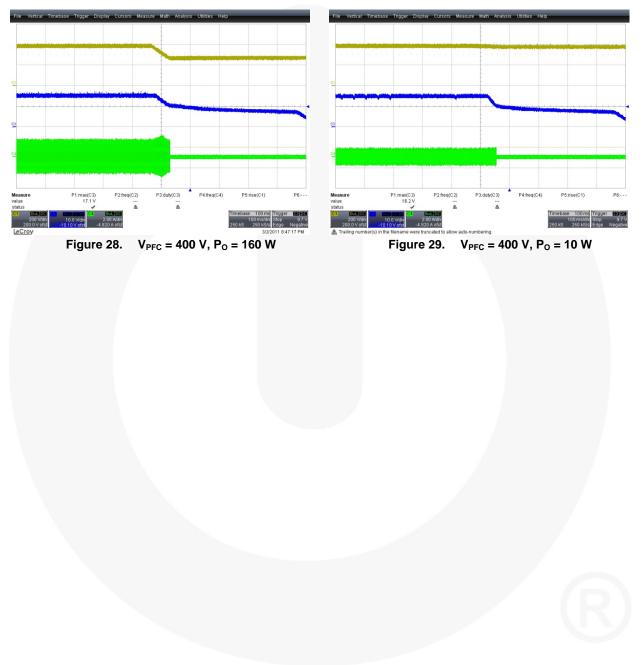

Figure 26. V_{PFC} = 400 V, P₀ = 160 W

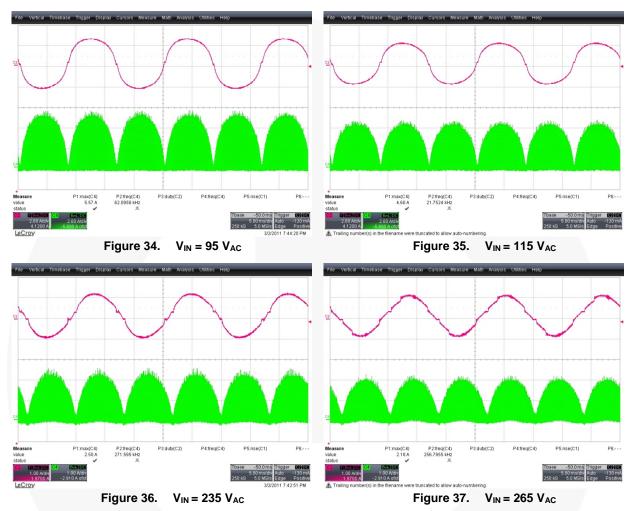
Figure 27. $V_{PFC} = 400 V, P_0 = 7 W$

Figure 28 and Figure 29 show the shutdown waveforms when input voltage source is turned off. When the DC bus voltage reaches about 260 V, the external brownout circuit disconnects V_{CC_LLC} from FLS2100XS, so it stops operation. CH1: V_{PFC} (200 V / div), CH3: V_{CC_LLC} (10 V / div), CH4: I_{LLC} (2 A / div), time scale: 100 ms / div.



8.8. AC Input Current

Figure 30 through Figure 33 show the AC input current waveforms at the rated output power of 160 W and input voltage 95 V_{AC} , and 265 V_{AC} ; CH4: I_{AC} (1 A / div), time scale: 10 ms / div.



8.9. Normal Operation of PFC

Figure 34 through Figure 37 show the AC input and MOSFET drain current waveforms at the rated output power of 160 W and input voltage of 95 V_{AC} , and 265 V_{AC} ; CH2: I_{AC} (2 A / div), CH4: I_D (500 mA / div), time scale: 5 ms / div.

8.10. Dynamic Performance of PFC

Figure 38 and Figure 39 show the PFC output voltage changed under about 50 V when input voltage changes from 115 V_{AC} to 235 V_{AC} and from 235 V_{AC} to 115 V_{AC} at the rated output power 160 W; CH1: V_{COMP} (5 V / div), CH2: V_{PFC} (20 V / div), CH4: I_{AC} (2 A / div), time scale: 100 ms / div.

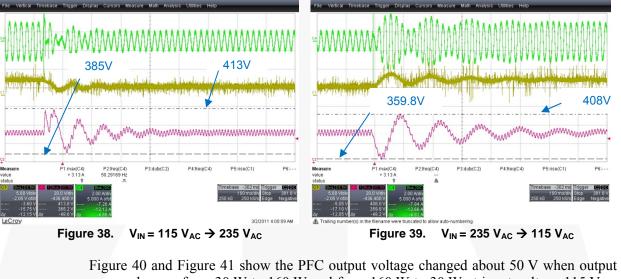


Figure 40 and Figure 41 show the PFC output voltage changed about 50 V when output power changes from 30 W to 160 W and from 160 W to 30 W at input voltage 115 V_{AC} ; CH1:V_{COMP} (5 V / div), CH2: V_{PFC} (20 V / div), CH4: I_{AC} (2 A / div), time scale: 100 ms / div.

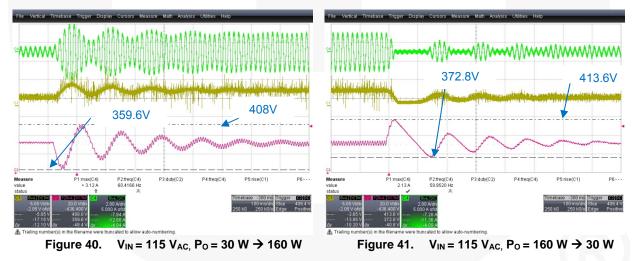
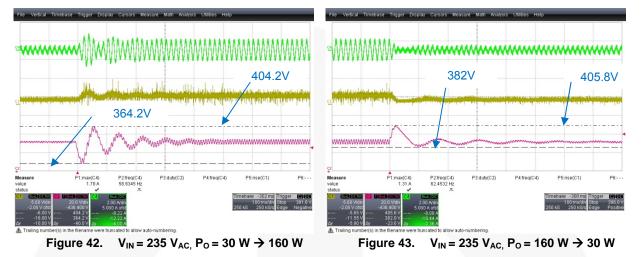



Figure 42 and Figure 43 show the PFC output voltage changed about 40 V when output power changes from 30 W to 160 W and from 160 W to 30 W at input voltage 235 V_{AC} ; CH1: V_{COMP} (5 V / div), CH2: V_{PFC} (20 V / div), CH4: I_{AC} (2 A / div), time scale: 100 ms / div.

8.11. Dynamic Performance of DC-to-DC Converter

Figure 44 shows the load transient waveform at nominal input voltage; CH2: I_{LOAD} (1 A / div), CH3: V_{OUT} (1 V_{AC} / div), CH4: I_{LLC} (2 A / div), time scale: 100 ms / div.

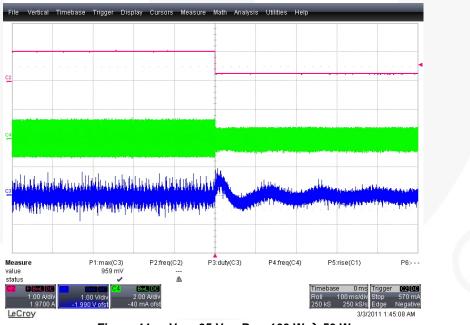


Figure 44. $V_{IN} = 95 V_{AC}, P_O = 160 W \rightarrow 50 W$

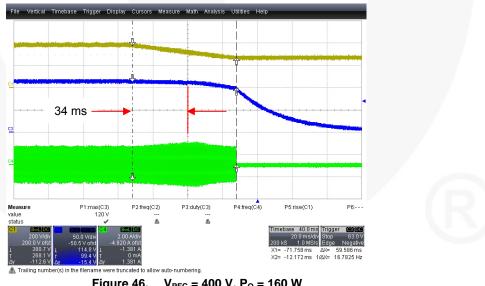
8.12. Dynamic Performance of CC / CV Control

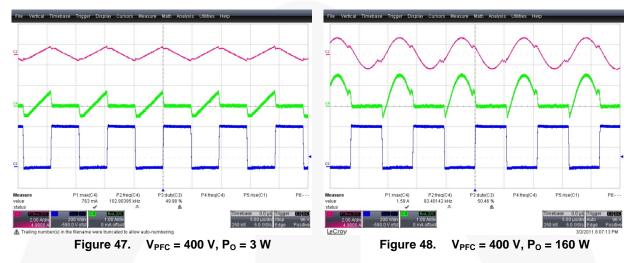
Figure 45 shows the output load current and output voltage of CC op-amp waveforms when output load is step changed; CH1:V_{OPAMP CC} (2 V / div), CH2: I_{LOAD} (500 mA / div), time scale: 500 ms / div.

Figure 45. $V_{IN} = 235 V_{AC}, I_0 = 0.24 A \rightarrow 1.4 A$

8.13. Hold-Up Time Test of DC-to-DC Converter

Figure 46 shows the hold-up time performance, when the AC power source is disconnected. The output voltage is maintained for about 34 ms and slowly decreased until FLS2100XS stops operation for about 60 ms, when the power source is disconnected; CH1: V_{PFC} (200 V / div), CH3: V_{OUT} (50 V / div), CH4: I_{LLC} (2 A / div), time scale: 20 ms / div.




Figure 46. V_{PFC} = 400 V, P_o = 160 W

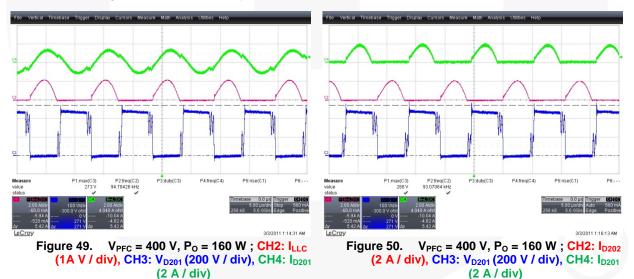

8.14. MOSFET Voltage and Current of DC-to-DC Converter

Figure 47 and Figure 48 show the resonant inductor current, low-side MOSFET current, and low-side MOSFET voltage waveforms in the primary-side at full-load and light-load; CH2: I_{LLC} (2 A / div), CH3: V_{DS_LOW} (200 V / div), CH4: I_{D_LOW} (1 A / div), time scale: 5 μ s / div.

8.15. Secondary-Side Rectifier Diode Voltage and Current

Figure 49 and Figure 50 show the resonant inductor current in the primary-side, rectifier diode current, and rectifier diode voltage waveforms in secondary-side at full-load and light-load; time scale: $5\mu s / div$.

8.16. Operating Temperature

Figure 51 and Figure 52 show the temperature-checking results on the board in minimum and maximum input voltage conditions at the rated LED load condition.

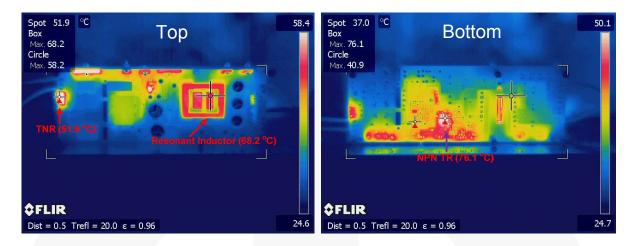


Figure 51. Board Temperature, V_{IN} = 90 V_{AC}

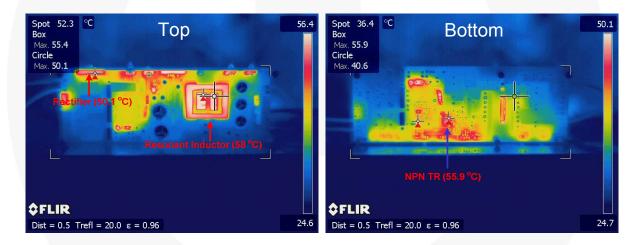


Figure 52. Board Temperature, V_{IN} = 265 V_{AC}

9. Revision History

Rev.	Date	Description
1.0.0	Nov. 2012	Initial Release

WARNING AND DISCLAIMER

Replace components on the Evaluation Board only with those parts shown on the parts list (or Bill of Materials) in the Users' Guide. Contact an authorized Fairchild representative with any questions.

The Evaluation board (or kit) is for demonstration purposes only and neither the Board nor this User's Guide constitute a sales contract or create any kind of warranty, whether express or implied, as to the applications or products involved. Fairchild warrantees that its products meet Fairchild's published specifications, but does not guarantee that its products work in any specific application. Fairchild reserves the right to make changes without notice to any products described herein to improve reliability, function, or design. Either the applicable sales contract signed by Fairchild and Buyer or, if no contract exists, Fairchild's standard Terms and Conditions on the back of Fairchild invoices, govern the terms of sale of the products described herein.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild Distributors who are listed by country on our web page cited above. Products customers by either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is combited to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC