ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

User Guide for FEBFDD850N10LD_CS001

35 W Boost Converter for LED Drive using BoostPak

Featured Fairchild Product: FDD850N10LD

Direct questions or comments about this evaluation board to: "Worldwide Direct Support"

Fairchild Semiconductor.com

Table of Contents

1. Introduction	. 3
1.1. Description	
1.2. Features	
1.3. FDD850N10LD Diagrams	. 3
2. Evaluation Board Specifications	. 4
3. Photographs	. 5
4. Printed Circuit Board	. 6
5. Schematic	. 7
6. Bill of Materials	. 8
7. Inductor Specifications	10
8. Test Conditions & Test Equipment	11
9. Performance of Evaluation Board	12
9.1. Switching Waveforms	
9.2. Output Regulation Characteristics	16
9.3. Loss Analysis	17
9.4. Efficiency	20
9.5. Temperature	
9.6. EMI.	
10. Revision History	

This user guide supports the evaluation kit for the FDD850N10LD. It should be used in conjunction with the FDD850N10LD datasheets as well as Fairchild's application notes and technical support team. Please visit Fairchild's website at <u>www.fairchildsemi.com</u>.

1. Introduction

This document describes the proposed solution for a driving of LED application using the BoostPak (FDD850N10LD) for boost topology. The input voltage range is 20.4 V - 27.6 V and there is a single-channel DC output with a constant current of 640 mA at 55 V. This document contains a general description of FDD850N10LD, the converter specification, a schematic, the bill of materials, and the typical operating characteristics.

1.1. Description

The N-channel MOSFET and NP diode are combined in one 5-lead D-Pak package produced using Fairchild Semiconductor's PowerTrench[®] process tailored to minimize onstate resistance while maintaining superior switching performance. The diode is a hyperfast rectifier with low forward-voltage drop and excellent switching performance. Using the BoostPak FDD850N10LD in low-power LED backlight driving applications results in lower profile and cost savings by reducing part count, weight, and PCB size as well as improving reliability due to lower leakage current than Schottky Barrier Diode (SBD).

1.2. Features

- Lower Conduction Resistance :
 - $R_{DS(on)} = 61 \text{ m}\Omega \text{ (Typ.)}$ at $V_{GS} = 10 \text{ V}$, $I_D = 12 \text{ A}$
 - $R_{DS(on)} = 64 \text{ m}\Omega \text{ (Typ.)}$ at $V_{GS} = 5.0 \text{ V}$, $I_D = 12 \text{ A}$
- Low Gate Charge (Typ. 22.2 nC)
- Low C_{rss} (Typ. 42 pF)
- Fast Reverse Recovery Time: t_{rr} (Typ.) = 11 ns at $I_F = 5$ A, di/dt = 200 A/µs
- Fast Switching
- 100% Avalanche Tested
- Improved dv/dt Capability
- RoHS Compliant

1.3. FDD850N10LD Diagrams

Figure 1.

Pin Descriptions

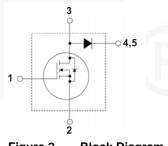


Figure 2. Block Diagram

2. Evaluation Board Specifications

All data was measured under the condition, $T_A=25^{\circ}C$.

Description	Symbol	Value	Comments
	V _{IN, MIN} .	20.4 V	
nput Voltage	V _{IN, TYP.}	24.0 V	
	V _{IN, MAX} .	27.6 V	
Switching Frequency	f _{sw}	200 kHz	R35 (kΩ)=15000/f _{sw} (kHz)
Output Voltage / Current	V _{OUT}	55 V	
Output Voltage / Current	Ι _{ουτ}	0.64 A	
Output Power	P _{OUT}	35 W	
Efficiency		> 92%	
Temperature	T _{BoostPak} T _{Inductor} T _{MOSFET}	< 65°C	
Initial Application			LED Backlight

Table 1. Summary of Features and Performance

3. Photographs

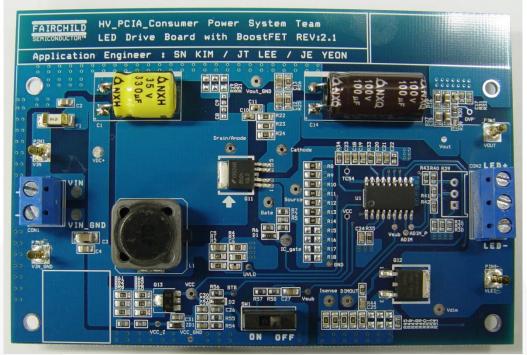


Figure 3. Top View (114 x 76 mm²)

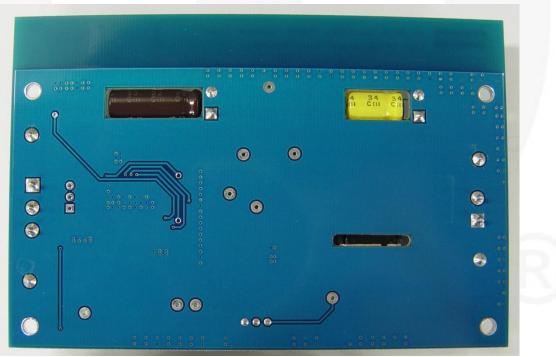
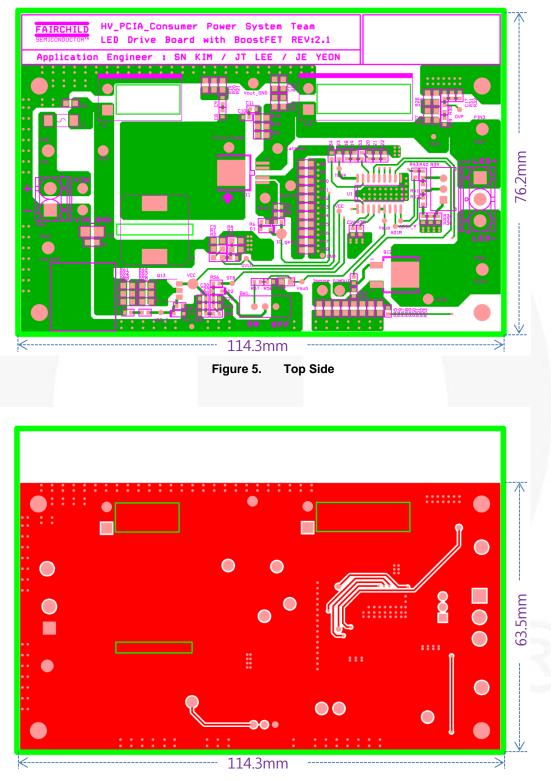
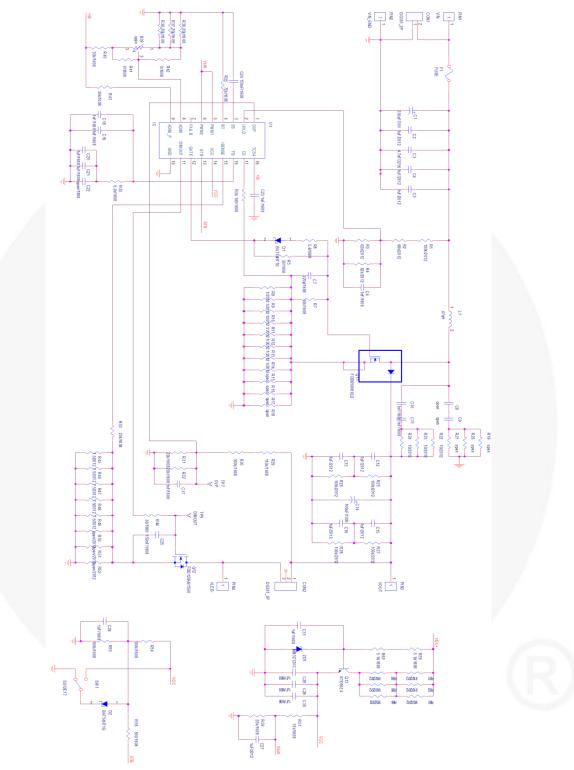



Figure 4. Bottom View (114 x 76 mm²)

4. Printed Circuit Board

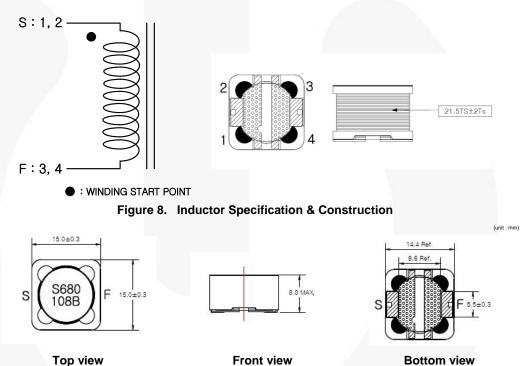


5. Schematic

6. Bill of Materials

ltem No.	Reference	Part No.	Part No. Qty. Description		Manufacturer
1	Q11	FDD850N10LD	1	BoostPak, D-Pak 5L	Fairchild Semiconductor
2	Q12	FDD120AN15A0	1	150 V / 14 A / 120 Ω, D-Pak	Fairchild Semiconductor
3	Q13	KTD1624	1	3 A / 60 V / NPN BJT, SOT-89	KEC
4	L1	DYCP1580-470	1	47μH / 0.073 Ω / 5 A, SMD Inductor	DONGYANG TELECOM
5	U1		1	Main Controller	
6	D1,D2	BAT54HT1G	2	0.2 A / 30 V Small Signal Diode, SOD-323	Fairchild Semiconductor
7	ZD1	MM3Z12VC	1	12 V / 200 mW Zener Diode, SOD- 323F	Fairchild Semiconductor
8	C1	NXH35VB330MTPRB	1	330 µF / 35 V Electrolytic Capacitor	Samyoung
9	C2, C4, C5, C12, C13, C15, C16, C27	GRM21BR71H105KA12	8	1 µF / 50 V SMD Capacitor 2012	Murata
10	C3	GRM31CR71H475KA12	1	4.7 µF / 50 V SMD Capacitor 3216	Murata
11	C6, C10, C11, C17, C18, C19	GRM188R71H102KA01	6	1 nF / 50 V SMD Capacitor 1608	Murata
12	C7	GRM188R71E221KA01	1	220 pF / 25 V SMD Capacitor 1608	Murata
13	C14	NXQ100VB100MTPRB	1	100 μ F / 100 V Electrolytic Capacitor	Samyoung
14	C20, C21, C23, C26, C28, C29, C30, C31	GRM188R71E105KA12	8	1 µF / 25 V SMD Capacitor 1608	Murata
15	C24, C25	GRM188R71E154KA01	2	150 nF / 25 V SMD Capacitor 1608	Murata
16	R1, R25, R26, R27, R28	MCR10ERTJ104	5	100 kΩ SMD Resistor 2012	Rhom
17	R2	MCR10ERTJ683	1	68 kΩ SMD Resistor 2012	Rhom
18	R3, R4	MCR10ERTJ623	2	62 kΩ SMD Resistor 2012	Rhom
19	R5, R44	MCR03ERTF30R0	2	30 Ω SMD Resistor 1608	Rhom
20	R6	MCR03ERTJ5R6	1	5.6 Ω SMD Resistor 1608	Rhom
21	R7	MCR03ERTF1002	1	10 kΩ SMD Resistor 1608	Rhom
22	R8, R9, R10, R11, R12, R13, R14	MCR10ERTJ1R0	7	1 Ω SMD Resistor 2012	Rhom
23	R22, R23, R24	MCR10ERTJ100	3	10 Ω SMD Resistor 2012	Rhom
24	R29	MCR03ERTF1103	1	110 kΩ SMD Resistor 1608	Rhom
25	R30, R54, R55	MCR03ERTF1003	3	100 kΩ SMD Resistor 1608	Rhom
26	R31, R32, R36, R37, R38, R53, R58	MCR03ERTF2002	7	20 kΩ SMD Resistor 1608	Rhom
27	R33	MCR03ERTF6201	1	6.2 kΩ SMD Resistor 1608	Rhom
28	R34, R56	MCR03ERTF1000	2	100 Ω SMD Resistor 1608	Rhom
29	R35	MCR03ERTF7502	1	75 kΩ SMD Resistor 1608	Rhom

ltem No.	Reference	Part No.	Qty.	Description	Manufacturer
30	R40, R43	MCR03ERTF3002	2	30 kΩ SMD Resistor 1608	Rhom
31	R41, R42	MCR03ERTF0000	2	0 Ω SMD Resistor 1608	Rhom
32	R45, R46, R47, R48, R49	MCR10ERTJ7R5	5	7.5 Ω SMD Resistor 2012	Rhom
33	R57	R57 MCR03ERTF5102		51 kΩ SMD Resistor 1608	Rhom
34	R59, R60	MCR03ERTF5101	2	5.1 kΩ SMD Resistor 1608	Rhom
35	R61, R62, R63, R64, R65, R66	MCR10ERTJ911	6	910 Ω SMD Resistor 2012	Rhom
36	CON1	DG301_5.0_2P	1	2-Pin Terminal Block for Vin	DEGSON ELECTRONICS
37	CON2	DG301_5.0_3P	1	3-Pin Terminal Block for LED	DEGSON ELECTRONICS
38	SW1	SS12E17	1	1P2T Switch	VIMEX
39	F1	F1		I _F =4 A	



7. **Inductor Specifications**

Manufacturer: DONGYANG TELECOM CO., LTD.

HEAD OFFICE & FACTORY	942-5, Dohwa-Dong, Nam-gu, Incheon, Korea	TEL : 032-584-0100 FAX : 032-584-0101
China Factory	No.28 Feng Huang Street, Weifang Shandong, CHINA	TEL : 86-536-790-2048 FAX : 86-536-760-2046
Thailand Factory	3/3 Moo. 1 T. Napradoo A.Phantong Chonburi	TEL : 66-81-933-5740 FAX : 66-38-451-573

Part No: DYCP1580-470

Dimension Specification Figure 9.

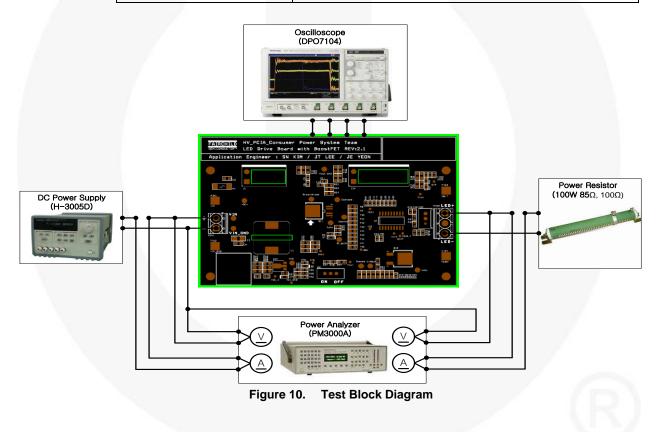
Bottom view

Table 2. Winding Specifications

No.	Winding	Pin (S → F)	Wire	Turns	Winding Method	
P1	$ \begin{array}{c} 1 \rightarrow 3 \\ 2 \rightarrow 4 \end{array} $		0.35 Φ * 2	04 5 . 0.0	Colonoid Winding	
P1		0.35 Φ * 2	21.5 ± 2.0	Solenoid Winding		

Table 3. Electrical Characteristics

	Pin	Specification
Inductance		47.0 µH
Resistance	1, 2 – 3, 4	0.073 Ω
Maximum Current		5.0 A



8. Test Conditions & Test Equipment

Evaluation Board #	FEBFDD850N10LD_CS001
Test Date	
Test Temperature	T _A =25°C
Test Equipments	DC Power Supply: H-3005D by FinePower Power Analyzer: PM3000A by Voltech Load: 100 W 100 ΩJ Adjustable Resistor Oscilloscope: DPO7104 by Tectronix Passive voltage probe - P6139 Differential high voltage probe - P5205 Current probe : TCP0030 Thermometer: Therma CAM SC640 by FLIR SYSTEMS

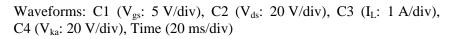
Table 4. Test Conditions & Test Equipment

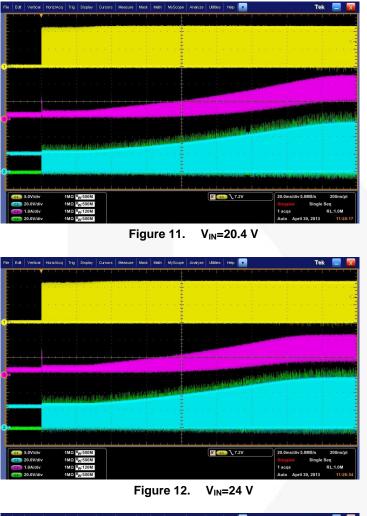
9. Performance of Evaluation Board

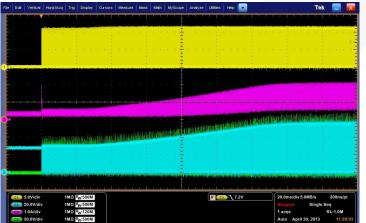
9.1. Switching Waveforms

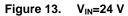
Test Conditions

Connect the power resistor (85 Ω) to CON2 and measure the voltage and current stress on the BoostPak (FDD850N10LD) under the specified conditions below.

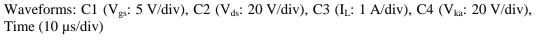

			In	Input Voltage (V)				
			20.4	24	27.6	Remarks		
	MOSFET	V _{ds} (V)	62.4	62.4	63.2			
Power On	Diode	V _{ca} (V)	69.6	69.6	68.8			
Power On	Inductor	I _{L_max} (A)	2.56	2.36	2.20			
	maucion	$I_{L_{min}}(A)$	0.00	0.08	0.04			
	MOSFET	V _{ds} (V)	64.0	64.0	64.0			
Normal	Diode	V _{ca} (V)	76.8	74.4	72.0			
Normai	Inductor	I _{L_max} (A)	2.60	2.36	2.20			
1	Inductor	$I_{L_{min}}(A)$	0.96	0.68	0.48			
	MOSFET	V _{ds} (V)	64.8	63.2	63.2			
Power Off	Diode	V _{ca} (V)	75.2	73.6	72.0			
Fower On	Inductor	I _{L_max} (A)	2.68	2.48	2.24			
	mauctor	I _{L_min} (A)	-0.20	-0.20	-0.24			


Table 5. Test Result





9.1.1. Power On



9.1.2. Normal

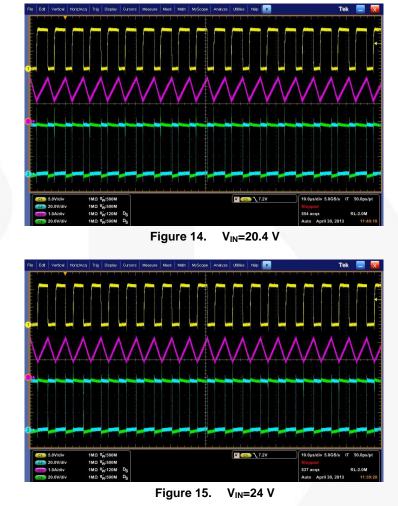


Figure 16. V_{IN}=24 V

9.1.3. Power Off

Waveforms: C1 (V_{gs} : 5 V/div), C2 (V_{ds} : 20 V/div), C3 (I_L : 1 A/div), C4 (V_{ka} : 20 V/div), Time (50 ms/div)



Figure 19. V_{IN}=24 V

9.2. Output Regulation Characteristics

Test Conditions

Connect the power resistor (85 Ω , 100 Ω) to the CON2 and measure the output voltage and current on the BoostPak (FDD850N10LD) after 30 minutes aging.

1	Table 6. Test Results									
	Input	P _{out} =35 W		P _{out} =45 W		Domorko				
	Voltage (V)	V _{OUT} (V)	I _{оит} (А)	V _{оит} (V)	I _{оит} (А)	Remarks				
	20.4	55.39	0.639	64.83	0.640					
ć	24.0	55.42	0.639	64.97	0.639					
	27.6	55.43	0.639	65.04	0.642					

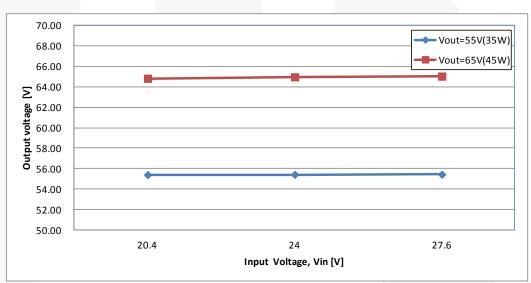


Figure 20. Output Regulation Characteristics

9.3. Loss Analysis

Test Conditions

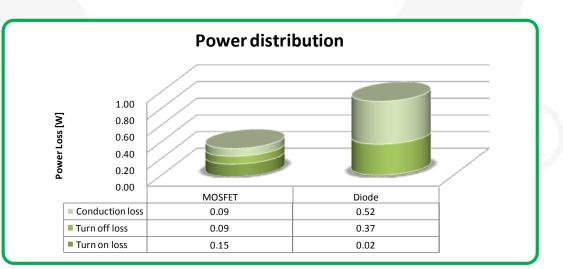

Connect the power resistor (85 Ω) to the CON2 and measure the output voltage and current on the BoostPak (FDD850N10LD) after 30 minutes aging.

Table 7.	Test Results

Input		MOSFET			Diode				Total
Voltage (V)	P _{on} (W)	P _{OFF} (W)	P _{COND} (W)	Р _{тот} (W)	P _{oN} (W)	P _{OFF} (W)	P _{COND} (W)	Р _{тот} (W)	P _D (W)
20.4	0.17	0.11	0.14	0.42	0.02	0.38	0.53	0.93	1.34
24	0.15	0.09	0.09	0.34	0.02	0.37	0.52	0.91	1.24
27.6	0.13	0.09	0.07	0.28	0.02	0.36	0.52	0.90	1.18

Figure 21. Loss Analysis for V_{IN} =24 V

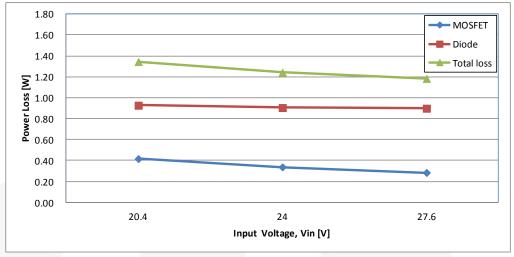
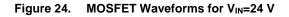


Figure 23. Loss Comparison for Input Voltage, V_{IN}

Waveforms: C1 (V_{gs}: 5 V/div), C2 (V_{ds}: 20 V/div), C3 (I_d: 1 A/div)


4-Period Waveforms, Time (2 µs/div)

Conduction Waveforms, Time (500 ns/div)

Turn-On Waveforms, Time (50 ns/div)


Turn-Off Waveforms, Time (50 ns/div)

Waveforms : C1(V_{gs}:5V/div), C4(V_{ak}:20V/div), M2(I_a:1A/div)

4-Period Waveforms, Time (2 µs/div)

Conduction Waveforms, Time (500 ns/div)

Turn-On Waveforms, Time (50 ns/div) Figure 25. Di

 $Turn\mbox{-}Off\ Waveforms,\ Time\ (50\ ns/div)$ Diode Waveforms for $V_{IN}\mbox{=}24\ V$

9.4. Efficiency

Test Conditions

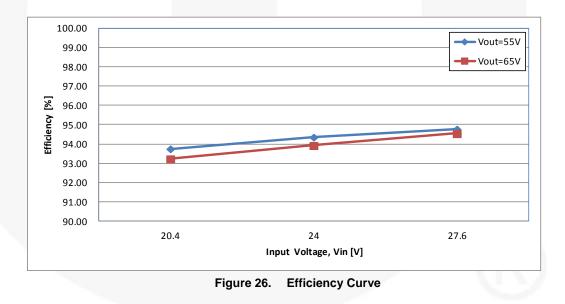
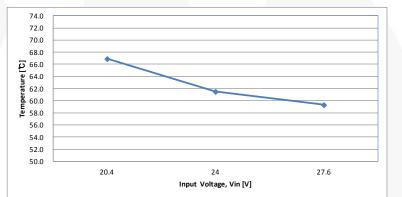

Connect the power resistor (85 Ω , 100 Ω) to the CON2 and measure the output voltage and current on the BoostPak (FDD850N10LD) after 30 minutes aging.

Table 8. Test Results of V_{OUT} = 55 V (35 W)

Input Voltage	Input Power	Output Power	Efficiency	Remark
20.4 V	37.75 W	35.39 W	93.75%	
24.0 V	37.54 W	35.42 W	94.36%	
27.6 V	37.38 W	35.43 W	94.78%	

Table 9. Test Results of V_{OUT} = 65 V (45 W)

Input Voltage	Input Power	Output Power	Efficiency	Remark
20.4 V	44.48 W	41.47 W	93.23%	
24.0 V	44.20 W	41.52 W	93.92%	
27.6 V	44.14 W	41.73 W	94.54%	


Temperature 9.5.

Test Conditions

Connect the power resistor (85 Ω) to the CON2 and measure the saturated temperature.

	V _{IN} =20.4 V	V _{IN} =24 V	V _{IN} =27.6 V	Remark
BoostPak (Q11)	66.9°C	61.5°C	59.3°C	
Inductor	63.7°C	59.6°C	56.6°C	
R8~R14	57.6°C	52.8°C	49.8°C	PKG Top
MOSFET (Q12)	50.8°C	50.0°C	52.1°C	
R45~R49	58.9°C	57.3°C	60°C	

Table 10. Test Result of $V_{OUT} = 55 V (35 W)$

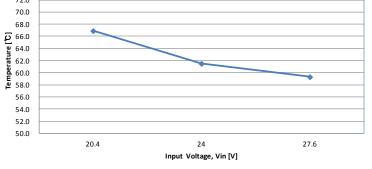


Figure 27. Temperature Curve

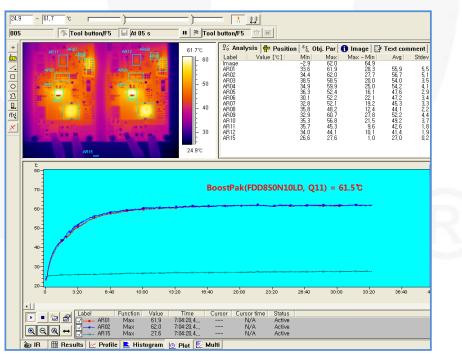


Figure 28. IR Image for V_{IN}=24 V

9.6. EMI

Test Conditions

Frequency Sub-Range: 30 MHz ~ 1000 MHz

Load is five strings of LEDs.

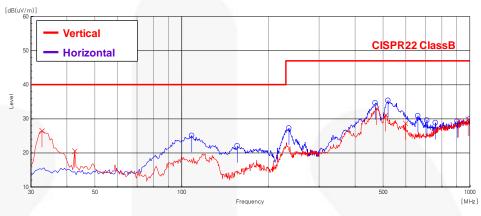


Figure 29. Radiated Emissions: V_{IN}=24 V

10. Revision History

Rev.	Date	Description
1.0.0	May 2013	Initial Release

WARNING AND DISCLAIMER

Replace components on the Evaluation Board only with those parts shown on the parts list (or Bill of Materials) in the Users' Guide. Contact an authorized Fairchild representative with any questions.

This board is intended to be used by certified professionals, in a lab environment, following proper safety procedures. Use at your own risk. The Evaluation board (or kit) is for demonstration purposes only and neither the Board nor this User's Guide constitute a sales contract or create any kind of warranty, whether express or implied, as to the applications or products involved. Fairchild warrantees that its products meet Fairchild's published specifications, but does not guarantee that its products work in any specific application. Fairchild reserves the right to make changes without notice to any products described herein to improve reliability, function, or design. Either the applicable sales contract signed by Fairchild and Buyer or, if no contract exists, Fairchild's standard Terms and Conditions on the back of Fairchild invoices, govern the terms of sale of the products described herein.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild Distributors who are listed by country on our web page cited above. Products customers by either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

EXPORT COMPLIANCE STATEMENT

These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations for the ultimate destination listed on the commercial invoice. Diversion contrary to U.S. law is prohibited.

U.S. origin products and products made with U.S. origin technology are subject to U.S Re-export laws. In the event of re-export, the user will be responsible to ensure the appropriate U.S. export regulations are followed.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC