

Document #:PB23145Z Issue Date:19 Feb 2020

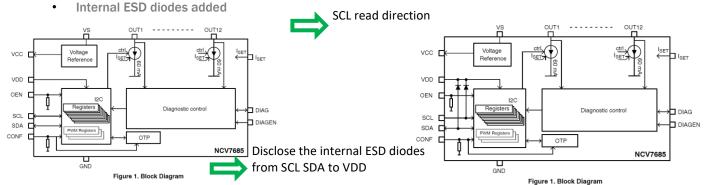
Title of Change:	Typo corrections in the datasheet for better datasheet integrity			
Effective date:	19 Feb 2020			
Contact information:	Contact your local ON Semiconductor Sales Office or Ladislav.Bazant@onsemi.com			
Type of notification:	This Product Bulletin is for notification purposes only. ON Semiconductor will proceed with implementation of this change upon publication of this Product Bulletin.			
Change Category:	Datasheet change			
Change Sub-Category(s):	Datasheet/Product Doc change			

Sites Affected:

ON Semiconductor Sites	External Foundry/Subcon Sites
None	None

Description and Purpose:

Marking diagram correction


Adding ON logo, specify Specific Device Code.

Block Diagram

(Note: Microdot may be in either location)

SCL arrow change

Application Diagram CONF and **OEN** pin connection If the CONF pin is put to High, the LEDs are automatically activated in the standalone mode. RC filter for OEN pin may not be sufficient. It is better to activate the OEN pin via VCC output reference to have 0 V during the VS startup for first Figure 4. Application Diagram without Micro-controller (Stand Alone Mode) 10μs.

TEM001797 Rev. B Page 1 of 4

Document #:PB23145Z Issue Date:19 Feb 2020

ABSOLUTE MAXIMUM RATINGS

Adding Tazap temperature for OTP zapping

TJMAA JUHCUOH TCHIPCIAUTC, TJ	r -	-40	100	
TAZAP OTP zap Ambient Temperature		10	30	°C

Correction and adding parameters in the Attributtes and Electrical characteristic table

Junction to Ambient, R_{θ JA}. Typo correction from 48 to 45.8°C/W

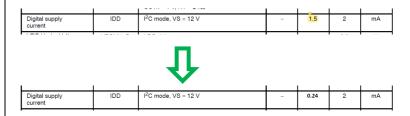

board	Tj	Ta	T top	Tsolder	delta T	Р	Theta-JA	Psi-JT	Psi-JB	
1SOP - 71um	137.76	85	129.47	131.32	52.8	0.72	73.3	11.5	8.9	
1SOP - 35um	154.63	85	144.77	148.27	69.6	0.72	96.7	13.7	8.8	
2S0P - 35um	145.30	85	135.96	139.04	60.3	0.72	83.8	13.0	8.7	
2S2P - 35um	123.40	85	115.27	117.23	38.4	0.72	53.3	11.3	8.6	
2S2P - 35 + 71um	120.36	85	112.35	114.17	35.4	0.72	49.1	11.1	8.6	
2S2P - 71 + 35um	117.97	85	110.73	111.61	33.0	0.72	45.8	10.1	8.8	

Table 3. ATTRIBUTES	- 1	
Parameter	Value	Unit
ESD Capability Note 2 ESD Voltage, HIM (Human Body Model); (100 pF, 1500 Q) – All prins – Output prins CUTX to GND ESD according to COM (Cherge Device Model) – Conver prins – Conver prins ESD according to MM (Machine Mode) – All prins ESD according to MM (Machine Mode) – All prins	±2 ±4 ±500 ±750 ±150	kV kV V
Moisture sensitivity (SSOP24-EP) (Note 3)	MSU2	
Storage Temperature	-55 t 150	°C
Package Thermal Resistance (SSOP24–EP) (Note 4) – Junction to Ambient, R _{8,18} – Junction to Board, R _{8,18} – Junction to Case (Top), R _{8,10}	48 8.8 10.1	°C/W °C/W

Adding VS supply voltage and current during OTP zapping parameter

GENERAL						
	VS_EXT	Functional extended range (limited temperature)	5	-	28	V
Supply Voltage	VS_OP	Parametric operation	5	-	18	V
	VS_OTPzap	Supply range during OTP zapping; 2.5 V ≤ ISET ≤ 3.3V; VS current peak capability ≥ 70 mA	13	-	18	V
Supply Under-Voltage	VSUV	VS rising	3.8	4.1	4.4	V

· Digital supply current typical value correction

General description - better clarification

Unused VCC output, remark for no need of the VCC capacitor

Power Supply and Voltage Reference (VS, V_{CC} , V_{DD})

VS is the analog power supply input of the device. VS supply is monitored with respect to the crossing of VSUV level (typ. 4.1 V). When VS rises above VSUV, the device starts the power-up state. When VS is above the VS_OP minimum level (typ. 5 V), the device can work properly.

VCC is a voltage reference providing 3.3 V derived from the VS main supply. It is able to deliver up to 1 mA and is primarily intended to supply 3.3 V loads.

VDD is the digital power supply input of the device.

Insert:

If VCC output reference is not used, then the VCC capacitor can be omitted.

TEM001797 Rev. B Page 2 of 4

Document #:PB23145Z Issue Date:19 Feb 2020

Adding Power-on Sequence figure

Power Supply and Voltage Reference (VS, V_{CC}, V_{DD})

VS is the analog power supply input of the device. VS supply is monitored with respect to the crossing of VSUV level (typ. 4.1 V). When VS rises above VSUV, the device starts the power-up state. When VS is above the VS OP minimum level (typ. 5 V), the device can work properly.

VCC is a voltage reference providing 3.3 V derived from the VS main supply. It is able to deliver up to 1 mA and is primarily intended to supply 3.3 V loads.

VDD is the digital power supply input of the device.

Ground Connections (GND: Pin 13 and Pin 19)

The device ground connection is split to two pins called GND. Both pins have to be connected on the application PCB

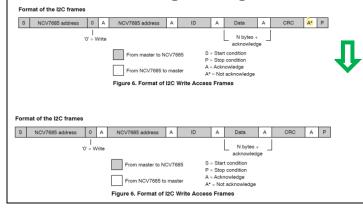
Clarification of the OEN input voltage during the startup

Output Enable (OEN)

When the OEN input voltage is high, all output channels are programmed according to the I2C or SAM configuration. When OEN voltage is below 0.7 V, all outputs are disabled in the SAM or I2C mode regardless on the registers setting. If the OEN pin is left floating, the internal pull down resistor will cause switching off all channels. The OEN pin has to be low during the startup.

Replace to:

The OEN pin has to be 0V during the startup for at least 10 µs


Adding following clarification about the time delay which is needed for the OTP zapping

Required Time Delay for OTP Zapping

As soon as the ID_LOCK_OTP message is received, the I^{*}C acknowledge is immediately send out to the MCU. However, the internal circuitries still requires 500 µs time delay to complete the OTP zapping of one OTP bit. Therefore, no IC confirmation is send. The number of OTP bits that are zapped corresponds with each change from the default values. It is needed 16.5 ms in total to successfully finish the zapping sequence of all 32 customer bits + one internal bit. The verification of the OTP banks can be done by power reset of both supplies (VS and VDD together) after zapping delay followed by readout of the ID_READ_OTP 12C message.

Typo in the Format of the I2C Write Access Frames

The acknowledge is missing at the end of the write frame.

Power Supply and Voltage Reference (VS, Vcc, Vpp) VS is the analog power supply input of the device. VS supply is monitored with respect to the crossing of VSUV level (typ. 4.1 V). When VS rises above VSUV, the device starts the power-up state. When VS is above the VS_OP minimum level (typ. 5 V), the device can work properly. VCC is a voltage reference providing 3.3 V derived from

the VS main supply. It is able to deliver up to 1 mA and is primarily intended to supply 3.3 V loads.

VDD is the digital power supply input of the device.

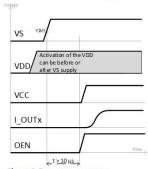


Figure 6. Power-up sequence

Ground Connections (GND: Pin 13 and Pin 19) The device ground connection is split to two pins called GND. Both pins have to be connected on the application PCB.

TEM001797 Rev. B Page 3 of 4

Document #:PB23145Z Issue Date:19 Feb 2020

Adding CRC clarification

· For better description of the CRC check sum the following paragraph is added into text:

CRC ERROR DETECTION ALGORITHM

The CRC protection is turned off by default. It can be enabled by activation of the OTP ERREN bit (ERREN = 1). The every I²C byte including both addresses with R/W flag are calculated using CRC8 algorithms. The CRC polynomial is following: $x^8 + x^5 + x^3 + x^2 + x + 1$.

Example of the CRC used in the I^2C message with I^2C CONF byte = 0xCFFF and with I^2C address 0x60 (0xC0) is 0x2E.

Graphical restyling

• Underscore is missing in the I2C STATUS register name.

Table 13. I2C STATUS

Bit	D7	D6	D5	D4
Access type	R	R	R	R
Bit name	SC_lset	I2Cerr	UV	diagRange
Reset value	0	0	0	0

Table 13. I2C_STATUS

Bit	D7	D6	D5	D4
Access type	R	R	R	R
Bit name	SC_lset	I2Cerr	UV	diagRange
Reset value	0	0	0	0

The change will not impact form, fit, or function of product.

List of Affected Standard Parts:

Note: Only the standard (off the shelf) part numbers are listed in the parts list. Any custom parts affected by this PCN are shown in the customer specific PCN addendum in the PCN email notification, or on the **PCN Customized Portal**.

NCV7685DQR2G	

TEM001797 Rev. B Page 4 of 4