NCP1681 # Totem-Pole Continuous Conduction Mode (CCM) / Multimode (CrM-CCM) Power Factor Correction Controller ## **Product Overview** For complete documentation, see the data sheet. The NCP1681 is a PFC controller IC designed to drive the bridgeless totem-pole PFC topology. The bridgeless totem-pole PFC is a power factor correction architecture that consists of a fast switching leg driven at the PWM switching frequency and a second leg that operates at the AC line frequency. This topology eliminates the diode bridge present at the input of a conventional PFC circuit, allowing significant improvement in the power stage efficiency. The controller can be configured to operate in Continuous Conduction Mode (CCM) or Multi-Mode (CrM-CCM) operation. #### **Features** - Totem Pole PFC Topology Eliminates Input Diode Bridge - Continuous Conduction Mode (CCM) Operation At High Power Level - Optional Multi-mode Operation With CCM at High Power & CrM at Medium Power Level - Frequency Foldback in DCM With 25 kHz Minimum Frequency - Skip Mode in Very Light Load Condition - Novel Current Sense Scheme - Digital Voltage Loop Compensation - AC Line Monitoring Circuit & AC Phase Detection - Near Unity Power Factor in All Operating Modes - PFC OK Indicator For more features, see the data sheet **NCP1681** ### **Applications** - Power Factor Correction - Offline Power Supply #### **End Products** - Server Power - Telecom 5G Power - Networking Power - Gaming Console Power Supplies - UHD TV Power Supplies | Part Electrical Specifications |--------------------------------|--------|----------------|---------------------|---|---|-----------------------|---|-----------------------------------|-----------------------------------|-----------------|-----------|---------|--------------------|--|-----------------------------|---------------------|----------------------------|-----------------------------------|-----------------------------------| | Product | Status | Compilance | PF
C
Mo
de | Fre
qu
en
cy
Op
era
tio | Co
ntr
ol
Mo
de | To
pol
og
y | f _{sw}
Ty
p
(kH
z) | V _{CC}
Ma
x
(V) | Dri
ve
Ca
p.
(m
A) | UV
LO
(V) | Lat
ch | UV
P | Inh
ibit
ion | Pa
cka
ge
Ty
pe | Ca
se
Ou
tlin
e | MS
L
Ty
pe | MS
L
Te
mp
(°C | Co
nta
ine
r
Ty
pe | Co
nta
ine
r
Qt
y. | | NCP1681AAD2R
2G | Active | (1) (2) | CC
M | Fix
ed | Cu
rre
nt/
Vol
tag
e
Mo
de | Tot
em
Pol
e | 65 | 30 | 10
0 /
10
0 | 10.
5 | Ye
s | Ye
s | No | SOI
C2
0
NB
LE
SS
PIN
17
&
19 | 751
EZ.
PD
F | 1 | 26 | RE
EL | 25
00 | | NCP1681ABD2R
2G | Active | (1) (2) | CC
M | Fix
ed | Cu
rre
nt/
Vol
tag
e
Mo
de | Tot
em
Pol
e | 95 | 30 | 10
0 /
10
0 | 10.
5 | Ye
s | Ye
s | No | SOI
C2
0
NB
LE
SS
PIN
17
&
19 | 751
EZ.
PD
F | 1 | 26 | RE
EL | 25
00 | | NCP1681BAD2R
2G | Active | H 6p | M
M | Var
iabl
e | Cu
rre
nt/
Vol
tag
e
Mo
de | Tot
em
Pol
e | 65
/
Var
iabl
e | 30 | 10
0 /
10
0 | 10.
5 | Ye
s | Ye
s | No | SOI
C2
0
NB
LE
SS
PIN
17
&
19 | 751
EZ.
PD
F | 1 | 26
0 | RE
EL | 25
00 | NCP1681