

3-Level NPC Inverter Module

Product Preview

NXH600N105H7F5S2HG, NXH600N105H7F5P2HG

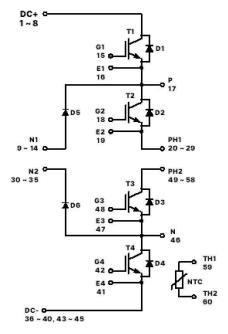
The NXH600N105H7F5S2HG/P2HG is a power module in F5BP package containing an I-type neutral point clamped three-level inverter. The integrated field stop trench IGBTs and FRDs provide lower conduction and switching losses, enabling designers to achieve high efficiency, high power density and superior reliability.

Features

- I-type Neutral Point Clamped Three-level Inverter Module
- 1050 V Field Stop 7 IGBTs
- Low Inductive Layout
- Solder Pins and Press Fit Pins
- Integrated NTC Thermistor
- These Devices are Pb-Free, Halide Free and are RoHS Compliant

Typical Applications

- Energy Storage System
- Solar Inverter
- Uninterruptable Power Supplies Systems



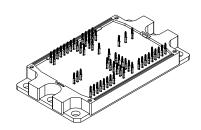
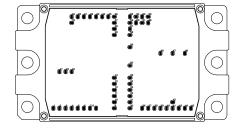


Figure 1. NXH600N105H7F5S2HG/P2HG Schematic Diagram

This document contains information on a product under development. **onsemi** reserves the right to change or discontinue this product without notice.

PIM60 112.00x62.00x12.00 CASE 180CW


PIM60 112.00x62.00x12.00 CASE 180HY

MARKING DIAGRAM

XXXXX = Device Code
G = Pb-Free Package
AT = Assembly & Test Site Code
YYWW = Year and Work Week Code

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

MODULE CHARACTERISTICS

Operating Temperature under Switching Condition	T _{VJOP}	-40 to 150	°C
Storage Temperature Range	T _{stg}	-40 to 125	°C
Isolation Test Voltage, t = 2 s, 50 Hz (Note 1)	V _{is}	4800	V _{RMS}
Stray Inductance	L _{s CE}	15	nH
Terminal Connection Torque (M5, Screw)	M	3 to 5	Nm
Weight	G	245	g
Creepage Distance (Terminal to Heatsink)		17.46	mm
Creepage Distance (Terminal to Terminal)		6.48	mm
Clearance Distance (Terminal to Heatsink)		15.62	mm
Clearance Distance (Terminal to Terminal)		5.05	mm
Comparative Tracking Index	CTI	>600	·

^{1. 4800} VAC $_{\mbox{\scriptsize RMS}}$ for 2 second duration is equivalent to 4000 VAC $_{\mbox{\scriptsize RMS}}$ for 1 minute duration.

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Value	Unit
OUTER IGBT (T1, T4)			•
Collector-Emitter Voltage	V _{CES}	1050	V
Gate-Emitter Voltage Positive Transient Gate-Emitter Voltage (T _{pulse} = 5 ms, D < 0.10)	V _{GE}	±20 30	V
Continuous Collector Current @ T _c = 80°C (T _J = 175°C)	lc	429	А
Pulsed Peak Collector Current @ Tc = 80°C (T _J = 175°C), T _{pulse} = 1 ms	I _{Cpulse}	1287	А
Power Dissipation (T _J = 175°C, Tc = 80°C)	P _{tot}	1080	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	175	°C
INNER IGBT (T2, T3)			
Collector-Emitter Voltage	V _{CES}	1050	V
Gate-Emitter Voltage Positive Transient Gate-Emitter Voltage (T _{pulse} = 5 ms, D < 0.10)	V _{GE}	+20 30	V
Continuous Collector Current @ T _c = 80°C (T _J = 175°C)	Ic	433	А
Pulsed Peak Collector Current @ Tc = 80°C (T _J = 175°C), T _{pulse} = 1 ms	I _{Cpulse}	1299	А
Power Dissipation (T _J = 175°C, Tc = 80°C)	P _{tot}	1080	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	175	°C
SIC NEUTRAL POINT DIODE (D5, D6)			
Peak Repetitive Reverse Voltage	V_{RRM}	1050	V
Continuous Forward Current @ Tc = 80°C (T _J = 175°C)	I _F	192	А
Repetitive Peak Forward Current (T _J = 175°C), T _{pulse} = 1 ms	I _{FRM}	576	Α
Maximum Power Dissipation @ Tc = 80°C (T _J = 175°C)	P _{tot}	419	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	175	°C
INVERSE DIODES (D1, D2, D3, D4)			
Peak Repetitive Reverse Voltage	V_{RRM}	1050	V
Continuous Forward Current @ Tc = 80°C (T _J = 175°C)	IF	196	А
Repetitive Peak Forward Current (T _J = 175°C), T _{pulse} = 1 ms	I _{FRM}	588	Α

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted) (continued)

Parameter	Symbol	Value	Unit
INVERSE DIODES (D1, D2, D3, D4)			
Maximum Power Dissipation @ Tc = 80°C (T _J = 175°C)	P _{tot}	434	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

2. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe

ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise noted)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
OUTER IGBT (T1, T4)	•	•				
Collector-Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} = 1050 V	I _{CES}	-	-	500	μΑ
Collector-Emitter Saturation Voltage	V _{GE} = 15 V, I _C = 600 A, T _J = 25°C	V _{CE(sat)}	-	1.6	2.3	V
	V _{GE} = 15 V, I _C = 600 A, T _J = 150°C	` ′	_	2.0	-	
Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 600 \text{ mA}$	V _{GE(TH)}	4.0	5.5	6.9	V
Gate Leakage Current	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	-	-	1	μΑ
Internal Gate Resistor		R_{g}	_	0.58	-	Ω
Turn-off safe operating area	V_{CC} < 800 V, $R_{G \text{ (off)}} \ge 30 \Omega$, T_{vj} < 150°C	, and the second	_	800	-	Α
Turn-on Delay Time	T _J = 25°C	t _{d(on)}	_	260	_	ns
Rise Time	$V_{CE} = 600 \text{ V}, I_{C} = 200 \text{ A}$ $V_{GE} = -9 \text{ V to } +15 \text{ V}, R_{G \text{ (on)}} = 9 \Omega,$	t _r	_	60	-	
Turn-off Delay Time	$R_{G \text{ (off)}} = 18 \Omega$	t _{d(off)}	_	1264	-	
Fall Time		t _f	-	15	-	
Turn-on Switching Loss per Pulse	1	E _{on}	-	6570	-	μJ
Turn-off Switching Loss per Pulse	1	E _{off}	-	9400	-	
Turn-on Delay Time	T _J = 125°C	t _{d(on)}	-	230	-	ns
Rise Time	$V_{CE} = 600 \text{ V}, I_{C} = 200 \text{ A}$ $V_{GE} = -9 \text{ V to } +15 \text{ V}, R_{G \text{ (on)}} = 9 \Omega,$	t _r	-	63	-	
Turn-off Delay Time	$R_{G \text{ (off)}} = 18 \Omega$	t _{d(off)}	_	1369	-	
Fall Time	1	t _f	-	9.8	-	
Turn-on Switching Loss per Pulse	1	E _{on}	-	7130	-	μJ
Turn-off Switching Loss per Pulse	1	E _{off}	-	11860	-	
Input Capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 100 kHz	C _{ies}	_	48843	-	pF
Output Capacitance		C _{oes}	-	1767	-	
Reverse Transfer Capacitance	1	C _{res}	-	281	-	
Total Gate Charge	$V_{CE} = 600 \text{ V}, I_{C} = 57 \text{ A}, V_{GE} = -15/+20 \text{ V}$	Q_g	-	2988	-	nC
Thermal Resistance - Chip-to-heatsink	Thermal grease, Thickness = 2 Mil ±2%,	R_{thJH}	-	0.139	-	°C/W
Thermal Resistance - Chip-to-case	$\lambda = 2.87 \text{ W/mK}$	R _{thJC}	_	0.088	-	°C/W
SIC NEUTRAL POINT DIODE (D5, D6)						
Diode Forward Voltage	I _F = 200 A, T _J = 25°C	V _F	-	1.6	1.75	V
	I _F = 200 A, T _J = 150°C		-	2.1	-	
Reverse Recovery Time	T _J = 25°C	t _{rr}	-	20	-	ns
Reverse Recovery Charge	$V_{CE} = 600 \text{ V}, I_{C} = 200 \text{ A}$ $V_{GE} = -9 \text{ V to } +15 \text{ V}, R_{G \text{ (on)}} = 9 \Omega$	Q _{rr}	-	400	_	nC
Peak Reverse Recovery Current	- GE - 5 - 15 - 15 - 15 - 16 (on) - 5 - 15	I _{RRM}	_	24	_	Α
Peak Rate of Fall of Recovery Current	1	di/dt	_	2.5	_	A/ns
Reverse Recovery Energy	1	E _{rr}	_	117	_	μJ

Operating parameters

ELECTRICAL CHARACTERISTICS (T_{.I} = 25°C unless otherwise noted) (continued)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
SIC NEUTRAL POINT DIODE (D5, D6)	•					
Reverse Recovery Time	T _J = 125°C	t _{rr}	-	23	-	ns
Reverse Recovery Charge	$V_{CE} = 600 \text{ V}, I_{C} = 200 \text{ A}$ $V_{GE} = -9 \text{ V to } +15 \text{ V}, R_{G \text{ (off)}} = 9 \Omega$	Q _{rr}	-	500	-	nC
Peak Reverse Recovery Current	_ GE	I _{RRM}	-	29	-	Α
Peak Rate of Fall of Recovery Current		di/dt	-	2.4	-	A/ns
Reverse Recovery Energy		E _{rr}	-	150	-	μJ
Thermal Resistance - Chip-to-heatsink	Thermal grease, Thickness = 2 Mil ±2%,	R _{thJH}	-	0.331	_	°C/W
Thermal Resistance - Chip-to-case	λ = 2.87 W/mK	R _{thJC}	-	0.227	-	°C/W
INNER IGBT (T2, T3)	•	•		•		<u>.</u>
Collector-Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} = 1050 V	I _{CES}	-	-2	500	μΑ
Collector-Emitter Saturation Voltage	V _{GE} = 15 V, I _C = 600 A, T _J = 25°C	V _{CE(sat)}	-	1.6	2.3	V
	V _{GE} = 15 V, I _C = 600 A, T _J = 150°C	1	-	2.0	-	1
Gate-Emitter Threshold Voltage	V _{GE} = V _{CE} , I _C = 600 mA	V _{GE(TH)}	4.0	5.5	6.9	V
Gate Leakage Current	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	-	-0.02	1	μΑ
Internal Gate Resistor		R_{g}	-	0.58	-	Ω
Turn-off Safe Operating Area	V_{CC} < 800V, $R_{G \text{ (off)}} \ge 35 \Omega$, T_{vj} < 150°C	Ŭ	-	800	-	Α
Turn-on Delay Time	T _J = 25°C	t _{d(on)}	-	233	_	ns
Rise Time	$V_{CE} = 600 \text{ V}, I_{C} = 200 \text{ A}$ $V_{GE} = -9 \text{ V to } +15 \text{ V}, R_{G \text{ (on)}} = 7 \Omega,$	t _r	_	57	-	1
Turn-off Delay Time	$R_{G \text{ (off)}} = 31 \Omega$	t _{d(off)}	_	2200	-	1
Fall Time	1	t _f	_	18	_	1
Turn-on Switching Loss per Pulse	1	E _{on}	_	8640	-	μJ
Turn-off Switching Loss per Pulse	1	E _{off}	-	11800	-	1
Turn-on Delay Time	T _J = 125°C	t _{d(on)}	-	210	-	ns
Rise Time	V_{CE} = 600 V, I_{C} = 200 A V_{GE} = -9 V to +15 V, $R_{G \text{ (on)}}$ = 7 Ω,	t _r	-	62	-	1
Turn-off Delay Time	$R_{G \text{ (off)}} = 31 \Omega$	t _{d(off)}	-	2350	-	1
Fall Time	1	t _f	-	18	-	1
Turn-on Switching Loss per Pulse	1	E _{on}	-	12510	-	μJ
Turn-off Switching Loss per Pulse	1	E _{off}	-	14500	-	1
Input Capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 100 kHz	C _{ies}	-	47927	-	pF
Output Capacitance	1	C _{oes}	-	1871	-	1
Reverse Transfer Capacitance	1	C _{res}	-	304	-	1
Total Gate Charge	$V_{CE} = 600 \text{ V}, I_{C} = 57 \text{ A}, V_{GE} = -15/+20 \text{ V}$	Q_{g}	-	2940	_	nC
Thermal Resistance - Chip-to-heatsink	Thermal grease, Thickness = 2 Mil ±2%,	R _{thJH}	-	0.139	-	°C/W
Thermal Resistance - Chip-to-case	$\lambda = 2.87 \text{ W/mK}$	R _{thJC}	-	0.088	-	°C/W
INVERSE DIODES (D1, D2, D3, D4)						, <u>.</u>
Diode Forward Voltage	I _F = 300 A, T _J = 25°C	V _F	-	2.5	3.4	V
	I _F = 300 A, T _J = 150°C	1	-	2.3	_	1
Reverse Recovery Time	T _J = 25°C	t _{rr}	-	100	-	ns
Reverse Recovery Charge	$V_{CE} = 600 \text{ V}, I_{C} = 200 \text{ A}$ $V_{GE} = -9 \text{ V} \text{ to } +15 \text{ V}, R_{G \text{ (on)}} = 7 \Omega$	Q _{rr}	-	5580	-	nC
Peak Reverse Recovery Current	3	I _{RRM}	-	135	-	Α
Peak Rate of Fall of Recovery Current	1	di/dt	-	2.8	-	A/ns
Reverse Recovery Energy	1	E _{rr}	_	1664	_	μJ

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted) (continued)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
INVERSE DIODES (D1, D2, D3, D4)	•					
Reverse Recovery Time	T _J = 125°C	t _{rr}	-	187	-	ns
Reverse Recovery Charge	$V_{CE} = 600 \text{ V}, I_{C} = 200 \text{ A}$ $V_{GE} = -9 \text{ V} \text{ to } +15 \text{ V}, R_{G \text{ (on)}} = 7 \Omega$	Q _{rr}	-	16903	-	nC
Peak Reverse Recovery Current]	I _{RRM}	-	201	-	Α
Peak Rate of Fall of Recovery Current	7	di/dt	-	2.6	-	A/ns
Reverse Recovery Energy	7	E _{rr}	-	6485	-	μJ
Thermal Resistance - Chip-to-heatsink	Thermal grease, Thickness = 2 Mil ±2%,	R_{thJH}	-	0.277	-	°C/W
Thermal Resistance - Chip-to-case	$\lambda = 2.87 \text{ W/mK}$	R _{thJC}	-	0.220	-	°C/W
THERMISTOR CHARACTERISTICS						
Nominal Resistance	T = 25°C	R ₂₅	-	5	-	kΩ
Nominal Resistance	T = 100°C	R ₁₀₀	-	492.2	-	Ω
Deviation of R25		R/R	-1	-	1	%
Power Dissipation		P_{D}	-	5	-	mW
Power Dissipation Constant			-	1.3	-	mW/K
B-value	B(25/85), tolerance ±1%		-	3430	-	K

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION

Orderable Part Number Marking		Package	Shipping
NXH600N105H7F5S2HG	NXH600N105H7F5S2HG	F5 – PIM60 112x62 (SOLDER PIN) (Pb-Free / Halide Free)	8 Units / Blister Tray
NXH600N105H7F5P2HG	NXH600N105H7F5P2HG	F5 – PIM60 112x62 (PRESS FIT PIN) (Pb-Free / Halide Free)	8 Units / Blister Tray

TYPICAL CHARACTERISTICS - IGBT T1/T4 AND D5/D6 DIODE

1 000

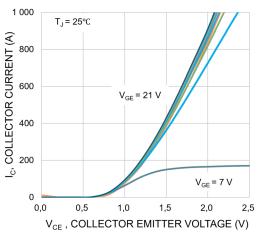


Figure 2. Typical Output Characteristics - IGBT

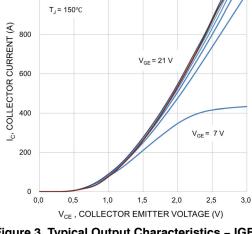


Figure 3. Typical Output Characteristics - IGBT

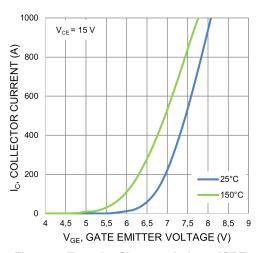


Figure 4. Transfer Characteristics - IGBT

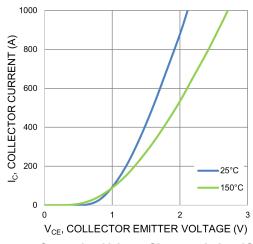


Figure 5. Saturation Voltage Characteristic - IGBT

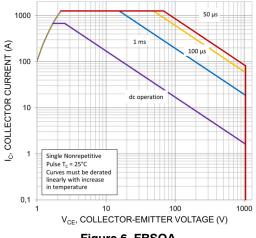


Figure 6. FBSOA

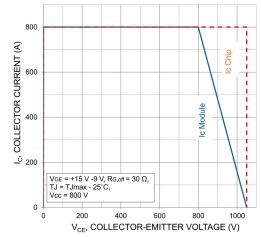


Figure 7. RBSOA

TYPICAL CHARACTERISTICS - IGBT T1/T4 AND D5/D6 DIODE (continued)

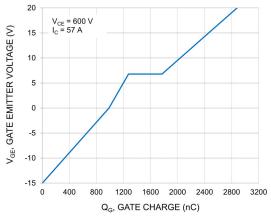


Figure 8. Gate Voltage vs. Gate Charge

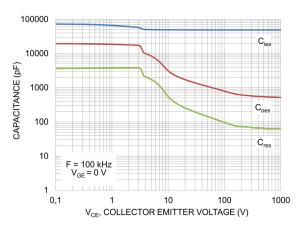


Figure 9. Capacitance

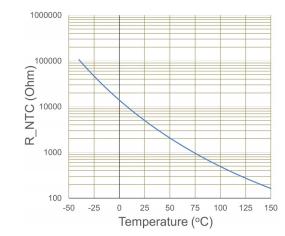


Figure 10. Temperature vs. NTC Value

TYPICAL CHARACTERISTICS - IGBT T2/T3 AND D3/D4, D1/D2 DIODE

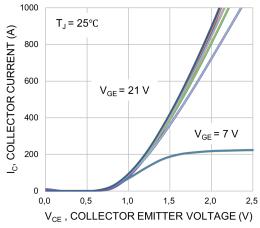


Figure 11. Typical Output Characteristics

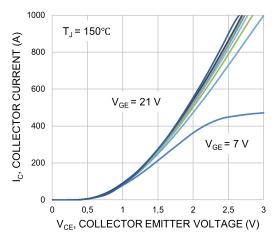


Figure 12. Typical Output Characteristics

TYPICAL CHARACTERISTICS - IGBT T2/T3 AND D3/D4, D1/D2 DIODE (continued)

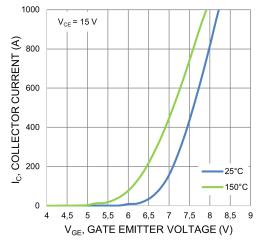


Figure 13. Transfer Characteristics - IGBT

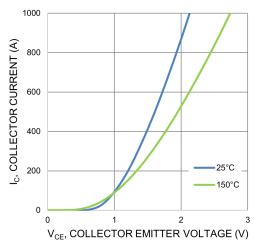


Figure 14. Saturation Voltage Characteristic - IGBT

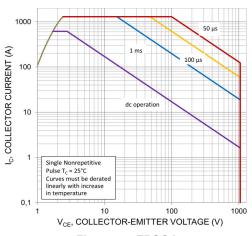


Figure 15. FBSOA

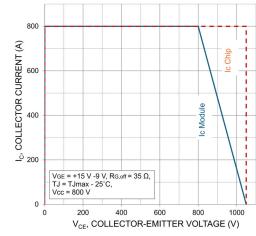


Figure 16. RBSOA

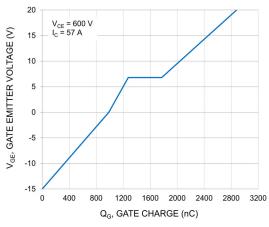


Figure 17. Gate Voltage vs. Gate Charge

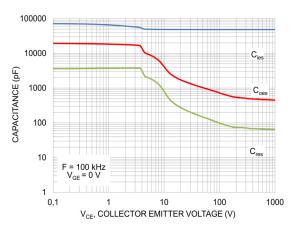


Figure 18. Capacitance vs. V_{CE}

TYPICAL CHARACTERISTICS - IGBT T2/T3 AND D3/D4, D1/D2 DIODE (continued)

Figure 19. Transient Thermal Impedance (IGBT)

TYPICAL CHARACTERISTIC - D2, D3 (SiC INVERSE DIODE)

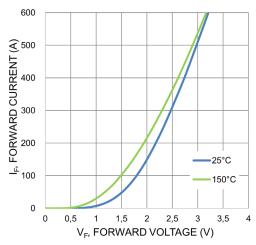


Figure 20. Inverse Diode Forward Characteristics

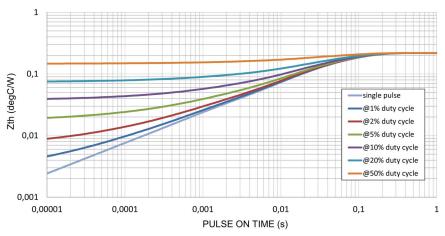


Figure 21. Transient Thermal Impedance (Inverse Diode)

TYPICAL CHARACTERISTIC - D5/D6 (NEUTRAL POINT DIODE)

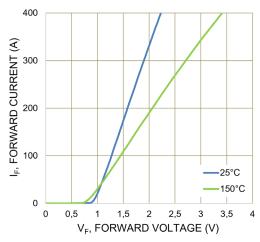


Figure 22. Neutral Diode Forward Characteristics

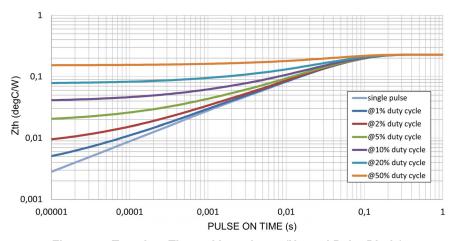


Figure 23. Transient Thermal Impedance (Neutral Point Diode)

TYPICAL CHARACTERISTIC - T1||D5 OR T4||D6

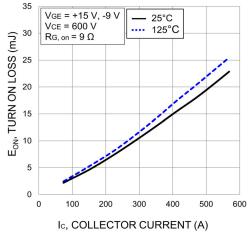


Figure 24. Typical Turn On Loss vs. $I_{\mathbb{C}}$

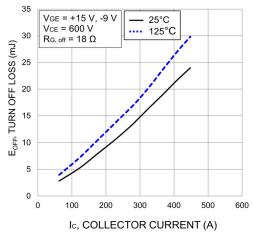


Figure 25. Typical Turn Off Loss vs. I_C

TYPICAL CHARACTERISTIC - T1||D5 OR T4||D6 (continued)

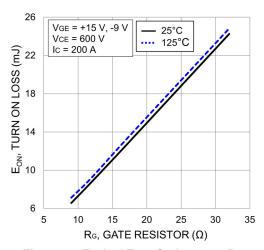


Figure 26. Typical Turn On Loss vs. R_G

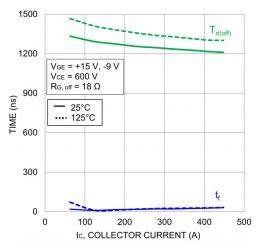


Figure 28. Typical Turn-Off Switching Time vs. I_C

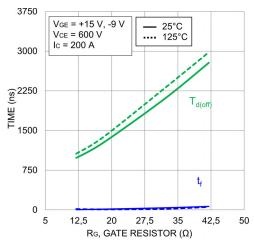


Figure 30. Typical Turn-Off Switching Time vs. R_G

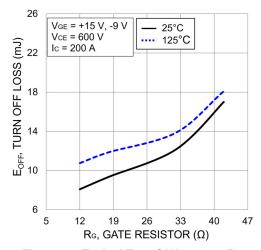


Figure 27. Typical Turn Off Loss vs. R_G

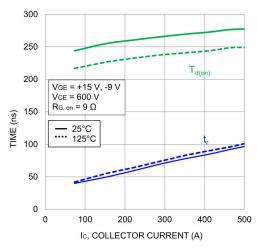


Figure 29. Typical Turn-On Switching Time vs. I_C

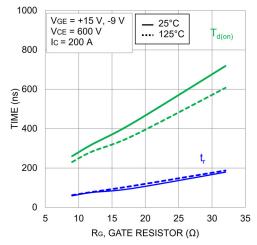


Figure 31. Typical Turn-On Switching Time vs. R_G

TYPICAL CHARACTERISTIC - D5/D6 (NEUTRAL POINT DIODE)

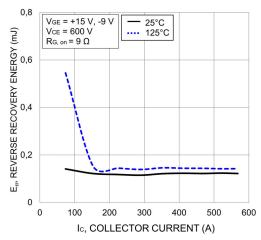


Figure 32. Typical Reverse Recovery Energy Loss vs. I_C

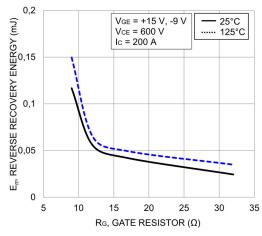


Figure 33. Typical Reverse Recovery Energy Loss vs. $R_{\rm G}$

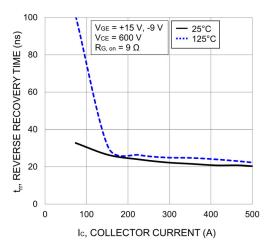


Figure 34. Typical Reverse Recovery Time vs. I_C

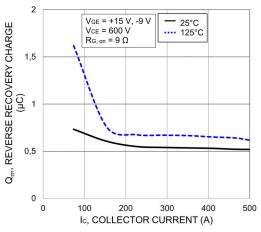


Figure 35. Typical Reverse Recovery Charge vs. I_C

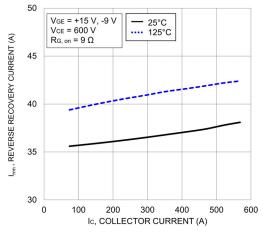


Figure 36. Typical Reverse Recovery Current vs. I_C

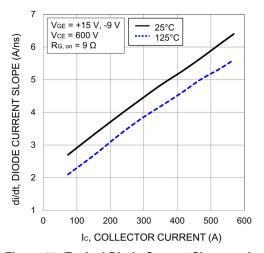


Figure 37. Typical Diode Current Slope vs. I_C

TYPICAL CHARACTERISTIC - D5/D6 (NEUTRAL POINT DIODE) (continued)

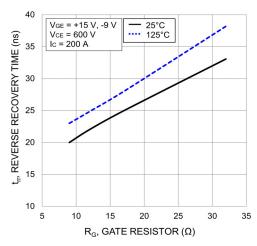


Figure 38. Typical Reverse Recovery Time vs. R_G

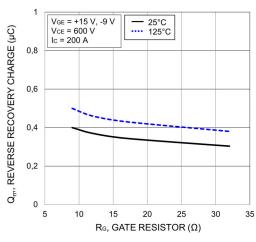


Figure 39. Typical Reverse Recovery Charge vs. R_G

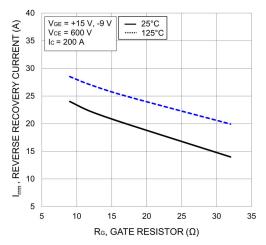


Figure 40. Typical Reverse Recovery Current vs. R_G

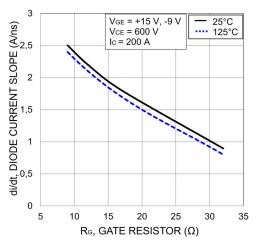


Figure 41. Typical Diode Current Slope vs. R_G

TYPICAL CHARACTERISTIC - T2||D3 + D4 OR T3||D1 + D2

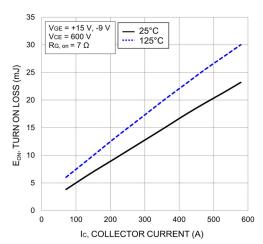


Figure 42. Typical Turn On Loss vs. I_C

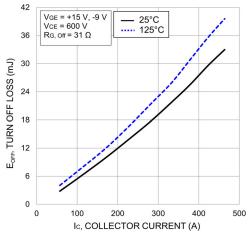


Figure 43. Typical Turn Off Loss vs. I_C

TYPICAL CHARACTERISTIC - T2||D3 + D4 OR T3||D1 + D2 (continued)

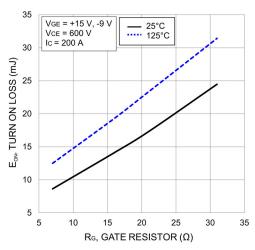


Figure 44. Typical Turn On Loss vs. R_G

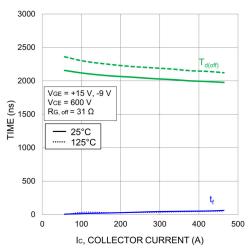


Figure 46. Typical Turn-Off Switching Time vs. I_C

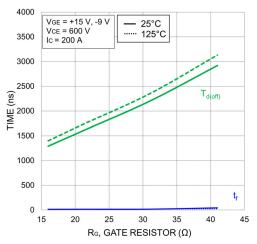


Figure 48. Typical Turn-Off Switching Time vs. R_G

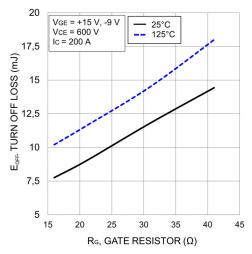


Figure 45. Typical Turn Off Loss vs. R_G

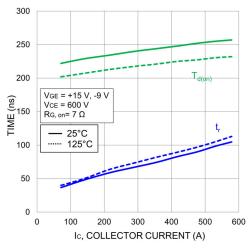


Figure 47. Typical Turn-On Switching Time vs. I_C

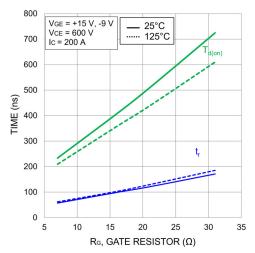


Figure 49. Typical Turn-On Switching Time vs. R_G

TYPICAL CHARACTERISTIC - T2||D3 + D4 OR T3||D1 + D2 (continued)

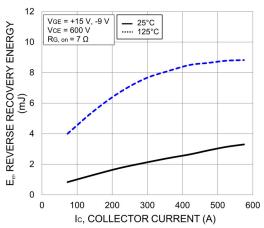


Figure 50. Typical Reverse Recovery Energy Loss

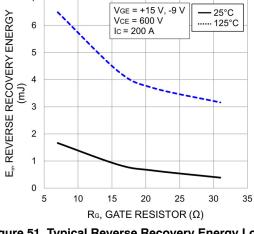


Figure 51. Typical Reverse Recovery Energy Loss vs. R_G

Figure 52. Typical Reverse Recovery Time vs. I_C

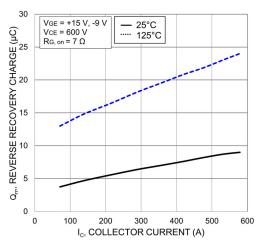


Figure 53. Typical Reverse Recovery Charge vs. I_C

Figure 54. Typical Reverse Recovery Current vs. I_C

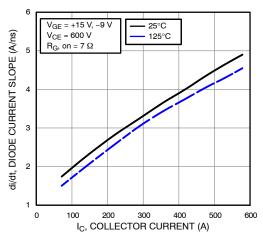


Figure 55. Typical di/dt vs. I_C



Figure 56. Typical Reverse Recovery Time vs. R_G

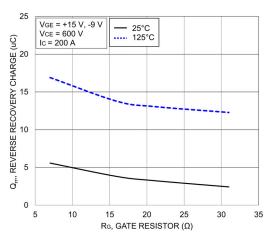


Figure 57. Typical Reverse Recovery Charge vs. R_G

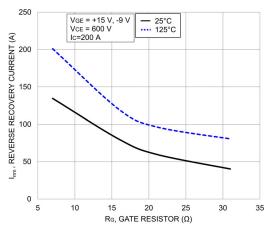
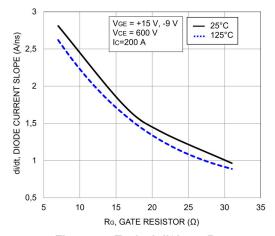
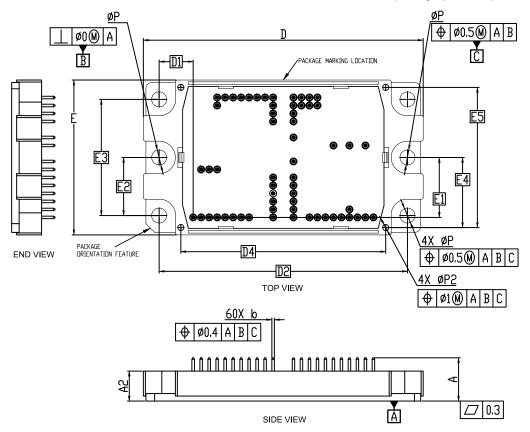


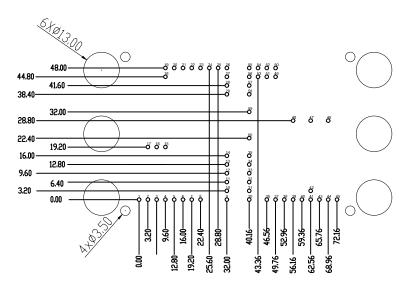
Figure 58. Typical Reverse Recovery Peak Current vs. R_G




Figure 59. Typical di/dt vs. R_G

PACKAGE DIMENSIONS

PIM60 112.00x62.00x12.00 CASE 180CW ISSUE O


NOTES:

- 1. Dimensioning and tolerancing conform to ASME Y14.5
- 2. All dimensions are in millimeters.
- 3. Pin-grid is 3.2mm.
- 4. Package marking is located on the side opposite the package orientation feature.
- 5. The pins are gold-plated solder pin.

	MI	MILLIMETERS					
DIM	MIN.	NOM.	MAX.				
Α	17.00	17.40	17.80				
A2	11.70	12.00	12.30				
b	0.95	1.00	1.05				
D	111.60	112.00	112.40				
D1		13.62 BSC					
D2		99.40 BSC					
D4		82.00 BSC					
E	61.60	62.00	62.40				
E1		24.00 BSC					
E2		23.25 BSC					
E3		46.50 BSC	:				
E4	28.05 BSC						
E5	56.10 BSC						
Р	5.90	6.00	6.10				
P2	2.20	2.30	2.40				

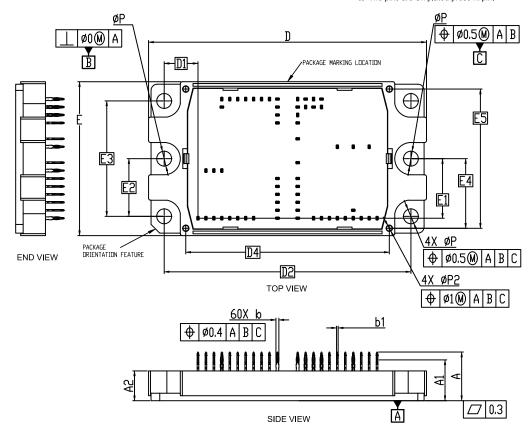
PIM60 112.00x62.00x12.00 CASE 180CW ISSUE O

RECOMMENDED MOUNTING PATTERN

* For additional Information on our Pb—Free strategy and soldering details, please download the Onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

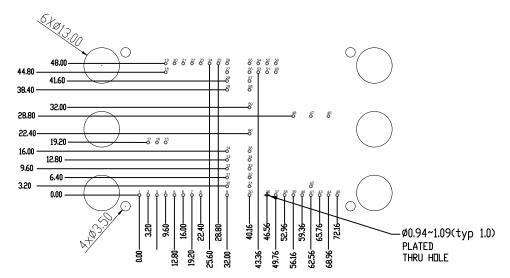
NOTE 2:

				Pin POSITI	ION			
Pin	х	Υ	Pin	Х	Υ	Pin	Х	Υ
1	0.00	0.00	24	25.60	48.00	47	62.56	28.80
2	3.20	0.00	25	28.80	48.00	48	56.16	28.80
3	6.40	0.00	26	32.00	48.00	49	49.76	44.80
4	9.60	0.00	27	32.00	44.80	50	49.76	48.00
5	12.80	0.00	28	32.00	41.60	51	46.56	44.80
6	16.00	0.00	29	32.00	38.40	52	46.56	48.00
7	19.20	0.00	30	40.16	0.00	53	43.36	44.80
8	22.40	0.00	31	40.16	3.20	54	43.36	48.00
9	32.00	0.00	32	40.16	6.40	55	40.16	48.00
10	32.00	3.20	33	40.16	9.60	56	40.16	44.80
11	32.00	6.40	34	40.16	12.80	57	40.16	41.60
12	32.00	9.60	35	40.16	16.00	58	40.16	38.40
13	32.00	12.80	36	46.56	0.00	59	40.16	32.00
14	32.00	16.00	37	49.76	0.00	60	40.16	22.40
15	9.60	19.20	38	52.96	0.00			
16	6.40	19.20	39	56.16	0.00			
17	3.20	19.20	40	59.36	0.00			
18	9.60	44.80	41	62.56	0.00			
19	9.60	48.00	42	62.56	3.20			
20	12.80	48.00	43	65.76	0.00			
21	16.00	48.00	44	68.96	0.00			
22	19.20	48.00	45	72.16	0.00			
23	22.40	48.00	46	68.96	28.80			


PACKAGE DIMENSIONS

PIM60 112.00x62.00x12.00

CASE 180HY ISSUE O


NOTES:

- 1. Dimensioning and tolerancing conform to ASME Y14.5
- 2. All dimensions are in millimeters.
- 3. Dimensions b and b1 apply to the plated terminals and are measured at dimension A1
- 4. Pin-grid is 3.2mm.
- 5. Package marking is located on the side opposite the package orientation feature.
- 6. The pins are Sn plated press fit pin.

MI	LLIMETER	s				
MIN.	NOM.	MAX.				
19.20	19.60	20.00				
16.25	16.45	16.65				
11.70	12.00	12.30				
1.15	1.20	1.25				
0.59	0.64	0.69				
111.60	112.00	112.40				
	13.62 BSC					
	99.40 BSC					
	82.00 BSC					
61.60	62.00	62.40				
	24.00 BSC					
	23.25 BSC					
46.50 BSC						
28.05 BSC						
56.10 BSC						
5.90	5.90 6.00					
2.20	2.30	2.40				
	MIN. 19.20 16.25 11.70 1.15 0.59 111.60 61.60	19.20 19.60 16.25 16.45 11.70 12.00 1.15 1.20 0.59 0.64 111.60 112.00 13.62 BSC 82.00 BSC 61.60 62.00 23.25 BSC 28.05 BSC 28.05 BSC 56.10 BSC				

PIM60 112.00x62.00x12.00 CASE 180HY ISSUE O

RECOMMENDED MOUNTING PATTERN

* For additional Information on our Pb—Free strategy and soldering details, please download the Onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTE 2:

	Pin POSITION							
Pin	Х	Y	Pin	Х	Υ	Pin	Х	Υ
1	0.00	0.00	24	25.60	48.00	47	62.56	28.80
2	3.20	0.00	25	28.80	48.00	48	56.16	28.80
3	6.40	0.00	26	32.00	48.00	49	49.76	44.80
4	9.60	0.00	27	32.00	44.80	50	49.76	48.00
5	12.80	0.00	28	32.00	41.60	51	46.56	44.80
6	16.00	0.00	29	32.00	38.40	52	46.56	48.00
7	19.20	0.00	30	40.16	0.00	53	43.36	44.80
8	22.40	0.00	31	40.16	3.20	54	43.36	48.00
9	32.00	0.00	32	40.16	6.40	55	40.16	48.00
10	32.00	3.20	33	40.16	9.60	56	40.16	44.80
11	32.00	6.40	34	40.16	12.80	57	40.16	41.60
12	32.00	9.60	35	40.16	16.00	58	40.16	38.40
13	32.00	12.80	36	46.56	0.00	59	40.16	32.00
14	32.00	16.00	37	49.76	0.00	60	40.16	22.40
15	9.60	19.20	38	52.96	0.00			
16	6.40	19.20	39	56.16	0.00			
17	3.20	19.20	40	59.36	0.00			
18	9.60	44.80	41	62.56	0.00			
19	9.60	48.00	42	62.56	3.20			
20	12.80	48.00	43	65.76	0.00			
21	16.00	48.00	44	68.96	0.00			
22	19.20	48.00	45	72.16	0.00			
23	22.40	48.00	46	68.96	28.80			

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized tor use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Sho

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales