

Document #:FPCN23658ZS1 Issue Date:28 Mar 2023

Title of Change:	Update of FPCN23658ZS (Wafer fab transfer to onsemi Gresham, Oregon USA from onsemi Fab2, Oudenaarde, Belgium related to Fab2 sale) – Removed update of IOUT_VCC1 max value
Proposed Changed Material First Ship Date:	01 Sep 2022 or earlier if approved by customer
Current Material Last Order Date:	31 Mar 2022 #PD24322Z Orders received after the Current Material Last Order Date expiration are to be considered as orders for new changed material as described in this PCN. Orders for current (unchanged) material after this date will be per mutual agreement and current material inventory availability.
Current Material Last Delivery Date:	31 Aug 2022 The Current Material Last Delivery Date may be subject to change based on build and depletion of the current (unchanged) material inventory
Product Category:	Active components – Integrated circuits
Contact information:	Contact your local onsemi Sales Office or Jelle.Genne@onsemi.com
PCN Samples Contact:	Contact your local onsemi Sales Office to place sample order. Sample requests are to be submitted no later than 45 days after publication of this change notification. Samples delivery timing will be subject to request date, sample quantity and special customer packing/label requirements.
Sample Availability Date:	01 Apr 2023
PPAP Availability Date:	01 Apr 2023
Additional Reliability Data:	Contact your local onsemi Sales Office or Catherine.DeKeukeleire@onsemi.com
Type of Notification:	This is a Final Product/Process Change Notification (FPCN) sent to customers. The change will be implemented at 'Proposed Change Material First Ship Date' in compliance to J-STD-46 or ZVEI, or earlier upon customer approval, or per our signed agreements. onsemi will consider this proposed change and it's conditions acceptable, unless an inquiry is made in writing within 45 days of delivery of this notice. To do so, contact PCN.Support@onsemi.com.
Change Category	
Category	Type of Change
Process - Wafer Production	Move of all or part of wafer fab to a different location/site/subcontractor, New wafer diameter
Equipment	Production from a new equipment/tool which uses the same basic technology (replacement equipment or extension of existing equipment pool) without change of process.
Data Sheet	Change of datasheet parameters/electrical specification (min./max./typ. values) and/or AC/DC specification

Description and Purpose:

This is an update of FPCN23658ZS.

The following request has been removed from this FPCN (see below updated slides):
Update IOUT_VCC1 max value and update conditions for other parameters for accordingly (Table 5 – VCC1 REGULATOR)

The change description and table remain unchanged.

Wafer fab transfer to onsemi Gresham, Oregon USA from onsemi Fab2, Oudenaarde, Belgium related to Fab2 sale. This change also includes data sheet updates.

TEM001794 Rev. G Page 1 of 9

Document #:FPCN23658ZS1 Issue Date:28 Mar 2023

	Before Change Description	After Change Description
Fab Site transfer	onsemi Fab2, Oudenaarde, Belgium 6inch	onsemi Gresham, Oregon USA 8inch
Data Sheet	Revision 3	Revision 4 (See changes below)

Data Sheet updates (1/11)

Table 5 – V_{BB} POR levels:

- Split symbol to distinguish $V_{\mbox{\footnotesize BB}}$ POR rising and falling levels
- Update limits of V_{BB PORL} to reflect actual device performance
- Remove V_{BB_POR_HYST} from table
- Split $V_{BB\ WARN}$ for rising and falling V_{BB} and add $V_{BB\ WARN\ HYST}$

Table 5. ELECTRICAL CHARACTERISTICS $V_{BB} = 5.5 \text{ V to } 42 \text{ V; C}_{IN_VBB} = 100 \text{ nF; } C_{OUT_VCC1} = 4.7 \text{ μF; } C_{OUT_VCC2} = 4.7 \text{ μF; } for typical values } T_A = 25 ^{\circ}\text{C, } for min/max values } T_J = -40 ^{\circ}\text{C to } 150 ^{\circ}\text{C; } R_{LT} = 60 \Omega; unless otherwise noted.$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{BB} SUPPLY						
V _{BB_POR}	V _{BB} POR level for entering Power-	V _{BB} rising	4.5	4.8	5	V
	up/Shutdown mode	V _{BB} falling	4.4	4.65	4.9	V
V _{BB_PORH}	V _{BB} POR level for entering Power- up/S hutdown mode	V _{BB} rising	4.5	4.8	5	V
V _{BB_PORL}	V _{BB} POR level for entering Power- up/S hutdown mode	V _{BB} falling	3.0	3.5	4.0	V
¥ _{BB_POR_HYST}	V _{BB} _POR hysteresis		120	150	180	mV
V _{BB_POR_PD}	propagation delay of the V _{BB} power-on-reset		5.0	15	25	μS
V _{BB_WARN}	V _{BB} warning level		6		7	¥
VBB_WARN	V _{BB} warning level	V _{BB} rising	6.0	6.65	7.0	V
		V _{BB} falling	6.0	6.5	7.0	V
VBB_WARN_HYST	VBB warning level hysteresis		120	150	180	mV

Public Information

Confidential © onsemi 2021

TEM001794 Rev. G Page 2 of 9

Document #:FPCN23658ZS1 Issue Date: 28 Mar 2023

Data Sheet updates (2/11)

Table 5 – I_{BB STANDBY}:

• Update max value for second condition from [140 μ A + 1.05x I_{VCC1}] to [180 μ A + 1.05x I_{VCC1}]

Table 5. ELECTRICAL CHARACTERISTICS

V_{BB} = 5.5 V to 42 V; C_{IN_VBB} = 100 nF; C_{OUT_VCC1} = 4.7 μF, C_{OUT_VCC2} = 4.7 μF; for typical values T_A = 25°C, for min/max values T_J = -40°C to 150°C; R_{LT} = 60Ω ; unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{BB} SUPPLY						
IBB_STANDBY	V _{BB} current consumption in Standby mode	V_{BB} = 14 V; $T_J \le 85^{\circ}$ C WAKE pin floating; INH off; No SPI activity; No CAN activity No V _{CC1} load (Note 15)		60	90	μΑ
		WAKE pin floating No CAN activity	30 µA +1.01x IVCC1	62 µA +1.03x IVCC1	180 μA +1.05x	
BB_NORMAL	V _{BB} current consumption in Normal mode	Recessive on CAN. No V _{CC1} load	3	7	18	mA
		Dominant on CAN transmitted. R _L = 60 Q. No V _{CC1} load	20	53	75	mA

Public Information Confidential © onsemi 2021 onsemi

onsemi

Min Typ Max Unit

Data Sheet updates (3/11)

Table 5 – V_{CC1} undervoltage levels:

- · Split into undervoltage detection and recovery thresholds. Previously only detection levels were reported
- · Update typical values for undervoltage detection thresholds
- · Update the limits for the undervoltage detection hysteresis

Table 5. ELECTRICAL CHARACTERISTICS $V_{BB} = 5.5 \text{ V to } 42 \text{ V; } C_{IN_VBB} = 100 \text{ nF; } C_{OUT_VCC1} = 4.7 \text{ } \mu\text{F; } C_{OUT_VCC2} = 4.7 \text{ } \mu\text{F; } for typical values } T_A = 25^{\circ}\text{C, } for min/max values } T_J = -40^{\circ}\text{C to } 150^{\circ}\text{C; } R_{LT} = 60 \text{ } \Omega\text{; } unless \text{ otherwise n oted.}$

Conditions

Symbol	Parameter	Conditions	WIIII	тур	wax	Unit
V _{CC1} REGULATO	DR .					
¥cc1_uvo	Vcc1 undervoltage level 0	SPI code = 000	91.5	93.5	95.5	%-V _{CC}
V _{661_UV1}	V _{GC1} undervoltage level 1	SPI code = 001	87.1	89.1	91.1	%Vcc
V _{CC1_UV2}	V _{CC1} undervoltage level 2	SPI code = 010	82.7	84.7	86.7	%V _{CC}
V _{CC1_UV3}	V _{GC4} undervoltage level 3	SPI code = 011	78.3	80.3	82.3	%Vcc
V _{CC1_UV4}	V _{GC1} undervoltage level 4	SPI code = 100	73.9	75.9	77.9	%Vec
¥ _{CC1_UV5}	V _{GC4} .undervoltage level 5	SPI code = 101	69.5	71.5	73.5	%√cc
¥cc1_uv8	Vcc1 undervoltage level 6	SPI code = 110	65.1	67.1	69.1	%√cc
¥ _{661_UV7}	V _{CC1} undervoltage level 7	SPI code = 111	61.6	63.6	65.6	%√cc
V _{CC1 UVD0}		Register2.VCC 1_UV[2:0] = 000	91.5	93.1	95.5	% Vcc
V _{CC1 UVD1}		Register2.VCC 1_UV[2:0] = 001	87.1	88.7	91.1	% V _{cc}
V _{CC1 UVD2}		Register2.VCC1_UV[2:0] = 010	82.7	84.3	86.7	% V _{cc}
V _{CC1 UVD8}	V _{CCI} Undervoltage detection	Register2.VCC1_UV[2:0] = 011	78.3	79.9	82.3	% Vcc
V _{CC1 UVD4}	thresholds	Register2.VCC1_UV[2:0] = 100	73.9	75.5	77.9	% Vcc
V _{CC1_UVD6}		Register2.VCC1_UV[2:0] = 101	69.5	71.1	73.5	% Vcc
V _{CC1_UVD6}		Register2.VCC1_UV[2:0] = 110	65.1	66.7	69.1	% V _{cc}
V _{CC1_UVD7}		Register2.VCC1_UV[2:0] = 111	61.6	63.2	65.6	% Vcc
V _{CC1_UVR0}		Register2.VCC1_UV[2:0] = 000	93.0	95.5	97.5	% V _{CC}
V _{CC1_UVR1}		Register2.VCC 1_UV[2:0] = 001	88.7	91.1	93.2	% V _{CC}
V _{CC1_UVR2}		Register2.VCC1_UV[2:0] = 010	84.5	86.7	89.0	% V _{cc}
V _{CC1_UVR3}	V _{CCI} Undervoltage recovery	Register2.VCC 1_UV[2:0] = 011	80.2	82.3	84.7	% V _{cc}
V _{CC1_UVR4}	thresholds	Register2.VCC 1_UV[2:0] = 100	75.9	77.9	80.4	% Vcc
V _{CC1_UVRS}		Register2.VCC 1_UV[2:0] = 101	71.7	73.5	76.2	% V _{cc}
V _{CC1_UVR6}		Register2.VCC1_UV[2:0] = 110	67.5	69.1	72.0	% Vcc
V _{CC1_UVR7}	1	Register2.VCC1_UV[2:0] = 111	63.5	65.6	68.0	% V _{cc}
V _{CC1} UV HYST	Undervoltage detection hysteresis	V _{CC1 UVRx} - V _{CC1 UVDx} ; "x" = 0 to 7	80 100	125	170 150	mV

Public Information

Confidential © onsemi 2021

TEM001794 Rev. G Page 3 of 9

Document #:FPCN23658ZS1 Issue Date: 28 Mar 2023

Data Sheet updates (4/11)

Table 5 – Mode control and watchdog:

- $\bullet \quad \text{Add min and maximum values for } t_{\text{VCC1_STARTUP}}, t_{\text{VCC2_STARTUP}}, t_{\text{RESET}}, t_{\text{2ND_RESET}} \text{ and } \underline{t_{\text{IRQ_RESPONSE}}} \\$
- $\bullet \quad \text{Update symbols } t_{\text{VCC1_STARTUP}}, t_{\text{VCC2_STARTUP}}, t_{\text{RESET}}, t_{\text{2ND_RESET}} \, \text{and} \, \, t_{\text{FAILSAFE}} \\$

Table 5. ELECTRICAL CHARACTERISTICS V_{BB} = 5.5 V to 42 V; C_{IN_VBB} = 100 nF; C_{OUT_VCC1} = 4.7 μF, C_{OUT_VCC2} = 4.7 μF; for typical values T_A = 25°C, for min/max values T_J = -40°C to 150°C; R_{LT} = 60Ω ; unless otherwise noted.

Symbol	Parameter	Con ditions	Min	Тур	Max	Unit
MODE CONTROL A	AND WATCHDOG - DYNAMIC ELECTR	RICAL CHARACTERISTICS				
t _{WD_tol}	Tolerance of watchdog timing		-10		+10	%
twD_tol_LP	Tolerance of timer	Standby or Sleep mode	-20		+20	%
tvcc1_startup	V _{CC1} start-up timeout		180	200	225	ms
tVCC2_Startup tVCC2_STARTUP	V _{CC2} start-up timeout		180	200	225	ms
tvcc1_Reset treset	Reset low-level duration	Reset mode	1.8	2	2.25	ms
tVCC1_2nd_Reset t2ND_RESET	Reset low-level duration	2 nd Reset mode	3.6	4	4.5	ms
t _{FAILSAFE}	Fail-Safe mode timeout		1.80	2.0	2.25	s
t _{IRQ_Response}	Timeout for IRQ service		180	200	225	ms

Confidential © onsemi 2021

onsemi

Sheet updates (5/11)

Table 5 REGULATOR:

- Update I_{OUT} nax value and update conditions for other parameters for accord
- Remove V_{OUT_VCC} MmA load condition

Page 2 - Features: Upda. scription V_{CC1} low-drop voltage regulator

Table 5. ELECTRICAL Cru VPB = 10 RISTICS

V_{BB} = 5.5 V to 42 V; C_{IN_VBB} = 10c -40°C to 150°C; R_{I T} = 60 Ω; unless ot? T_A = 25°C, for min/max values T_J =

Symbol	Parameter	Cond	Min	Тур	Max	Unit
V _{CC1} REGULATO	R			•		
V _{OUT_VCC1}	V _{CC1} output voltage	√25 mA	4.9	5.0	5.1	V
		al 1 h	4.9	5.0	5.1	V
V _{OUT_VCC1_DYN}	V _{CC1} dynamic range	Load step ≤ 100	4.5		5.5	V
I _{OUT_VCC1}	V _{CC1} external DC		0		150 125	mA
I _{LIM_VCC1}	Vcc1 mation			260	310	mA
ISINK_VCC1	king capability	V _{CC1} on; V _{BB} > 6 V; V _{CC1} forced to 5.5 V	0.1		1	mA
Co	stabilizing capacitor on Vcc1 pin	(Notes 10, 11)	2.2	4.7		uF
JUT_VCC1	ESR of the V _{CC1} stabilizing capacitor				1	
DO_VCC1_reg	minimal drop in regulation	V _{BB} > 5.5 V			0.5	
V _{DO_VCC1_lin}	maximal drop in linear mode	Icc1 = 150 125 mA, VBB < 5.5 V		0.25	0.5	V
REG _{LOAD VCC1}	load regulation	Load 0-450 125 mA		10	30	mV

Public Information

Confidential © onsemi 2021

TEM001794 Rev. G Page 4 of 9

Document #:FPCN23658ZS1 Issue Date:28 Mar 2023

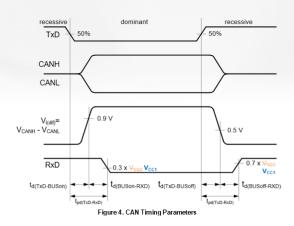
Data Sheet updates (5/11) UPDATE

Table 5 – V_{CC1} REGULATOR:

Remove V_{OUT VCC1} for 1mA load condition (redundant parameter)

Table 5. ELECTRICAL CHARACTERISTICS

 V_{BB} = 5.5 V to 42 V; C_{IN_VBB} = 100 nF; C_{OUT_VCC1} = 4.7 μF, C_{OUT_VCC2} = 4.7 μF; for typical values T_{A} = 25°C, for min/max values T_{J} = -40°C to 150°C; R_{LT} = 60 Ω ; unless otherwise noted.


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC1} REGULATOR						
Vout_vcc1	V _{CC1} output voltage	Load ≤ 150 mA	4.9	5.0	5.1	V
		Load 1 mA	4.9	5.0	5.1	¥

Public Information Confidential © onsemi 2021

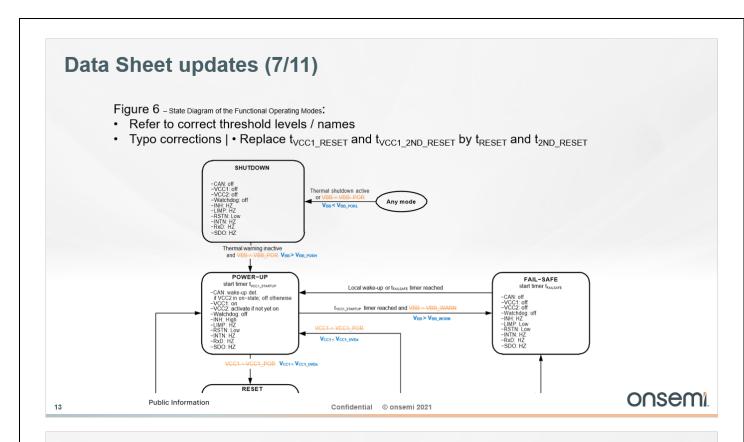
Data Sheet updates (6/11)

Figure 4 - CAN Timing parameters:

Correct V_{CC2} to V_{CC1}

Public Information

Confidential © onsemi 2021


onsemi

TEM001794 Rev. G Page 5 of 9

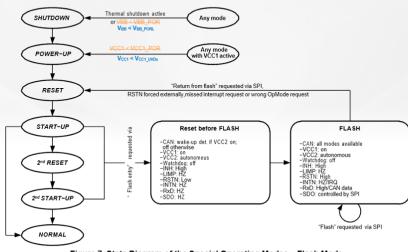
onsemi

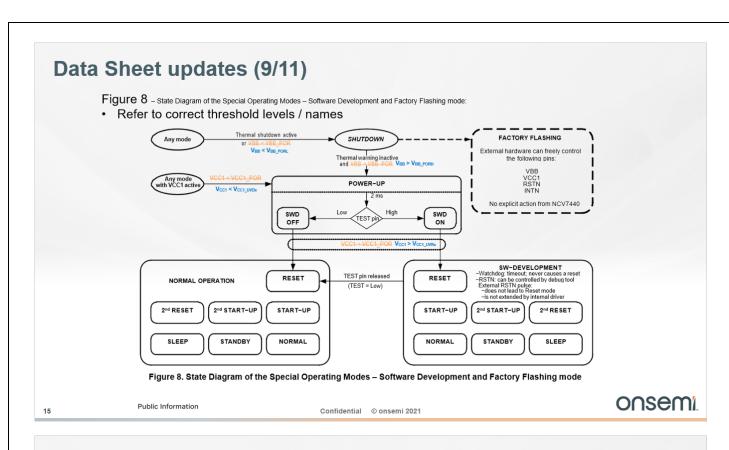
Document #:FPCN23658ZS1 Issue Date:28 Mar 2023

Data Sheet updates (8/11)

 $Figure \ 7 \ {\it -} \ {\it State Diagram of the Special Operating Modes - Flash Mode:}$

Refer to correct threshold levels / names | • Typo correction (wakeup -> wake-up)




Figure 7. State Diagram of the Special Operating Modes – Flash Mode

Public Information Confidential © onsemi 2021

TEM001794 Rev. G Page 6 of 9

Document #:FPCN23658ZS1 Issue Date:28 Mar 2023

Data Sheet updates (10/11)

Figure 10 - State Diagram of the V_{CC2} Regulator Control:

· Refer to correct threshold levels / names | • Typo correction (in green)

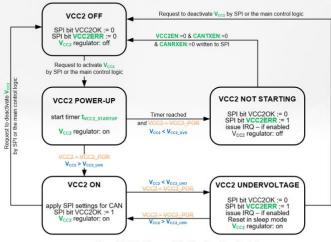


Figure 10. State Diagram of the V_{CC2} Regulator Control

onsemi

Public Information Confidential © onsemi 2021

TEM001794 Rev. G Page 7 of 9

17

Final Product/Process Change Notification Document #:FPCN23658ZS1

Issue Date:28 Mar 2023

Data She	eet updates (11/11)				
	ghout document: or typo and layout corrections				
₇	Public Information	Confidential	© onsemi 2021	onsemi	

Reason / Motivation for Change:	Quality improvement	Quality improvement				
Anticipated impact on fit, form, function, reliability, product safety or manufacturability:	The device has been qualified and validated based on the same Product Specification. The device has successfully passed the qualification tests. Potential impacts can be identified, but due to testing performed by onsemi in relation to the PCN, associated risks are verified and excluded. No anticipated impacts.					
Sites Affected:	Sites Affected:					
onsemi Sites		External Foundry/Subcon Sites				
onsemi, Gresham United States		None				
Marking of Parts/ Traceability of Change:	Traceability guaranteed by datecode					
Reliability Data Summary:						
AEC 1pager (unchanged as compared to	FPCN23658ZS).					
Electrical Characteristics Summary:						
Electrical characteristics are not impacted.						

Confidential © onsemi 2021

TEM001794 Rev. G Page 8 of 9

Document #:FPCN23658ZS1 Issue Date:28 Mar 2023

List of Affected Parts:

Note: Only the standard (off the shelf) part numbers are listed in the parts list. Any custom parts affected by this PCN are shown in the customer specific PCN addendum in the PCN email notification, or on the <u>PCN Customized Portal</u>.

Current Part Number	New Part Number	Qualification Vehicle
NCV7440C1	N/A	0SBCA-600

TEM001794 Rev. G Page 9 of 9