ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

Sensitive Gate Triacs

Silicon Bidirectional Thyristors

Designed for high volume, low cost, industrial and consumer applications such as motor control; process control; temperature, light and speed control.

Features

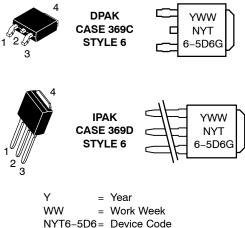
- Passivated Die for Reliability and Uniformity
- Four–Quadrant Triggering
- Blocking Voltage to 600 V
- On-State Current Rating of 6.0 A RMS at 93°C
- Low Level Triggering and Holding Characteristics
- Epoxy Meets UL 94 V-0 @ 0.125 in
- These are Pb-Free Devices

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit	
Peak Repetitive Off–State Voltage (Note 1) ($T_J = -40$ to 110°C, Sine Wave, 50 to 60 Hz, Gate Open)	V _{DRM,} V _{RRM}	600	V	
On-State RMS Current (Full Cycle Sine Wave, 60 Hz, T _C = 85°C)	I _{T(RMS)}	6.0	A	
Peak Non-Repetitive Surge Current (One Full Cycle, 60 Hz, T _{Jinitial} = 25°C)	I _{TSM}	60	A	
Circuit Fusing Consideration (t = 8.3 msec)	l ² t	6.6	A ² sec	
Peak Gate Power (Pulse Width \leq 10 μ sec, T _C = 93°C)	Р _{GM}	2.0	W	
Average Gate Power (t = 8.3 msec, T _C = 93°C)	P _{G(AV)}	1.0	W	
Peak Gate Current (Pulse Width \leq 20 μ sec, T _C = 93°C)	I _{GM}	4.0	A	
Peak Gate Voltage (Pulse Width \leq 20 μ sec, T _C = 93°C)	V _{GM}	5.0	V	
Operating Junction Temperature Range	TJ	-40 to 110	°C	
Storage Temperature Range	T _{stg}	-40 to 150	°C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

 V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the device are exceeded.


ON Semiconductor®

http://onsemi.com

TRIACS 6.0 AMPERES RMS 600 VOLTS

G = Pb-Free Package

PIN ASSIGNMENT				
Main Terminal 1				
Main Terminal 2				
Gate				
Main Terminal 2				

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Мах	Unit
Thermal Resistance, – Junction-to-Case – Junction-to-Ambient – Junction-to-Ambient (Note 2)	${f R}_{ heta JC} \ {f R}_{ heta JA} \ {f R}_{ heta JA}$	3.5 88 80	°C/W
Maximum Lead Temperature for Soldering Purposes (Note 3)	TL	260	°C

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted; Electricals apply in both directions)

Characteristic	Symbol	Min	Тур	Max	Unit		
OFF CHARACTERISTICS							
Peak Repetitive Forward or Reverse Blocking Current (VAK = Rated V_{DRM} or V_{RRM} ; Gate Open)	T _J = 25°C T _J = 110°C	I _{DRM,} I _{RRM}			0.001 0.5	mA	
ON CHARACTERISTICS							
Forward On–State Voltage ($I_{TM} = \pm 8.5 \text{ A}$)		V _{TM}	-	-	1.6	V	
Gate Trigger Current (Continuous dc) (V _D = 12 V, R _L = 30 Ω) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-) MT2(-), G(+)		I _{GT}	- - - -	- - - -	5.0 5.0 5.0 10	mA	
Gate Trigger Voltage (V_D = 12 V, R_L = 30 Ω) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-) MT2(-), G(+)		V _{GT}	- - - -	_ _ _ _	1.3 1.3 1.3 1.3	V	
Gate Non–Trigger Voltage (Continuous dc) – (V _D = 12 V, R_L = 30 All Four Quadrants	V_{GD}	0.2	0.4	-	V		
Holding Current (V _D = 12 V, Initiating Current = \pm 100 mA)			-	-	20	mA	
Latching Current (V _D = 12 V, I _G = 60 mA) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-) MT2(-), G(+)		١L	- - - -		30 30 30 30 30	mA	

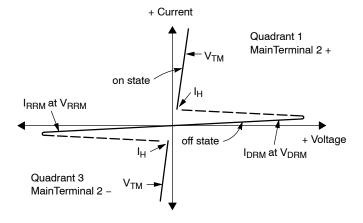
DYNAMIC CHARACTERISTICS

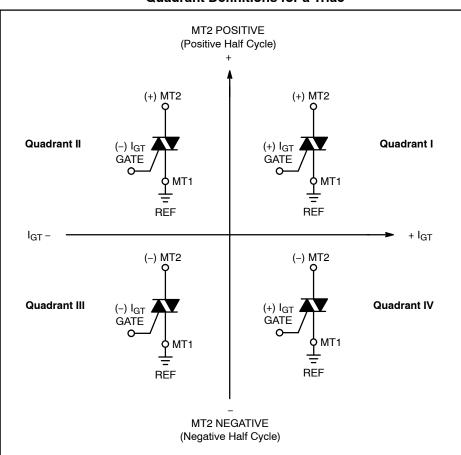
Rate of Change of Commutating Current (V _D = 200 V, I _{TM} = 1.8 A, Commutating dv/dt = 1.0 V/ μ sec, T _J = 110°C, f = 250 Hz, CL = 5.0 μ fd, LL = 80 mH, RS = 56 Ω , CS = 0.03 μ fd) With snubber	di/dt(c)	-	1.5	-	A/ms
Critical Rate of Rise of Off–State Voltage (V_D = 0.67 X Rated V _{DRM} , Exponential Waveform, Gate Open, T _J = 110°C)	dv/dt	60	-	-	V/μs
Critical Rate of Rise of On–State Current (T _J = 110°C, f = 120 Hz, I _G = 2 x I _{GT} , tr \leq 100 ns)	dl/dt	-	-	50	A/μs

2. These ratings are applicable when surface mounted on the minimum pad sizes recommended.

3. 1/8" from case for 10 seconds.

4. Pulse Test: Pulse Width \leq 2.0 msec, Duty Cycle \leq 2%.

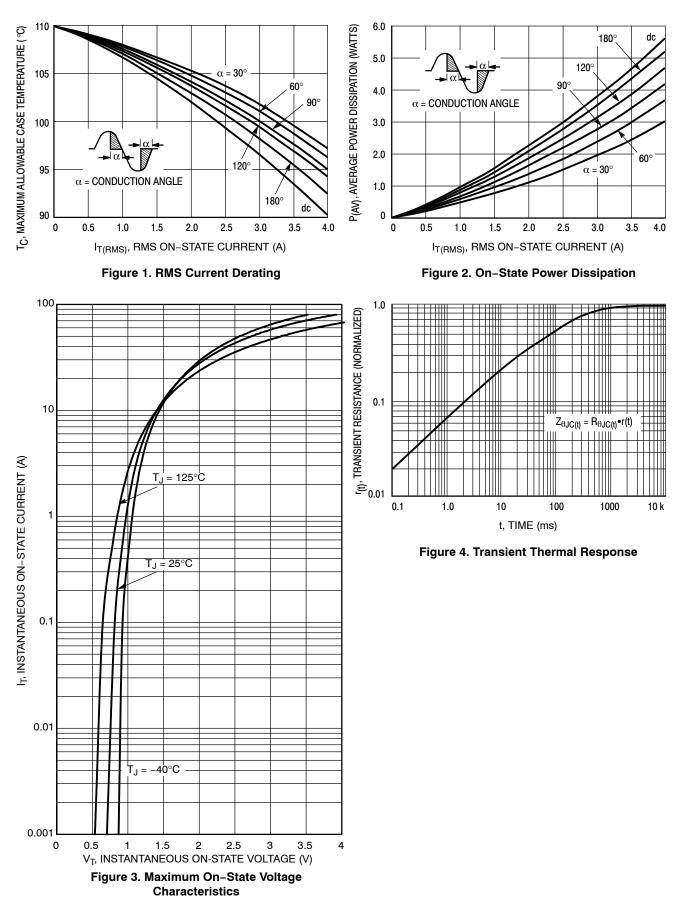

ORDERING INFORMATION

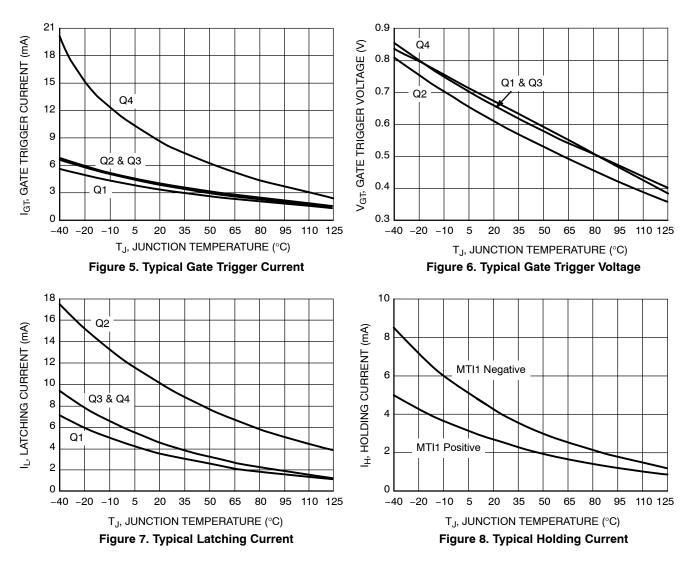

Device	Package Type	Package	Shipping [†]
NYT6-5D6DTG	IPAK (Pb-Free)	369D	75 Units / Rail
NYT6-5D6DT4G	DPAK (Pb-Free)	369C	2500 / Tape & Reel

⁺For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Voltage Current Characteristic of Triacs (Bidirectional Device)

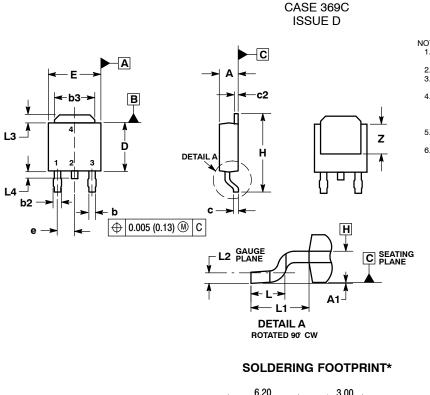
Symbol	Parameter
V _{DRM}	Peak Repetitive Forward Off-State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off-State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On-State Voltage
I _H	Holding Current

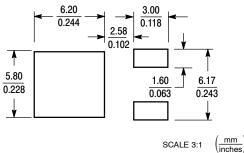




Quadrant Definitions for a Triac

All polarities are referenced to MT1.


With in-phase signals (using standard AC lines) quadrants I and III are used.

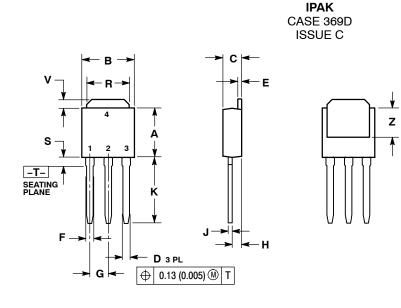


PACKAGE DIMENSIONS

DPAK (SINGLE GAUGE)

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME


- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: INCHES.
 THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS b3, L3 and Z.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 DIMENSIONS ON DE A DE DETERMINED AT THE E DIMENSIONS ON DE ADE DETERMINED AT THE
- 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

	INCHES		MILLIN	ETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.030	0.045	0.76	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
Е	0.250	0.265	6.35	6.73	
е	0.090	BSC	2.29 BSC		
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.108 REF		2.74 REF		
L2	0.020	BSC	0.51 BSC		
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Z	0.155		3.93		

STYLE 6: PIN 1. MT1 2. MT2 3. GATE 4. MT2

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090 BSC		2.29 BSC	
н	0.034	0.040	0.87 1.0	
J	0.018	0.023	0.46	0.58
К	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
V	0.035	0.050	0.89	1.27
Ζ	0.155		3.93	

STYLE 6: PIN 1. MT1 2. MT2 3. GATE MT2 4.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ScILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ScILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights on the rights of others. SCILLC products are not designed, intended, or authorized for used as components in systems intended for surption to resten in the body or other applications intended to surption or surption. blocs not convex any incerse under its patent rights nor the rights to others. Soluto products are not designed, interded, or during to be as components in system interded for surgical implay into the body, or other applications intended to support or sustain life, or for any other application in which the SCILLC product soluto create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative