ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

Design Note – DN05119/D

NCP1568 Ultra-High Density USBPD Laptop Adapter

Device	Application	Input Voltage	Output Power	Topology	I/O Isolation
NCP1568 NCP51530 NCP4306 FDMS86202	Ultra-High Density USBPD Laptop Adapter	90 Vac – 265 Vac	60 Watt	Active-Clamp Flyback	Isolated (3kV)

SPECIFICATIONS

Output Voltage	5, 9, 15, 20 V
Ripple	1 V
Nominal Current	3 A
Max Current	3 A
Min Current	Zero

Circuit Description

This design note describes a 60 W universal input 5 V, 9 V, 15 V and 20 V output ultra-high density power supply for laptop adapters. This featured power supply is an active-clamp flyback topology utilizing ON Semiconductor's NCP1568 PWM controller, NCP51530 HB Driver, NCP4306 SR Controller and FDMS86202 SR FET. This design note provides complete circuit schematic, PCB, BOM and transformer information of the evaluation board. It also provide efficiency, transient response, output ripple and thermal data of the evaluation board.

This design utilized NCP1568 and NCP51530 for the active-clamp flyback topology. Active-clamp flyback topology effectively recycles the leakage energy. Another feature of this topology is the ZVS operation of the power MOSFETS. Because of no leakage losses and ZVS operation, this topology is suited for high frequency operation which results in size reduction of the transformer. Hence active-clamp flyback topology is well suited for high power density sub 100 W power supplies. A ZVS fixed switching frequency power converter also simplifies EMI design and can be easily designed to avoid interference with other sensitive circuits in the system.

NCP1568 is a highly integrated AC-DC PWM controller designed to implement an active-clamp flyback topology. It features adaptive frequency scheme which optimizes frequency of operation and hence the efficiency over all load and input voltages. The NCP1568 features a HV startup circuit along. It also has integrated X2 discharge circuit.

NCP51530 is a 700 V high side and low side driver with 2 A current drive capability for AC-DC power supplies and inverters. NCP51530 offers best in class propagation delay, low quiescent current and low switching current at high frequencies of operation. This device is tailored for highly efficient power supplies operating at high frequencies.

NCP4306 is high performance driver tailored to control a synchronous rectification MOSFET in switch mode power supplies.

Key Features

- Universal AC input operation (90 265 Vac)
- High full load and average efficiency
- Low standby power
- Very low ripple and noise
- High frequency operation up to 450 kHz
- Inherent SCP and OCP protection

- Thermal and OVP protection
- Adaptive frequency operation based on AC input and output load conditions
- Adaptive ZVS operation
- Smaller EMI components
- Smooth startup operation

Figure 1 Full Top View of UHD Board

Figure 2 Full Bottom View of UHD Board

Figure 3 Top View of the UHD Board

Figure 4 Bottom View of the Demo Board

Figure 5 Bottom View of Daughter Card

Figure 6 Top View of Daughter Card

Inner Signal (Layer 2)

DN05119/D Inner Signal (Layer 3)

Bottom (Layer 4)

DN05119/D

Board Schematic

NOTE: For detailed version, see separate Schematic PDF

Magnetic Design

Figure 7 5V Efficiency Plot

Figure 8 9V Efficiency Plot

Figure 9 15V Efficiency Plot

Figure 10 20V Efficiency Plot

Figure 11 4-Point Average Efficiency Plot

Waveforms

Figure 12 Steady State ACF Operation

Figure 13 Steady State DCM Operation

Figure 14 DCM to ACF Transition

Time from Applying Vac to First Switch

Figure 15 115 Vac Input, Time from Vac to First Switch

Figure 16 230 Vac Input, Time from Vac to First Switch

Time from Switch to 5 Vout

Figure 17 115 Vac Input, Time from First Switch to 5 Vout

Figure 18 230 Vac Input, Time from First Switch to 5 Vout

Output Ripple

(Taken at output for 3A Load)

Figure 19 115 Vac 5 Vout Ripple

Figure 20 115 Vac 5 Vout Ripple Zoom

Figure 21 230 Vac 5 Vout Ripple

Figure 22 230 Vac 5 Vout Ripple Zoom

Figure 23 115 Vac 9 Vout Ripple

Figure 24 115 Vac 9 Vout Ripple Zoom

Figure 25 230 Vac 9 Vout Ripple

Figure 26 230 Vac 9 Vout Ripple Zoom

Figure 27 115 Vac 15 Vout Ripple

Figure 28 115 Vac 15 Vout Ripple Zoom

Figure 29 230 Vac 15 Vout Ripple

Figure 30 230 Vac 15 Vout Ripple Zoom

Figure 31 115 Vac 20 Vout Ripple

Figure 32 115 Vac 20 Vout Ripple Zoom

Eile	<u>E</u> dit	<u>V</u> ertical	H <u>o</u> riz/Acq	<u>T</u> rig	<u>D</u> isplay	⊆ursors	Mea <u>s</u> ure	M <u>a</u> sks	<u>M</u> ath	MyScope	<u>U</u> tilities	Help	
Tek	Stopp	ed Single	Seq	1	Acqs								Buttons
_	VOUT					±						Curs	Pos
												129	9.0mV
		Hilmonth	n ha ta tu	ilu ili	Mahad	a the fu	والطياب والم	وبالتلاق	. والله ال			Curs2	Pos
			a and a second		1.11	±				ALC: NO PERSONNEL PE		-121.	0mV
		Mantaana	hannanti				u kakan				-	¥1: 1 ¥2: -1 Δ¥: -2	29.0mV 21.0mV 50.0mV
											Pk-F	²k(C4)	250.0mV
	++++			<u> </u>					1111		++-		
-		ALL DAY											
											·		
									Wing!		-		
		Al el	, <mark>Matelity</mark> ati		ala Alapi	1997 - 1997 - 1997 			witi (haten	· _		
						+							
-						·+· · ·					·		
						Ŧ					-		
				Ch4	50.0mV	η B _W	M 4.0ms A Ch4	: 250MS/s 7 0.0Y	4.0	ins/pt			

Figure 33 230 Vac 20 Vout Ripple

Figure 34 230 Vac 20 Vout Ripple Zoom

Transient Response

(0.1A – 3A, 150 mA/us, 20 ms)

Figure 35 115 Vac 5 Vout Transient

Figure 36 115 Vac 5 Vout Transient Zoom

Figure 38 230 Vac 5 Vout Transient Zoom

Figure 40 115 Vac 9 Vout Transient Zoom

Figure 42 230 Vac 9 Vout Transient Zoom

Figure 44 115 Vac 15 Vout Transient Zoom

Figure 46 230 Vac 15 Vout Transient Zoom

Figure 48 115 Vac 20 Vout Transient Zoom

Figure 50 230 Vac 20 Vout Transient Zoom

Thermal Data

115 Vac Full Load

Statistic [units]	LFET	HFET	DVR DVR	CTRL	SFET	SR SR
Mean [°C]	92.9	91.9	91.9	87.7	80.3	80.4
Std. Dev. [°C]	0.7	0.5	0.5	2.4	0.4	0.6
Center [°C]	(225.0, 47.0) 93.4	(172.0, 52.0) 92.7	(170.0, 124.5) 92.5	(217.5, 154.0) 89.2	(83.5, 159.0) 80.8	(97.5, 130.0) 81.4
Maximum [°C]	(230, 43) 93.8	(157, 72) 93.4	(169, 127) 93.1	(216, 145) 90.6	(82, 159) 81.0	(96, 133) 82.2
Minimum [°C]	(246, 27) 87.3	(192, 35) 90.5	(160, 114) 90.3	(230, 140) 62.8	(99, 171) 78.1	(88, 120) 79.1

Statistic [units]	Cout1	Cout2	XFMR
Mean [°C]	71.2	58.8	93.1
Std. Dev. [°C]	2.7	4.6	5.3
Center [°C]	(80.0, 54.0) 70.7	(78.5, 111.5) 55.8	(166.5, 93.0) 94.7
Maximum [°C]	(92, 72) 86.9	(102, 114) 80.5	(142, 69) 104.2
Minimum [°C]	(59, 59) 67.6	(55, 116) 51.6	(151, 44) 43.7

Statistic [units]	Bridge
Mean [°C]	77.0
Std. Dev. [°C]	17.5
Center [°C]	(162.5, 110.5) 89.9
Maximum [°C]	(151, 111) 92.6
Minimum [°C]	(138, 90) 34.1

230 Vac Full Load

Statistic [units]	LFET	HFET	DVR	CTRL	SFET	SR SR
Mean [°C]	85.7	88.7	95.4	93.1	84.5	85.3
Std. Dev. [°C]	0.8	1.1	0.6	2.9	0.5	0.7
Center [°C]	(225.0, 47.0) 85.9	(172.0, 52.0) 89.8	(170.0, 124.5) 96.3	(217.5, 154.0) 95.0	(83.5, 159.0) 84.9	(97.5, 130.0) 86.6
Maximum [°C]	(204, 67) 87.8	(157, 72) 90.9	(169, 127) 97.0	(215, 149) 96.5	(90, 147) 85.2	(96, 133) 87.4
Minimum [°C]	(246, 27) 79.2	(192, 36) 85.1	(160, 114) 93.0	(230, 140) 65.4	(99, 172) 82.0	(88, 120) 83.9

Statistic [units]	Cout1	Cout2	XFMR
Mean [°C]	72.3	58.4	98.6
Std. Dev. [°C]	1.9	4.0	7.0
Center [°C]	(80.0, 54.0) 72.1	(78.5, 111.5) 57.3	(166.5, 93.0) 102.3
Maximum [°C]	(90, 73) 87.2	(102, 116) 79.2	(143, 70) 110.1
Minimum [°C]	(62, 42) 66.0	(55, 116) 49.6	(152, 45) 44.3

Statistic [units]	Bridge
Mean [°C]	63.1
Std. Dev. [°C]	12.6
Center [°C]	(162.5, 110.5) 71.8
Maximum [°C]	(151, 111) 73.8
Minimum [°C]	(138, 90) 31.2

BOM MAIN BOARD								
Reference	Qty	Value	Tolerance	Footprint	Manufacturer	Manufacturer Part Number		
BD1	1	800V/2A		4-SMD	Comp Chip	Z4DGP408L-HF		
C10 C20	2	1nF	±5%	402	Murata	GMD155R71H102KA01D		
C11	1	0.1uF	±20%	(13X5x11)mm	Kemet	R46KF310000P1M		
C1-2	2	470uF/25V	±20%	(10.5x13)mm	Kemet	A750MS477M1EAAE015		
040.050		220 5	14.000	1808 (4520		400000000000000000000000000000000000000		
C12 C52	2	330pF	±10%		knowles Syfer	1808YA250331KX1SY2		
<u> </u>	1	150 pF	±10%	603	I DK	C1608CH2E151K080AA		
<u> </u>	1	330 pF	±5%	402	Kemet	C0402C331J3GAC7867		
C15 C29 C17-18 C23-24 C26	2	NI		402				
C28	6	0.1µF	±10%	402	ТДК	CGA2B3X5R1V104K050BB		
C21	1	0.1 uF	±20%	603	Murata	GCM188R71E104KA57D		
C22	1	0.1 uF	±20%	1210	KEMET	C1210C104KBRAC7800		
C25	1	NI	±10%	805				
C27	1	1.0 uF	±10%	805	Taiyo Yuden	HMK212BBJ105KG-TE		
C3	1	2.2uF	±20%	603	Kemet	GRM188R6YA225MA12D		
C31	1	56uF	±20%	(12.X5)mm	Wurth Electronics Inc.	860080472003		
C32 C38-39 C42	4	0.22µF	±10%	1210	TDK Corporation	C3225X7T2W224K200AA		
C33	1	2.2uF	±20%	603	Kemet	GRM188R6YA225MA12D		
C34-35 C40 C43	4	390pF	±5%	402	Murata	GRM1555C1H391JA01J		
C36 C45 C50 C54	4	22 uF	±20%	1206	ТДК	C3216X5R1V226M160AC		
C37 C49	2	NI		402				
C4	1	8.2n	±5%	402	Kemet	C0402C822J5RAC786		
C41	1	6.8 μF	±20%	(8X14)mm	Wurth	860021374009		
C44	1	10nF	±10%	402	Murata	GCM155R71H103KA55D		
C46	1	47 nF	±10%	402	ТДК	C1005X6S1H473M050BB		
C47	1	10 uF	±20%	603	Murata	GRT188R61C106ME13D		
C48	1	1uF	±5%	402	TDK	C1005x5R1E105k050BC		
C5 C16	2	0.33 uF	±5%	402	ТДК	CGA2B3X7S1A334M050BB		
C51	1	4.7 uF	±20%	603	Murata	GRT188R6YA475ME13D		
C6 C19 C30	3	1.0uF	±10%	603	Samsung	CL10A105KL8NNNC		
C7	1	100 μF	±20%	(14.5X42)mm	United Chemi-Con	EKXJ401ELL101MU40S		
C8 C53	2	1000pF	±10%	1808 (4520 Metric)	Johanson Dielectrics Inc.	502R29W102KV3E-****- SC		
С9	1	100 pF	±5%	402	Kemet	C0402C101J1HACTU		
CON1	1	NA	NA	THT/SM	Wurth	632723300011		
D10 D12	2	5.5V	NA	X2DFN2	ON Semiconductor	NSPU3051N2T5G		
D1-2	2	20V	NA	X2DFN2	ON Semiconductor	ESD7241N2T5G		
D17	1	NI		SOD-523				
D3 D15	2	600 V 1 A	NA	SOD-123T	ON Semiconductor	ES1JFL		
D4 D8	2	800V 200mA	NA	SOD-323F	Panasonic	DA2JF8100L		
D5 D11 D13 D16	4	40V 1.5A	NA	DSN2(0603)	ON Semiconductor	NSR15405NXT5G		
D6	1	100V 200mA	NA	SOD-323	ON Semiconductor	MMDI 914T1G		

May, 2020, Rev.4

			_		_	Manufacturer Part
Reference	Qty	Value	Tolerance	Footprint	Manufacturer	Number
D7 D14 D18	3	100V 200mA	NA	SOD-523	ON Semiconductor	NSD914XV2T1G
D9	1	150V 2A	NA	SMA	STMicroelectronics	STPS2150A
F1	1	3.15A	250V	(8.5x4x8) mm	Littelfuse Inc.	39213150000
J1-12	12	NA	NA	2X3mm	NA	NA
LN	2					
L1	1	2.2 uH	20%	(5.50x 5.30)	Wurth	744316220
L2	1	33 uH	10%	D = 7.8mm	Wurth	744772330
Q1	1	600V 9A	NA	ThinPak 8X8	Infineon Technologies	IPL60R385CPAUMA1
Q15	1	NI		SOT-23		
Q2	1	2.6 mOhm		5X6 SO8	Vishay	SI7145DP-T1-GE3
Q5	1	600V 9A	NA	ThinPak 8X8	Infineon Technologies	IPL60R299CP
07	1	120V 11	NA			FDM(000202
ų/	1	mOnm	NA	SUIC8_FL	ON Semiconductor/Fairchild	FDMS86202
R1 R10	2	365k	±1%	402	Yageo	RC0402FR-07365KL
R11	1	1M	±5%	1206	Vishay	CRCW12061M00JNEAHP
R12	1	732R	±1%	402	Yageo	RC0402FR-07732RL
R13 R21	2	49.9k	±1%	402	Yageo	RC0402FR-0749K9L
R14	1	1R0	NA	603	Vishay	CRCW06031R00JNEA
R15	1	100R	±1%	805	Vishay	RCS0805100RJNEA
R16 R20	2	430m	±1%	805	Vishay	RCWE0805R430FKEA
R17	1	23.2k	±1%	402	Vishay	CRCW040223K2FKEDC
R18-19	2	59k	±1%	402	stackpole	RMCF0402FT59K0
R2 R4	2	100k	±1%	402	stackpole	RMCF0402FT100K
R23	1	7.32k	±1%	402	Yageo	RC0402FR-077K32L
R24 R54	2	1.5k	±1%	1206	Vishay	CRCW12061K50JNEA
R25	1	49.9k	±1%	402	Yageo	C0402FR-0749K9L
R26	1	5mOhm	±1%	1206	Visahy	WSLP12065L000FEA
R27	1	165k	±1%	402	Yageo	RC0402FR-07165KL
R28	1	0R0	NA	402	Panasonic Electronic Components	ERJ-2GE0R00X
R29	1	1R0	±1%	402	Vishay	CRCW04021R00JNEDIF
R3	1	46.4k	±1%	402	Yageo	RC0402FR-0746K4L
R30 R34	2	ORO	NA	402	Panasonic Electronic Components	ERJ-2GE0R00X
R31	1	47k	±1%	402	Vishav	CRCW040247K0FKEDC
R32	1	51R	+1%	402	Vishav	CRCW040251R0INED
R33	1	11 5k	+1%	402	Vishav	
R35	1	NI		402		
R37	1	15k	+1%	402	Vishav	
R38	1	22 1k	+1%	402	Vageo	BC0402FR-0722K1
R30	1	1204	+1%	402	Vichay	
RAO DAO AA	<u>т</u>	120K	±10/	402	Vishay	
N4U N42-44	4	2 221	±10/	402	Visildy	
<u>K41</u>	1	2.32K	±1%	402	r dgeo	
K45		TOKO	±1%	402	Visnay	
R46	1	1M	±1%	402	Vishay	CRCW04021M00FKEDC

May, 2020, Rev.4

Г

						Manufacture Deut
Reference	Qty	Value	Tolerance	Footprint	Manufacturer	Manufacturer Part Number
R47	1	5.11k	±1%	402	Vishay	CRCW04025K11FKTD
R48	1	121k	±1%	402	Vishay	RC0402FR-07121KL
R49	1	220k	±1%	402	Murata	NCP15WM224J03RC
R5	1	1k	±1%	402	Vishay	CRCW04021K00FKTD
R50	1	10k	±1%	603	Vishay	CRCW060310K0FKEB
R51	1	365k	±1%	402	Vishay	RC0402FR-07365KL
R52	1	2.55M	±1%	402	Vishay	CRCW04022M55FKED
R53 R55	2	NI		402		
R6 R36	2	15R0	NA	603	Vishay	CRCW060315R0JNEA
R7	1	10R0	±1%	402	Vishay	CRCW040210R0FKED
R8 R22	2	22R0	NA	603	Vishay	CRCW060322R0JNEA
R9	1	4.02k	±1%	402	Vishay	CRCW04024K02FKEDHP
		120 uF / Material:				
T1	1	ML29D	10%	RM8LP	Wurth w/ Hitachi Metals	750317295r04
Т2	1	330 uH	10%		Bourns Electronics	TX9/5/3C-3E10 12Turns
U1	1	65W	na	QFN16	Weltrend	WT6615F
		30V 1000				
02	1	MHz		Issop 16	ON Semiconductor	NCP1568S02DBR2G
U3-4	2	ADJ	1%	XDFN6	ON Semiconductor	NCP4623HMXADJTCG
U5	1	20V	NA	DFN8	ON Semiconductor	NCP4306AADZZZAMNTWG
U6	1	1.22	2%	DFN 3X3	TI	LT3014BEDD#PBF
U7	1		NA	DFN 10 4X4mm	ON Semiconductor	NCP51530AMNTWG
U8	1	1.17V 50mA	NA	4-SMD, Gull Wing	CEL	FODM8801BV
Z1	1	6.8V 200mW	±5%	SOD-523-2	ON Semiconductor	MM5Z6V8T1G
Z3	1	NI		SOD-523-2		
Z4	1	22V 500mW	±5%	SOD-523-2	ON Semiconductor	MM5Z22VT1G

© 2019 ON Semiconductor.

Disclaimer: ON Semiconductor is providing this design note "AS IS" and does not assume any liability arising from its use; nor does ON Semiconductor convey any license to its or any third party's intellectual property rights. This document is provided only to assist customers in evaluation of the referenced circuit implementation and the recipient assumes all liability and risk associated with its use, including, but not limited to, compliance with all regulatory standards. ON Semiconductor may change any of its products at any time, without notice.

Design note created by:

Bryan McCoy, e-mail: Bryan.McCoy@onsemi.com

Anthony Nasir, e-mail: Anthony.Nasir@onsemi.com