

Final Product/Process Change Notification Document #:FPCN23658ZS

Issue Date:28 Feb 2022

Title of Change:	Wafer fab transfer to onsemi Gresham, Oregon USA from onsemi Fab2, Oudenaarde, Belgium related to Fab2 sale			
Proposed Changed Material First Ship Date:	01 Sep 2022 or earlier if approved by customer			
Current Material Last Order Date:	31 Mar 2022 #PD24322Z Orders received after the Current Material Last Order Date expiration are to be considered as orders for new changed material as described in this PCN. Orders for current (unchanged) material after this date will be per mutual agreement and current material inventory availability.			
Current Material Last Delivery Date:	31 Aug 2022 The Current Material Last Delivery Date may be subject to change based on build and depletion of the current (unchanged) material inventory			
Product Category:	Active components – Integrated circuits			
Contact information:	Contact your local onsemi Sales Office or Jelle.Genne@onsemi.com			
PCN Samples Contact:	Contact your local onsemi Sales Office to place sample order. Sample requests are to be submitted no later than 45 days after publication of this change notification. Samples delivery timing will be subject to request date, sample quantity and special customer packing/label requirements.			
Sample Availability Date:	07 Mar 2022			
PPAP Availability Date:	18 Apr 2022			
Additional Reliability Data:	Contact your local onsemi Sales Office or Catherine.DeKeukeleire@onsemi.com			
Type of Notification:	This is a Final Product/Process Change Notification (FPCN) sent to customers. The change will be implemented at 'Proposed Change Material First Ship Date' in compliance to J-STD-46 or ZVEI, or earlier upon customer approval, or per our signed agreements. onsemi will consider this proposed change and it's conditions acceptable, unless an inquiry is made in writing within 45 days of delivery of this notice. To do so, contact PCN.Support@onsemi.com.			
Change Category				
Category	Type of Change			
Process - Wafer Production	Move of all or part of wafer fab to a different location/site/subcontractor, New wafer diameter			
Equipment	Production from a new equipment/tool which uses the same basic technology (replacement equipment or extension of existing equipment pool) without change of process.			
Data Sheet	Change of datasheet parameters/electrical specification (min./max./typ. values) and/or AC/DC specification			

Description and Purpose:

Wafer fab transfer to onsemi Gresham, Oregon USA from onsemi Fab2, Oudenaarde, Belgium related to Fab2 sale. This change also includes data sheet updates.

	Before Change Description	After Change Description
Fab Site transfer	onsemi Fab2, Oudenaarde, Belgium 6inch onsemi Gresham, Oreg	
Data Sheet	Revision 3	Revision 4 (See changes below)

TEM001794 Rev. F Page 1 of 8

Document #:FPCN23658ZS Issue Date: 28 Feb 2022

Data Sheet updates (1/11)

Table $5 - V_{BB}$ POR levels:

- Split symbol to distinguish V_{BB} POR rising and falling levels
- Update limits of V_{BB PORL} to reflect actual device performance
- Remove V_{BB POR HYST} from table
- Split V_{BB_WARN} for rising and falling V_{BB} and add $V_{BB_WARN_HYST}$

Table 5. ELECTRICAL CHARACTERISTICS $V_{BB} = 5.5 \text{ V to } 42 \text{ V}; \text{ C}_{\text{N_VBB}} = 100 \text{ nF}; \text{C}_{\text{OUT_VCC1}} = 4.7 \text{ μF}; \text{ C}_{\text{OUT_VCC2}} = 4.7 \text{ μF}; \text{ for typical values } T_{\text{A}} = 25 ^{\circ}\text{C}, \text{ for min/max values } T_{\text{J}} = -40 ^{\circ}\text{C} \text{ to } 150 ^{\circ}\text{C}; \text{ R}_{\text{LT}} = 60 \Omega; \text{ unless otherwise noted.}$

Symbol	Param eter	Con ditions	Min	Тур	Max	Unit
V _{BB} SUPPLY		1				
¥BB_POR	V _{BB} POR level for entering Power	V _{BB} rising	4.5	4.8	5	¥
	up/Shutdown mode	V _{BB} -falling	4.4	4.65	4.9	¥
V _{BB_PORH}	V _{BB} POR level for entering Power- up/Shutdown mode	V _{BB} rising	4.5	4.8	5	٧
V _{BB_PORL}	V _{BB} POR level for entering Power- up/Shutdown mode	V _{BB} falling	3.0	3.5	4.0	٧
¥ _{BB_POR_HYST}	V _{BB} .POR hysteresis		120	150	180	mV
V _{BB_POR_PD}	propagation delay of the V _{BB} power-on-reset		5.0	15	25	μs
V _{BB_WARN}	V _{BB.} warning level		6		7	¥
VBB_WARN	V _{BB} waming level	V _{BB} rising	6.0	6.65	7.0	٧
		V _{BB} falling	6.0	6.5	7.0	٧
VBB_WARN_HYST	VBB warning level hysteresis		120	150	180	m۷

Public Information

Confidential © onsemi 2021

onsemi

Data Sheet updates (2/11)

Table 5 – $I_{BB_STANDBY}$:

Update max value for second condition from [140μA + 1.05x I_{VCC1}] to [180μA + 1.05x I_{VCC1}]

Table 5. ELECTRICAL CHARACTERISTICS

 V_{BB} = 5.5 V to 42 V; C_{IN_VBB} = 100 nF; C_{OUT_VCC1} = 4.7 μ F, C_{OUT_VCC2} = 4.7 μ F; for typical values T_A = 25°C, for min/max values T_J = -40°C to 150°C; R_{LT} = 60 Ω ; unless otherwise noted.

Symbol	Param eter	Conditions	Min	Тур	Max	Unit
V _{BB} SUPPLY						
I _{BB_STANDBY}	V _{BB} current consumption in Standby mode	V _{BB} = 14 V; T _J ≤ 85°C WAKE pin floating; INH off; No SPI activity; No CAN activity No V _{CC1} load (Note 15)		60	90	μ A
		WAKE pin floating No CAN activity	30 µA +1.01x Ivcc1	62 µA +1.03x I _{VCC1}	180 μA +1.05x IVCC1	
I _{BB_NORMAL}	V _{BB} current consumption in Normal mode	Recessive on CAN. No V _{CC1} load	3	7	18	mA
		Dominant on CAN transmitted. R _L = 60 Q. No V _{CC1} load	20	53	75	mA

Public Information

Confidential © onsemi 2021

onsem

TEM001794 Rev. F Page 2 of 8

Document #:FPCN23658ZS Issue Date:28 Feb 2022

Data Sheet updates (3/11) Symbol Symbol

Table 5 – V_{CC1} undervoltage levels:

- Split into undervoltage detection and recovery thresholds. Previously only detection levels were reported
- Update typical values for undervoltage detection thresholds
- Update the limits for the undervoltage detection hysteresis

Table 5. ELECTRICAL CHARACTERISTICS
V _{BB} = 5.5 V to 42 V; C _{IN VBB} = 100 nF; C _{OUT VCC1} = 4.7 µF, C _{OUT VCC2} = 4.7 µF; for typical values T _A = 25°C, for min/max values T _J =
-40°C to 150°C: Ri ⊤ = 60 O unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
CC1 REGULAT	OR					
V _{CC1_UV0}	V _{GC1} undervoltage level 0	SPI code = 000	91.5	93.5	95.5	% V _{CC}
V _{CC1_UV1}	V _{GG1} undervoltage level 1	SPI code = 001	87.1	89.1	91.1	% V _{CC}
V _{CC1_UV2}	V _{CC1} undervoltage level 2	SPI code = 010	82.7	84.7	86.7	% V _{CC}
V _{CC1_UV3}	V _{CC1} undervoltage level 3	SPI code = 011	78.3	80.3	82.3	% V _{CC}
¥ _{CC1_UV4}	V _{CC1} undervoltage level 4	SPI code = 100	73.9	75.9	77.9	% V _{cc}
¥ _{CC1_UV5}	V _{CC1} undervoltage level 5	SPI code = 101	69.5	71.5	73.5	%-V _{CC}
V _{CC1_UV8}	V _{CC1} undervoltage level 6	SPI code = 110	65.1	67.1	69.1	% V _{CC}
¥ _{CC1_UV7}	V _{CC1} undervoltage level 7	SPI code = 111	61.6	63.6	65.6	% V _{CC}
V _{CC1_UVD0}		Register2.VCC1_UV[2:0] = 000	91.5	93.1	95.5	% V _{∞1}
V _{CC1_UVD1}		Register2.VCC1_UV[2:0] = 001	87.1	88.7	91.1	% V _{∞1}
V _{CC1 UVD2}		Register2.VCC1_UV[2:0] = 010	82.7	84.3	86.7	% V _{cc1}
V _{CCI UVDS}	V _{CC1} Undervoltage detection	Register2.VCC1_UV[2:0] = 011	78.3	79.9	82.3	% V _{cc}
V _{CCI UVD4}	thres holds	Register2.VCC1_UV[2:0] = 100	73.9	75.5	77.9	% Vcc1
V _{CC1 UVD6}		Register2.VCC1_UV[2:0] = 101	69.5	71.1	73.5	% V _{cc}
V _{CC1_UVD6}		Register2.VCC1_UV[2:0] = 110	65.1	66.7	69.1	% V _{cc}
V _{CC1_UVD7}		Register2.VCC1_UV[2:0] = 111	61.6	63.2	65.6	% Vcc
V _{CC1_UVR0}		Register2.VCC1_UV[2:0] = 000	93.0	95.5	97.5	% V _{cc}
V _{CC1_UVR1}		Register2.VCC1_UV[2:0] = 001	88.7	91.1	93.2	% V _{cc1}
V _{CC1_UVR2}		Register2.VCC1_UV[2:0] = 010	84.5	86.7	89.0	% V _{cc}
V _{CC1_UVR3}	V _{cc1} Undervoltage recovery	Register2.VCC1_UV[2:0] = 011	80.2	82.3	84.7	% V _{∞1}
V _{CC1_UVR4}	thresholds	Register2.VCC1_UV[2:0] = 100	75.9	77.9	80.4	% V _{cc}
V _{CC1_UVRS}		Register2.VCC1_UV[2:0] = 101	71.7	73.5	76.2	% V _{cc}
V _{CC1_UVR6}		Register2.VCC1_UV[2:0] = 110	67.5	69.1	72.0	% V _{cc}
V _{CC1_UVR7}	1	Register2.VCC1_UV[2:0] = 111	63.5	65.6	68.0	% V _{cc}
V _{CC1_UV_HYST}	Undervoltage detection hysteresis	$V_{CC1_UVRx} - V_{CC1_UVDx}$; "x" = 0 to 7	80	125	170	mV
▼CC1_UV_HYST	Ondervoltage detection hysteresis	*CCI_UVRX - *CCI_UVDX; X = 0 to 1	100		150	~~

Public Information

Confidential © onsemi 2021

onsemi

Data Sheet updates (4/11)

Table 5 – Mode control and watchdog:

- Add min and maximum values for $t_{\text{VCC1_STARTUP}}, t_{\text{VCC2_STARTUP}}, t_{\text{RESET}}, t_{\text{2ND_RESET}}$ and $\underline{t}_{\text{IRQ_RESPONSE}}$
- Update symbols t_{VCC1_STARTUP}, t_{VCC2_STARTUP}, t_{RESET}, t_{2ND_RESET} and t_{FAILSAFE}

Table 5. ELECTRICAL CHARACTERISTICS

 $V_{BB} = 5.5 \text{ V to } 42 \text{ V}; \text{ CIN_VBB} = 100 \text{ nF}; \text{ COUT_VCC1} = 4.7 \text{ } \mu\text{F}; \text{ COUT_VCC2} = 4.7 \text{ } \mu\text{F}; \text{ for typical values T}_{A} = 25^{\circ}\text{C}, \text{ for min/max values T}_{J} = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}; \text{ R}_{LT} = 60 \text{ } \Omega; \text{ unless otherwise noted.}$

Sym bol	Param eter Param eter	Conditions	Min	Тур	Max	Unit
IODE CONTROL	AND WATCHDOG – DYNAMIC ELECT	RICAL CHARACTERISTICS				
t _{WD_tol}	Tolerance of watchdog timing		-10		+10	%
t _{WD_tol_LP}	Tolerance of timer	Standby or Sleep mode	-20		+20	%
tvcc1_Startup	V _{CC1} start-up timeout		180	200	225	ms
tvcc2_startup	V _{CC2} start-up timeout		180	200	225	ms
[‡] VCC1_Reset [‡] RESET	Reset low-level duration	Reset mode	1.8	2	2.25	ms
t2ND_RESET	Reset low-level duration	2 nd Reset mode	3.6	4	4.5	ms
t _{FailSafe} t _{FAILSAFE}	Fail-Safe mode timeout		1.80	2.0	2.25	s
t _{IRQ_Response}	Timeout for IRQ service		180	200	225	ms

Public Information

Confidential © onsemi 2021

onsemi

TEM001794 Rev. F Page 3 of 8

Document #:FPCN23658ZS Issue Date:28 Feb 2022

Data Sheet updates (5/11)

- V_{CC1} low-drop voltage regulator 5 V
 - Can deliver up to $\frac{150 \text{ mA}}{125 \text{ mA}}$ with accuracy of $\pm 2\%$
 - ◆ Dedicated to supply an external load typically the ECU's microcontroller

Table 5 – $I_{BB_STANDBY}$:

- Update I_{OUT VCC1} max value and update conditions for other parameters for accordingly
- Remove V_{OUT VCC1} for 1mA load condition

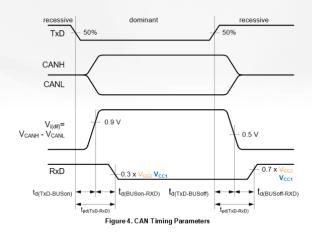
Page 2 – Features: Update description V_{CC1} low-drop voltage regulator

Table 5. ELECTRICAL CHARACTERISTICS

 $V_{BB} = 5.5 \text{ V to } 42 \text{ V; C}_{\text{IN_VBB}} = 100 \text{ nF; C}_{\text{OUT_VCC1}} = 4.7 \text{ } \mu\text{F, C}_{\text{OUT_VCC2}} = 4.7 \text{ } \mu\text{F; for typical values T}_{\text{A}} = 25^{\circ}\text{C, for min/max values T}_{\text{J}} = -40^{\circ}\text{C to } 150^{\circ}\text{C; R}_{\text{LT}} = 60 \text{ } \Omega; \text{ unless otherwise noted.}$

Sym bol	Param eter	Conditions	Min	Тур	Max	Unit
V _{CC1} REGULA TO	R					
Vour_vcc1	V _{CC1} output voltage	Load ≤ 150 125 mA	4.9	5.0	5.1	V
		Load 1 mA	4.9	5.0	5.1	¥
Vout_vcc1_dyn	V _{CC1} dynamic range	Load step ≤ 100 mA	4.5		5.5	V
loυτ_vcc1	V _{CC1} external DC current load		0		150 125	mA
I _{LIM_VCC1}	V _{CC1} current limitation		170	260	310	mA
I _{SINK_VCC1}	V _{CC1} sinking capability	V _{CC1} on; V _{BB} > 6 V; V _{CC1} forced to 5.5 V	0.1	0.4	1	mA
C _{OUT_VCC1}	stabilizing capacitor on V _{CC1} pin	(Notes 10, 11)	2.2	4.7		uF
ESR_C _{OUT_VCC1}	ESR of the V _{CC1} stabilizing capacitor				1	Ω
V _{DO_VCC1_reg}	minimal drop in regulation	V _{BB} > 5.5 V			0.5	V
V _{DO_VCC1_lin}	maximal drop in linear mode	I _{CC1} = 150 125 mA, V _{BB} < 5.5 V		0.25	0.5	V
REG _{LOAD_VCC1}	load regulation	Load 0-150 125 mA		10	30	mV

Public Information

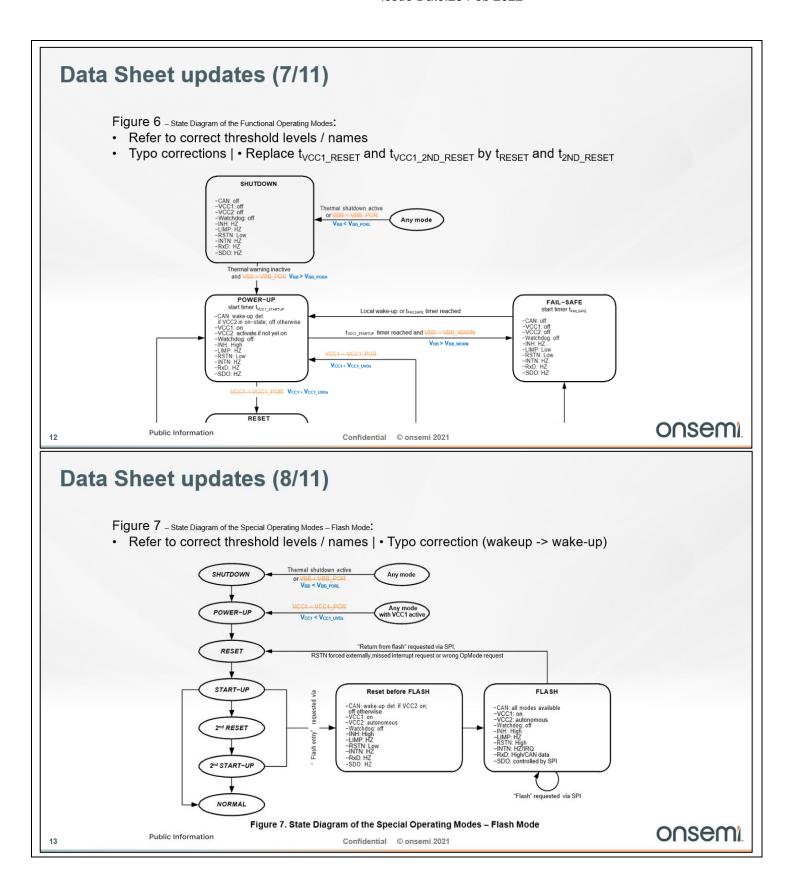

Confidential © onsemi 2021

Data Sheet updates (6/11)

Figure 4 - CAN Timing parameters:

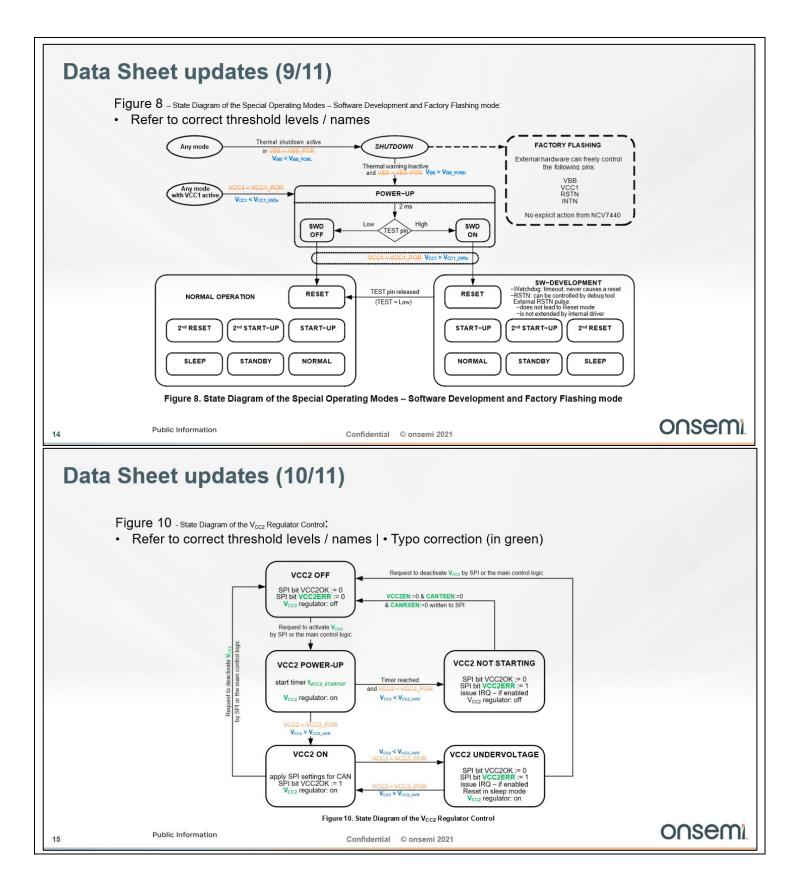
Correct V_{CC2} to V_{CC1}

Public Information


Confidential © onsemi 2021

onsemi

TEM001794 Rev. F Page 4 of 8


Document #:FPCN23658ZS Issue Date:28 Feb 2022

TEM001794 Rev. F Page 5 of 8

Document #:FPCN23658ZS Issue Date:28 Feb 2022

TEM001794 Rev. F Page 6 of 8

Document #:FPCN23658ZS Issue Date:28 Feb 2022

Throughout document:

· Minor typo and layout corrections

Public Information

Confidential © onsemi 2021

onsemi

Reason / Motivation for Change:	Source/Supply/Capacity Changes					
Anticipated impact on fit, form, function, reliability, product safety or manufacturability:	The device has been qualified and validated based on the same Product Specification. The device has successfully passed the qualification tests. Potential impacts can be identified, but due to testing performed by onsemi in relation to the PCN, associated risks are verified and excluded. No anticipated impacts.					
Sites Affected:	Sites Affected:					
onsemi Sites		External Foundry/Subcon Sites				
onsemi Oudenaarde, Belgium		None				
onsemi, Gresham United States						
Marking of Parts/ Traceability of Change:	Traceability guaranteed by datecode					

Reliability Data Summary:

NOTE: AEC-1pager is attached.

To view attachments:

- 1. Download pdf copy of the PCN to your computer
- 2. Open the downloaded pdf copy of the PCN
- 3. Click on the paper clip icon available on the menu provided in the left/bottom portion of the screen to reveal the Attachment field

4. Then click on the attached file

TEM001794 Rev. F Page 7 of 8

Final Product/Process Change Notification Document #:FPCN23658ZS

Issue Date:28 Feb 2022

Electrical Characteristics Summary:	
Electrical characteristics are not impacted.	
	_

List of Affected Parts:

Note: Only the standard (off the shelf) part numbers are listed in the parts list. Any custom parts affected by this PCN are shown in the customer specific PCN addendum in the PCN email notification, or on the <u>PCN Customized Portal</u>.

Current Part Number	New Part Number	Qualification Vehicle
NCV7440C1	NA	0SBCA-600

TEM001794 Rev. F Page 8 of 8