ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

User Guide for

GreenBridge[™] Evaluation Kit for Power Over Ethernet 90 W Active Clamp Forward DC-DC Converter

MLP 4.5x5 GreenBridge™

Power 33/56 Shielded Gate PowerTrench® MOSFET

Featured Fairchild Products:

FDMQ8203

FDMS86200

FDMS8025S

FDMC2523P

Direct questions or comments about this evaluation board to: "Worldwide Direct Support"

Fairchild Semiconductor.com

© 2013 Fairchild Semiconductor Corporation

Table of Contents

1.	Introduction	3
	1.1. Description	3
2.	General Evaluation Board Specifications	4
3.	Photographs	5
4.	Setup and Test Procedure	6
	4.1. Hardware Connector Description	6
5.	Performance of Evaluation Board	7
6.	Printed Circuit Board	10
7.	Schematic	11
8.	Bill of Materials	13
9.	Revision History	15

This user guide supports the evaluation kit for GreenBridgeTM and shielded gate PowerTrench[®] MOSFET applying to a Power Device (PD) of Power over Ethernet (PoE). It should be used in conjunction with their datasheets as well as Fairchild's application notes and technical support team. Please visit Fairchild's website at <u>www.fairchildsemi.com</u>.

1. Introduction

This document describes the proposed solution for PoE++ PD that increases the delivering power up to 90 W. It is designed to rectify a polarity of DC voltage from Power Source Equipment (PSE) and then active clamp forward DC-DC converter steps down a nominal input voltage 48 V_{IN} to output voltage 3.3 V_{OUT} in 300 kHz of the switching frequency. To deliver 90 W power through a network cable, the power system is composed with four-pair architecture, which PSE uses to deliver data and power to the PD through both the spare pair and data pair in the network cable at the same time.

1.1. Description

GreenBridgeTM FDMQ8203 replaces the conventional diode bridge to reduce the power dissipation caused by the large voltage drop of a diode bridge, resulting in a lower power class power device. The small package size of MLP4.5x5 reduces PCB area and increases power density. FDMC86102 100 V shielded gate PowerTrench® MOSFET for the hot swap switch has the low conduction loss and the ruggedness due to the low $R_{DS(on)}$ and wide safe operating area (SOA). The FDMS86200 150 V shielded gate PowerTrench MOSFET reduces switching loss and conduction loss in the primary switch of the active clamp forward topology because it has low FOM ($R_{DS(on)} \times Qg$). The FDMS8025S 30 V shielded gate PowerTrench MOSFET is optimized for synchronous rectification because it has the low $R_{DS(on)}$ and outstanding body diode performance.

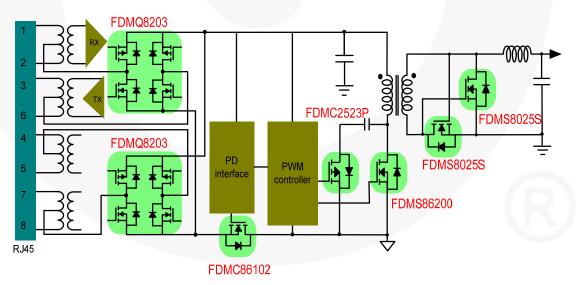


Figure 1. Power diagram

Table 1. MOSFET Parameters

Part Number	Package	Туре	BV _{DSS} (V)	R _{DS(ON)} [mΩ] at 10 V _{GS}	Qg [nC] at 10 V _{GS}	C _{oss} [pF]
				Max.	Max.	Max.
EDM00202		N-Ch	100	110	5	55
FDMQ8203	MLP 4.5x5	P-Ch	-80	190	19	65
FDMC86102	POWER33	N-Ch	100	24	13	175
FDMS86200	POWER56	N-Ch	150	18	33	203
FDMC2523P	POWER33	P-Ch	-150	1500	9	80
FDMS8025S	POWER56	N-Ch	30	2.8	34	815

2. General Evaluation Board Specifications

Description		Value	Remark
Input Volta	age Range	42 ~ 57 V _{IN}	IEEE802.3 at Standard
Output Vol	tage Range	3.3 V _{OUT}	Adjustable by R22 and R46
Switching	Frequency	300 kHz	Adjustable by R29 and R30, R31
Maximum O	utput Current	27 A	Limited by Power Component
PCB	Size	100x70 mm	FR-4 / 4 Layers
PD Co	ntroller	IEEE802.3 at PD Controller	
PWM C	PWM Controller		e Clamp Forward Controller
	42V _{IN}	>89%	
Efficiency	48V _{IN}	>90%	At Full Load (90 W)
	57V _{IN}	>90%	
	FDMQ8203	58.4°C	
	FDMC86102	56.4°C	
Temperature	FDMS86200	74°C	At Full Load (25°C Room Temperature)
	FDMC2523P	65°C	
	FDMS8025S	88.6°C	

Table 2. Summary of Features and Performance

3. Photographs

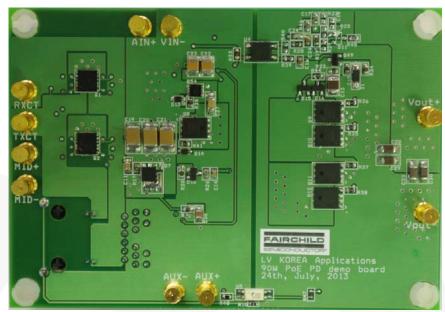


Figure 2. Top Side View of Evaluation Kit

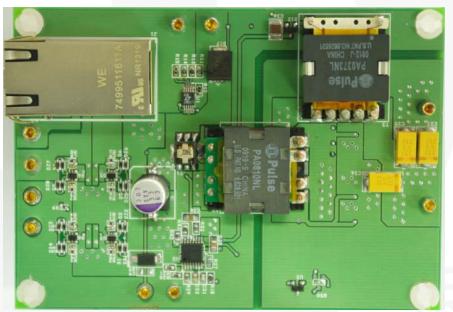


Figure 3. Bottom Side View of Evaluation Kit

4. Setup and Test Procedure

Test Point	Label	Descriptions
J6	AUX+	Measurement test point for positive AUX input voltage
J7	AUX-	Measurement test point for negative AUX input voltage
J8	VIN+	Measurement test point for rectified positive input voltage
J9	VIN-	Measurement test point for input voltage return
J10	+VOUT	Measurement test point for output voltage
J11	-VOUT	Measurement test point for output voltage return

Table 3. Test Point Descriptions

4.1. Hardware Connector Description

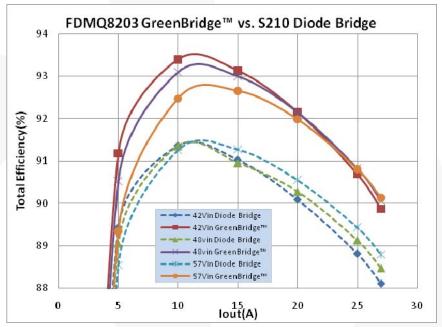
The evaluation kit is fully assembled and tested. Follow the steps below to verify board operation.

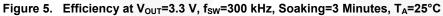
- 1. Use one of the following methods to power the evaluation kit:
 - If network connectivity is required: Connect a network cable from the evaluation kit input port RJ45 connector to the corresponding PSE Ethernet LAN connection, which provides power to the evaluation kit such as PoE++ or four-fair architecture.
 - If network connectivity is not required: Connect a -48 V DC power supply between the TXCT and RXCT; and Connect a -48 V DC power supply between the MID+ and MID- together.

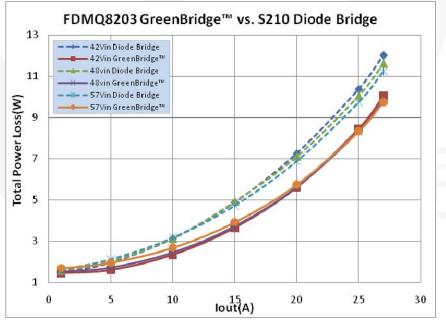
Caution: Do not turn on the power supply until all connections are completed.

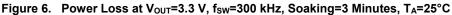
- 2. Activate the PSE power supply or turn on the external DC power supply.
- 3. Using a voltmeter, verify that the evaluation kit provides +3.3 V across the +VOUT and -VOUT pins. -VOUT is isolated from the evaluation kit's input VIN- and AUX- pins.

Figure 4. Test Setup




5. Performance of Evaluation Board


Figure 5 through Figure 9 show the measured efficiency and power loss on the evaluation board when operated under the conditions in Table 4. This board is optimized for $3.3 V_{OUT}$, 300 kHz f_{sw}, and peak 27 A I_{OUT} specifications.


Table 4. Test Conditions

V _{IN}	V _{OUT}	f _{sw}	Ι _{ουτ}	Cooling
42 ~ 57 V	3.3 V	300 kHz	0~27 A, 5 A Step, 3-minute soak time	No

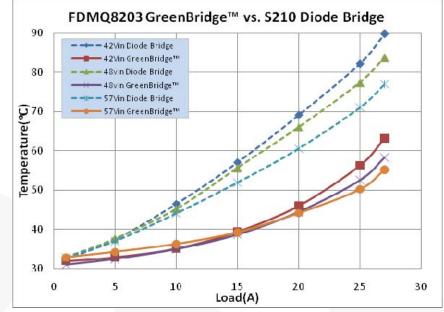


Figure 7. Thermal Performance Comparison: GreenBridge™ vs. Diode Bridge at V_{OUT}=3.3, f_{SW}= 300 kHz, Soaking=3 Minutes, T_A=25°C

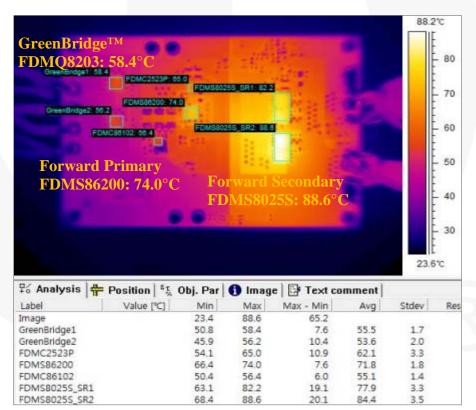
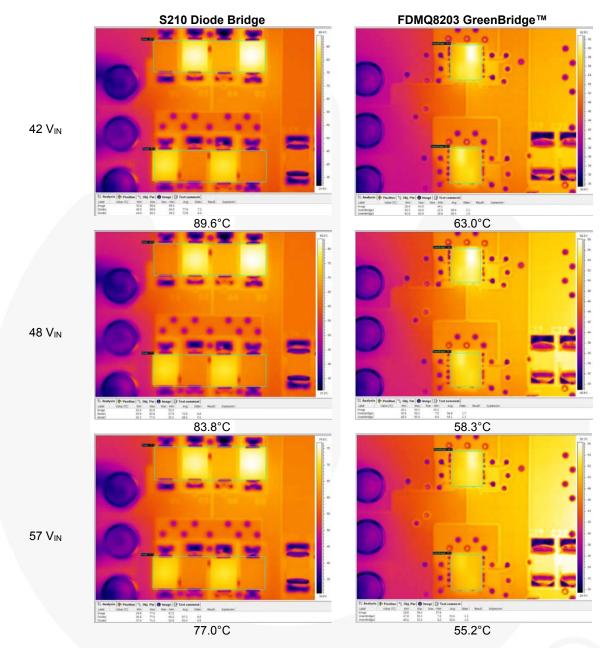
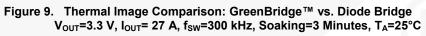




Figure 8. Top-Side Thermal Data at V_{IN} =48 V, V_{OUT} =3.3 / I_{OUT} = 27 A, f_{SW} = 300 kHz, Soaking=10 Minutes, T_A =25°C

Printed Circuit Board 6.

PCB layout (100 mm x 70 mm, 4-Layer, FR-4).

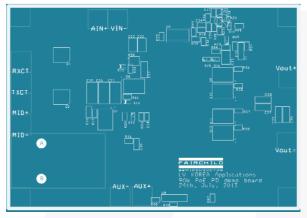


Figure 10. SST (Top Side) Layer

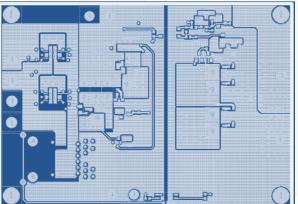
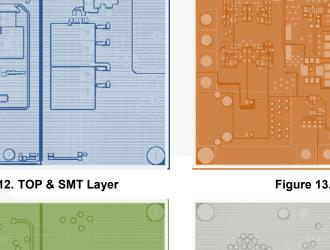



Figure 12. TOP & SMT Layer

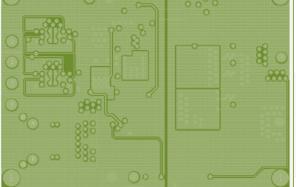
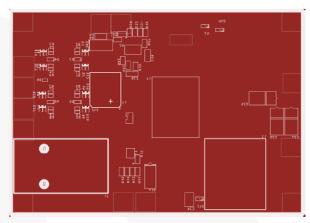



Figure 14. INNER1 (POWER) Layer

SSB (Bottom Side) Layer Figure 11.

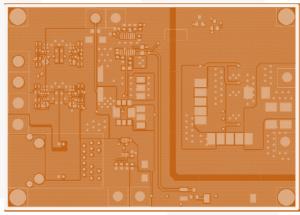


Figure 13. BOT & SMB Layer

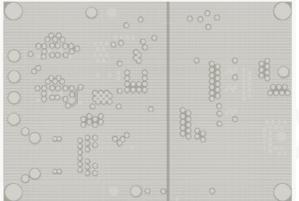


Figure 15. INNER2 (GND) Layer

7. Schematic

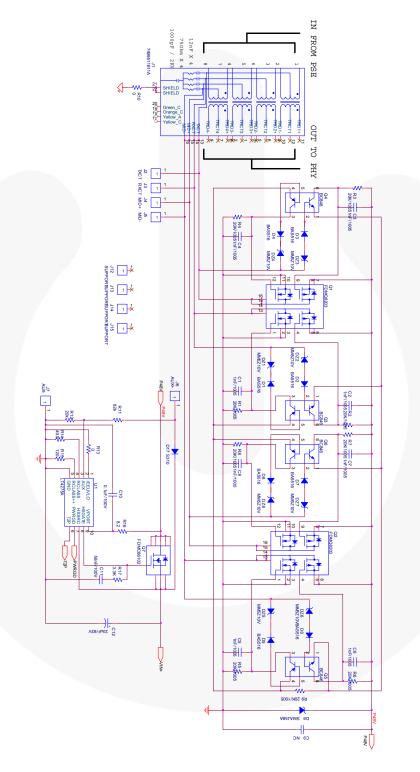
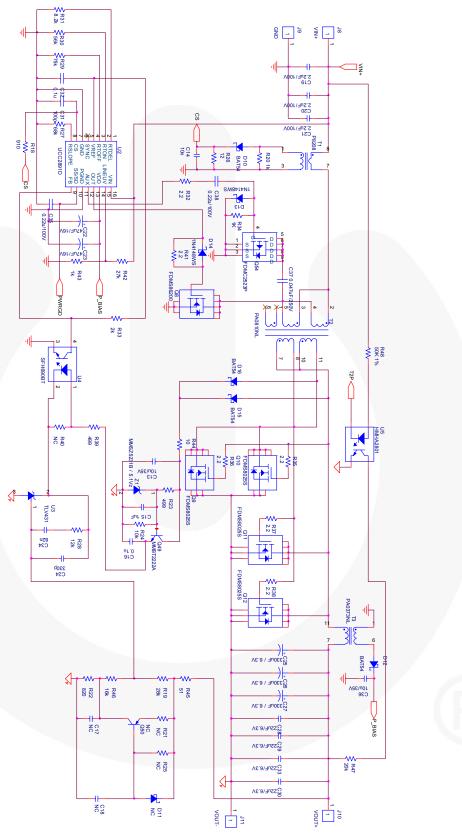
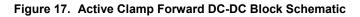




Figure 16. GreenBridge[™] & PD controller Block Schematic

8. Bill of Materials

#	Qty.	Reference	Part Name	Vendor	Comment
1	8	C1,C2,C3,C4,C5,C6,C 7,C8	1 nF / 1005	Any	1 nF / 50 V / 1005
2	8	C9,D11,C17,C18, R21,R25,R40,Q50	NC		
3	1	C10	C2012X7R2A104K	TDK	0.1 μF / 100 V / 2012
4	1	C11	VJ0805Y563KXBAT	Vishay	56 nF 100 V / 2012
5	1	C12	63SXV33M	Sanyo	33 µF / 63 V / Alu
6	2	C13,C36	CL32A106KLULNNE	SAMSUNG	10µF / 35 V / 3225
7	1	C14	10 nF / 50 V	Any	10 nF / 50 V / 1608
8	1	C15	1 µF / 50 V	Any	1 µF / 50 V / 1608
9	2	C16,C32	0.1 µF / 50 V	Any	0.1 µF / 50 V / 1608
10	3	C19,C20,C21	GRM32ER72A225KA35L	MURATA	2.2 μF / 100 V / 3225
11	2	C22,C23	GRM32ER61C476ME15L	MURATA	47 µF /16V/3225
12	1	C24	330 pF / 50 V	Any	330 pF / 50 V / 1608
13	3	C25,C26,C27	T520D337M006ATE010	Kemet	330 µF / 6.3 V / Tantalum
14	4	C28,C29,C30,C33	C3216X5R0J226M	TDK	22 µF /6.3V/3216
15	1	C31	100 pF / 50 V	Any	100 pF / 50 V / 1608
16	1	C34	82 nF / 50 V	Any	82 nF /50 V / 1608
17	2	C35,C38	C0805C224K1RACTU	Kemet	220 nF /100 V / 2012
18	1	C37	GRM31CR72E473KW03L	MURATA	47 nF /250 V / 3210
19	8	DZ1,DZ2,DZ3,DZ4,DZ 5,DZ6,DZ7,DZ8	MM5Z10V	Fairchild Semiconductor	10 V Zener Diode
20	8	D1,D2,D3,D4,D5,D6,D 7,D8	BAS516	NXP Semiconductors	SW 75 V 250 mA HS
21	1	D9	SMAJ58A	Diodes	TVS diode
22	4	D10,D12,D15,D16	BAT54	Fairchild Semiconductor	BAT54
23	2	D13,D14	1N4148WS	Fairchild Semiconductor	1N4148WS
24	1	D17	S310	Fairchild Semiconductor	S310
25	1	J1	7499511611A	Wurth Electronics	RJ45 w/ Transformer
26	9	J2,J3,J4,J5,J6,J7,J8,J 9,J10,J11	Test Pin	Any	3 mm
27	2	Q1,Q2	FDMQ8203	Fairchild Semiconductor	GreenBridge™ Quad MOSFET
28	4	Q3,Q4,Q5,Q6	BC846BPDW1T1G	ON Semiconductor	80 V Dual Complementary
29	1	Q7	FDMC86102	Fairchild Semiconductor	100 V 24 mΩ MOSFET
30	1	Q8	FDMS86200	Fairchild Semiconductor	150 V 18 mΩ MOSFET
31	4	Q9,Q10,Q11,Q12	FDMS8025S	Fairchild Semiconductor	30 V 2.8 mΩ MOSFET

#	Qty.	Reference	Part Name	Vendor	Comment
32	1	Q49	MMBT2222A	Fairchild Semiconductor	NPN Transistor
33	1	Q54	FDMC2523P	Fairchild Semiconductor	(-)150 V 1.5 Ω MOSFET
34	9	R1,R2,R3,R4,R5,R6,R 7,R8,R9	20 kΩ / 1005	Any	20 kΩ / 1005
35	2	R10,R13	0 Ω / 1608	Any	0 Ω / 1608
36	1	R11	82 kΩ / 1608	Any	82 kΩ / 1608
37	2	R12,R47	20 kΩ / 1608	Any	20 kΩ / 1608
38	1	R14	49.9 Ω / 1608	Any	49.9 Ω / 1608
39	1	R15	120 Ω / 1608	Any	120 Ω / 1608
40	1	R16	8.2 Ω / 1608	Any	8.2 Ω / 1608
41	1	R17	3.3 kΩ / 1608	Any	3.3 kΩ / 1608
42	1	R18	910 Ω / 1608	Any	910 Ω / 1608
43	1	R19	28 kΩ / 1608	Any	28 kΩ / 1608
44	3	R20,R34,R43	1 kΩ / 1608	Any	1 kΩ / 1608
45	1	R22	820 Ω / 1608	Any	820 Ω / 1608
46	2	R23,R39	499 Ω / 1608	Any	499 Ω / 1608
47	1	R24	10 kΩ / 1608	Any	10 kΩ / 1608
48	1	R26	12 Ω / 1608	Any	12 Ω / 1608
49	1	R27	68 kΩ / 1608	Any	68 kΩ / 1608
50	1	R28	12 kΩ / 1608	Any	12 kΩ / 1608
51	1	R29	75 kΩ / 1608	Any	75 kΩ / 1608
52	1	R30	56 kΩ / 1608	Any	56 kΩ / 1608
53	1	R31	8.2 kΩ / 1608	Any	8.2 kΩ / 1608
54	6	R32,R35,R36,R37,R38 ,R41	2.2 Ω / 1608	Any	2.2 Ω / 1608
55	1	R33	2 kΩ / 1608	Any	2 kΩ / 1608
56	1	R42	27 kΩ / 1608	Any	27 kΩ / 1608
57	1	R44	10 Ω / 1608	Any	10 Ω / 1608
58	1	R45	51 Ω / 1608	Any	51 Ω / 1608
59	1	R46	16 kΩ / 1608	Any	16 kΩ / 1608
60	1	R48	50 kΩ	Any	50 kΩ
61	1	T1	P8208NL	Pulse	CURRENT SENSE 2000 µH
62	1	T2	PA0810NL	Pulse	Inductor
63	1	Т3	PA0373NL	Pulse	Transformer
64	1	U1	LT4275	Linear	PoE++ PD Controller
65	1	U2	UCC2891PW	Texas Instruments	PWM Controller
66	1	U3	TLV431	Texas Instruments	Shunt Regulator
67	1	U4	SFH690BT	Vishay Semiconductors	Phototransistor
68	1	U5	HMHA2801	Fairchild Semiconductor	Opto-coupler
69	1	Z1	MMSZ5231B 5.1Vz	Fairchild Semiconductor	MMSZ5231B 5.1Vz

9. **Revision History**

Rev.	Date	Description
1.0.0	September 2013	Initial Release
1.0.1	November 2013	Fixed typo table 4 VOUT to VIN

WARNING AND DISCLAIMER

Replace components on the Evaluation Board only with those parts shown on the parts list (or Bill of Materials) in the Users' Guide. Contact an authorized Fairchild representative with any questions.

This board is intended to be used by certified professionals, in a lab environment, following proper safety procedures. Use at your own risk. The Evaluation board (or kit) is for demonstration purposes only and neither the Board nor this User's Guide constitute a sales contract or create any kind of warranty, whether express or implied, as to the applications or products involved. Fairchild warrantees that its products meet Fairchild's published specifications, but does not guarantee that its products work in any specific application. Fairchild reserves the right to make changes without notice to any products described herein to improve reliability, function, or design. Either the applicable sales contract signed by Fairchild and Buyer or; if no contract exists, Fairchild's standard Terms and Conditions on the back of Fairchild invoices, govern the terms of sale of the products described herein.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild Distributors who are listed by country on our web page cited above. Products customers by either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

EXPORT COMPLIANCE STATEMENT

These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations for the ultimate destination listed on the commercial invoice. Diversion contrary to U.S. law is prohibited.

U.S. origin products and products made with U.S. origin technology are subject to U.S Re-export laws. In the event of re-export, the user will be responsible to ensure the appropriate U.S. export regulations are followed.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC