# **Automotive Power Over Coax Power Management IC for Safety Camera**

# NCV92310

The NCV92310 is part of the onsemi image sensor power management IC (PMIC) family. It is optimized to supply power over coax (POC) automotive application sub-systems such as rear, front and surround view cameras. This NCV92310 integrates one power over coax DCDC converter, 2 high efficiency (1 A and 500 mA) Step-down DCDC converters with DVS (Dynamic Voltage Scale) and 1 low dropout (LDO) voltage regulators in a 3.5x3.5 mm QFNW20 package.

## Features

- 1 Power Over Coax DCDC Converter (2.15 MHz, 2.2 µH/10 µF, 1.2 A)
  - Programmable Output Voltage from 2.8 V to 5.0 V by 100 mV Steps
- 1 DCDC Converters (2.15 MHz, 1  $\mu$ H/10  $\mu$ F, 1 A)
  - Programmable Output Voltage from 0.6 V to 2.175 V by 25 mV Steps
- 1 DCDC Converters (2.15 MHz, 1 µH/10 µF, 500 mA)
  - Programmable Output Voltage from 0.6 V to 2.175 V by 25 mV Steps
- 1 Low Noise Low Drop Out Regulator (2.2 μF, 300 mA)
  - Programmable Output Voltage from 2.6 V to 3.3 V by 100 mV Steps
  - ◆ 50 µVrms Typical Low Output Noise (Vout = 2.8 V, 10 Hz to 100 kHz)
- Control
  - ♦ 400 kHz / 1 MHz I<sup>2</sup>C Compatible
  - I<sup>2</sup>C Enable Control Bits
  - ◆ /RST and Interrupt Output Pin
  - Customizable Power Up / Down Sequence with Soft Start
- Extended Input Voltage Range from 4.6 V to 18 V
- Footprint: 3.5x3.5 mm QFNW-20 0.5 mm Pitch

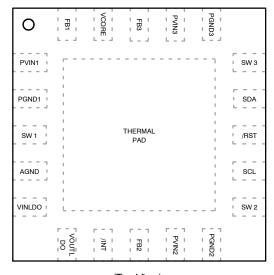
## Applications

- Power Over Coax POL Supply
- Automotive ADAS Camera Modules
- Industrial Camera Modules



QFNW20 3.5x3.5, 0.5P CASE 484AV

## MARKING DIAGRAM




Α

Y



## **PIN CONNECTIONS**



(Top View) 20-Pins 3.5x3.5 0.50 mm pitch DFN

## **ORDERING INFORMATION**

See detailed ordering and shipping information on page 59 of this data sheet.

# TABLE OF CONTENTS

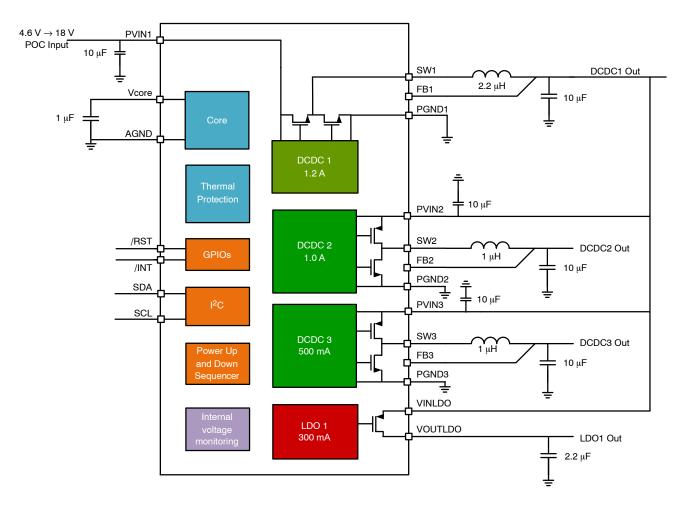



Figure 1. Typical Application Circuit

# FUNCTIONAL BLOCK DIAGRAM

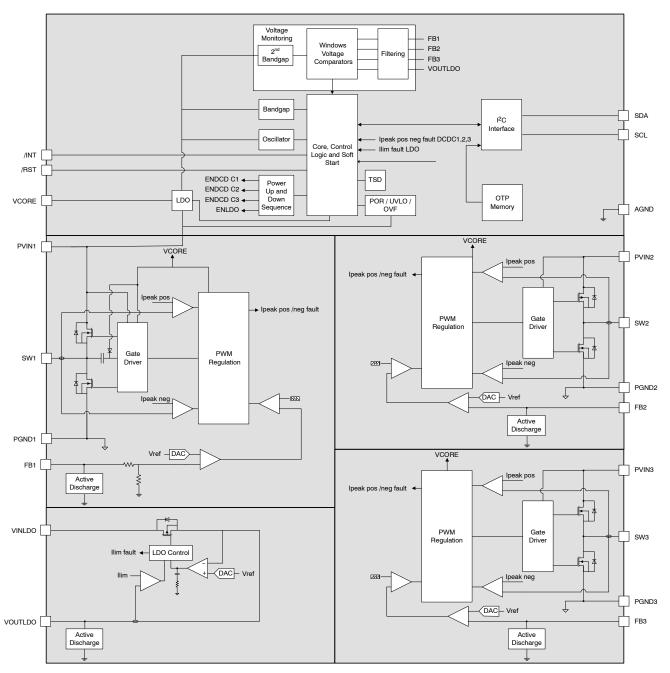



Figure 2. Simplified Block Diagram

# **PIN OUT DESCRIPTION**

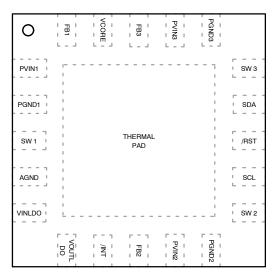



Figure 3. Pin Out (Top view)

## **PIN FUNCTION DESCRIPTION**

| Pin   | Name        | Туре           | Description                                                                                                                                                                                                                                                  |  |  |  |
|-------|-------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| GENE  | ERAL        | •              |                                                                                                                                                                                                                                                              |  |  |  |
| 19    | VCORE       | Analog Output  | Reference voltage. A 1 $\mu$ F ceramic capacitor (220 nF minimum) must bypass this pin to ground.                                                                                                                                                            |  |  |  |
| 4     | AGND        | Analog Ground  | Analog Ground. Analog and digital modules ground. Must be connected to the system ground.                                                                                                                                                                    |  |  |  |
| 7     | /INT        | Digital Output | errupt push-pull output.                                                                                                                                                                                                                                     |  |  |  |
| 13    | /RST        | Digital Output | Reset push-pull output.                                                                                                                                                                                                                                      |  |  |  |
| 12    | SCL         | Digital Input  | I <sup>2</sup> C interface Clock                                                                                                                                                                                                                             |  |  |  |
| 14    | SDA         | Digital Input  | I <sup>2</sup> C interface Data                                                                                                                                                                                                                              |  |  |  |
| 21    | PAD         | Exposed Pad    | Exposed Pad. Must be soldered to system ground to achieve power dissipation performances.<br>This pin is internally unconnected.                                                                                                                             |  |  |  |
| PoC I | DC-DC CONVE | RTERS          |                                                                                                                                                                                                                                                              |  |  |  |
| 1     | PVIN1       | Power Input    | DCDC1 and Core Power Supply. This pin must be decoupled to ground by a 10 $\mu F$ ceramic capacitor. This capacitor should be placed as close as possible to this pin.                                                                                       |  |  |  |
| 3     | SW1         | Power Output   | DCDC1 Switch Power. This pin connects the power transistors to one end of the inductor. Typical application uses 2.2 $\mu$ H inductor; refer to <u>Application</u> section for more information.                                                             |  |  |  |
| 20    | FB1         | Analog Input   | DCDC1 Feedback Voltage. This pin is the input to the error amplifier and must be connected to the output capacitor.                                                                                                                                          |  |  |  |
| 2     | PGND1       | Power Ground   | DCDC Power Ground. This pin is the power ground and carries the high switching current.<br>A high quality ground must be provided to prevent noise spikes. A local ground plane is<br>recommended to avoid high-density current flow in a limited PCB track. |  |  |  |
| 1 A L | OW VOLTAGE  | DC-DC CONVER   | TERS                                                                                                                                                                                                                                                         |  |  |  |
| 9     | PVIN2       | Power Input    | DCDC2 Power Supply. This pin must be decoupled to ground by a 10 $\mu F$ ceramic capacitor. This capacitor should be placed as close as possible to this pin.                                                                                                |  |  |  |
| 11    | SW2         | Power Output   | DCDC2 Switch Power. This pin connects the power transistors to one end of the inductor. Typical application uses 1.0 $\mu$ H inductor; refer to <u>Application</u> section for more information.                                                             |  |  |  |
| 8     | FB2         | Analog Input   | DCDC2 Feedback Voltage. This pin is the input to the error amplifier and must be connected to                                                                                                                                                                |  |  |  |

the output capacitor.

#### **PIN FUNCTION DESCRIPTION** (continued)

| Pin   | Name                                                                                                                                                                                                                                                                                                | Туре         | Description                                                                                                                                                                                                                                                   |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1 A L | OW VOLTAGE I                                                                                                                                                                                                                                                                                        | DC-DC CONVER | TERS                                                                                                                                                                                                                                                          |  |
| 10    | PGND2         Power Ground         DCDC2 Power Ground. This pin is the power ground and carries the high switching current           A high quality ground must be provided to prevent noise spikes. A local ground plane is recommended to avoid high-density current flow in a limited PCB track. |              |                                                                                                                                                                                                                                                               |  |
| 500 m | A LOW VOLTA                                                                                                                                                                                                                                                                                         | GE DC-DC CON | VERTERS                                                                                                                                                                                                                                                       |  |
| 17    | PVIN3                                                                                                                                                                                                                                                                                               | Power Input  | DCDC3 Power Supply. This pin must be decoupled to ground by a 10 $\mu F$ ceramic capacitor. This capacitor should be placed as close as possible to this pin.                                                                                                 |  |
| 15    | SW3                                                                                                                                                                                                                                                                                                 | Power Output | DCDC3 Switch Power. This pin connects the power transistors to one end of the inductor. Typical application uses 1.0 $\mu$ H inductor; refer to <u>Application</u> section for more information.                                                              |  |
| 18    | FB3                                                                                                                                                                                                                                                                                                 | Analog Input | DCDC3 Feedback Voltage. This pin is the input to the error amplifier and must be connected to the output capacitor.                                                                                                                                           |  |
| 16    | PGND3                                                                                                                                                                                                                                                                                               | Power Ground | DCDC3 Power Ground. This pin is the power ground and carries the high switching current.<br>A high quality ground must be provided to prevent noise spikes. A local ground plane is<br>recommended to avoid high-density current flow in a limited PCB track. |  |
| LDO   | REGULATORS                                                                                                                                                                                                                                                                                          | •            | •                                                                                                                                                                                                                                                             |  |
| 5     | VINLDO                                                                                                                                                                                                                                                                                              | Power Input  | LDO Power Supply                                                                                                                                                                                                                                              |  |
| 6     | VOUTLDO                                                                                                                                                                                                                                                                                             | Power Output | LDO Output Power. This pin requires a 2.2 $\mu$ F decoupling capacitor.                                                                                                                                                                                       |  |

#### MAXIMUM RATINGS

| Symbol            | Parameter                                                                     | Min  | Тур    | Max                | Unit |
|-------------------|-------------------------------------------------------------------------------|------|--------|--------------------|------|
| VP1-DC            | Power Pins DC Non Switching: PVIN1, SW1 (Note 1)                              | -0.3 | -      | 20                 | V    |
| VP2-DC            | Power Pins DC Non Switching: PVIN2, PVIN3, SW2, SW3 (Note 1)                  | -0.3 | -      | 6.0                | V    |
| VA1-DC            | Analog Pins DC Non Switching: FB2, FB3 (Note 1)                               | -0.3 | -      | V <sub>CORE</sub>  | V    |
| VA2-DC            | Analog Pins DC Non Switching: VCORE, FB1, VINLDO, VOUTLDO (Note 1)            | -0.3 | -      | 6.0                | V    |
| VA3-DC            | Analog Pins DC Non Switching: VOUTLDO (Note 1)                                | -0.3 | -      | V <sub>INLDO</sub> | V    |
| VP1-TR            | Between PVIN1-PGND1 Pins, Transient 3 ns – 2.15 MHz (Note 1)                  | -0.3 | -      | 24                 | V    |
| VP2-TR            | Between PVIN2–PGND2 and PVIN3–PGND3 Pins, Transient 3 ns $-2.15$ MHz (Note 1) | -0.3 | -      | 7.0                | V    |
| VDG1              | Digital Pins: SDA, SCL, /INT (Note 1)                                         | -0.3 | -      | 6.0                | V    |
| VDG2              | Digital Pins: /RST (Note 1)                                                   | -0.3 | -      | V <sub>CORE</sub>  | V    |
| HBM               | ESD Withstand Voltage (Human Body Model) (Note 2)                             | 500  | -      | -                  | V    |
| CDM_CORNER        | ESD Withstand Voltage (CDM)<br>PVIN1, VINLDO, VOUTLDO, SW2, SW3, FB1 (Note 2) | 750  | -      | -                  | V    |
| CDM               | ESD Withstand Voltage (CDM) All Others Pins than Corners (Note 2)             | 500  | -      | -                  | V    |
| I <sub>LU</sub>   | LU Latch Up Current (Note 3)                                                  |      | 100    | -                  | mA   |
| T <sub>STG</sub>  | Storage Temperature Range                                                     | -65  | -      | 150                | °C   |
| T <sub>JMAX</sub> | Junction Temperature Range                                                    | -40  | -      | 170                | °C   |
| MSL               | Moisture Sensitivity (Note 4)                                                 | -    | Level1 | -                  |      |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

This device series contains ESD protection and passes the following ratings: Human Body Model (HBM) ±500 V per JEDEC standard: JESD22–A114. Charged Device Model (CDM) 750 V (corner pins) and 500 V (others pins) per JEDEC standard: JESD22–C101 Class IV.

3. Latch up Current per JEDÈC standard: JESD78 class II.

4. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J-STD-020A.

## **RECOMMENDED OPERATING CONDITIONS**

| Symbol                  | Parameter                                                                                           | Min    | Тур   | Max   | Unit |
|-------------------------|-----------------------------------------------------------------------------------------------------|--------|-------|-------|------|
| P <sub>VIN1_RANGE</sub> | Power Input Supply                                                                                  | 4.6    | 9     | 18    | V    |
| V <sub>VIN_RANGE</sub>  | Power Input Supply                                                                                  | 2.8    | -     | 5.5   | V    |
| L <sub>OUT1</sub>       | Inductor for the PoC DC to DC Converter (Note 5)                                                    | -      | 2.2   | -     | μH   |
| L <sub>OUT2</sub>       | Inductor for the 1 A LV DC to DC Converter (Note 5)                                                 | -      | 1.0   | -     | μH   |
| L <sub>OUT3</sub>       | Inductor for the 500 mA LV DC to DC Converter (Note 5)                                              | -      | 1.0   | -     | μH   |
| C <sub>CORE</sub>       | Vcore Pin Capacitor (Note 5)                                                                        | 0.120* | 1     | -     | μF   |
| C <sub>PVIN1</sub>      | Input Capacitor for the PoC DC to DC Converter (Note 5)                                             | 3*     | 10**  | -     | μF   |
| C <sub>PVIN2</sub>      | Input Capacitor for the 1 A LV DC to DC Converter (Note 5)                                          | 5*     | 10**  | -     | μF   |
| C <sub>PVIN3</sub>      | Input Capacitor for the 500 mA LV DC to DC Converter (Note 5)                                       | 5*     | 10**  | -     | μF   |
| C <sub>VINLDO1</sub>    | Input Capacitor for the Internal LDO<br>V <sub>INLDO</sub> Connected to the DCDC1 Output (Note 5)   | -      | 0**   | -     | μF   |
| C <sub>VINLDO2</sub>    | Input Capacitor for the Internal LDO<br>V <sub>INLDO</sub> Connected to an External Supply (Note 5) | 1**    | 2.2** | -     | μF   |
| C <sub>OUT1</sub>       | Output Capacitor for PoC DC to DC Converter (Note 5)                                                | 6.4*   | 10**  | 100** | μF   |
| C <sub>OUT2</sub>       | Output Capacitor for the 1 A LV DC to DC Converter (Note 5)                                         | 5*     | 10**  | 100** | μF   |
| C <sub>OUT3</sub>       | Output Capacitor for 500 mA LV DC to DC Converter (Note 5)                                          | 5*     | 10**  | 100** | μF   |
| C <sub>OUTLDO</sub>     | Output Capacitor for the Internal LDO (Note 5)                                                      | 1.65*  | 2.2** | 47**  | μF   |
| ТJ                      | Junction Temperature Range (Note 6)                                                                 | -40    | 25    | +150  | °C   |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

\* derated value.

\*\* nominal value.

5. Including de-ratings (Refer to the <u>Application Information</u> section of this document for further details)

6. The thermal shutdown set to 170°C (typical) avoids potential irreversible damage on the device due to power dissipation.

7. The R0JA is dependent of the PCB heat dissipation. Board used to drive this data was a NCV92100EVB board.

8. The maximum power dissipation (PD) is dependent by input voltage, maximum output current, pcb stack up and layout, and external components selected.

## THERMAL INFORMATION

| Symbol                    | Parameter                                                             | JEDEC<br>JESD51–3<br>(Calculated) | Demo<br>Board<br>(Measured) | Unit |
|---------------------------|-----------------------------------------------------------------------|-----------------------------------|-----------------------------|------|
| $\theta_{\text{J-C TOP}}$ | Thermal Resistance Junction to Case Top Resistance (Note 9)           | 27.6                              | -                           | °C/W |
| $\theta_{JB}$             | Thermal Resistance Junction to Bottom Top Resistance (Note 10)        | 1.6                               | -                           | °C/W |
| $\theta_{JA}$             | Thermal Resistance Junction to Ambient QFNW20 on Demo-board (Note 11) | 31                                | 35                          | °C/W |

9. Calculated with infinite heatsink affixed to case top without any board present.

10. Calculated with infinite heatsink affixed to case bottom without any board present.

11. The R0JA is dependent of the PCB heat dissipation. Board used to drive this data was a NCV92100EVB board.

**ELECTRICAL CHARACTERISTICS** (Refer to the <u>Application Information</u> section of this data sheet for more details. Min and Max Limits apply for  $T_J = -40^{\circ}$ C to  $+150^{\circ}$ C,  $V_{IN}$  range (PVIN\_RANGE and VIN\_RANGE) and default configuration, unless otherwise specified. Typical values are referenced to  $T_J = +25^{\circ}$ C,  $V_{IN}$  = range and default configuration, unless otherwise specified.)

| Symbol                     | Parameter                                                                   | Min    | Тур   | Мах    | Unit |
|----------------------------|-----------------------------------------------------------------------------|--------|-------|--------|------|
| SUPPLY CURRE               | NT: PIN VIN                                                                 |        |       |        |      |
| Ι <sub>Q</sub>             | Operating Quiescent Current, No Load Vin = 9 V, Default<br>Configuration    | -      | 13    | -      | mA   |
| INTERNAL VOLT              | TAGE REFERENCE                                                              |        |       |        |      |
| V <sub>CORE</sub>          | Internal Voltage Reference for Core Supply                                  | 4.37   | 4.8   | 4.9    | V    |
| DCDC1 (PoC DC              | DC CONVERTER)                                                               |        |       |        |      |
| V <sub>OUT1</sub>          | Output Voltage Accuracy Vin Range, lout Range                               | -1.5   | -     | +1.5   | %    |
| V <sub>OUT1_33_100mA</sub> | Default Output Voltage Vin = 9 V, lout = 100 mA                             | 3.2505 | 3.3   | 3.3495 | V    |
| D <sub>MAX1</sub>          | Maximum Duty Cycle                                                          | -      | 92    | -      | %    |
| DC <sub>LOAD1</sub>        | Load Regulation, lout from 100 mA to 1 A                                    | -      | 0.05  | -      | %/A  |
| DC <sub>LINE1</sub>        | Line Regulation, Vin from 5 V to 18 V, lout = 100 mA                        | -      | 0.001 | -      | %/V  |
| I <sub>OUTMAX1</sub>       | Output Current Range (Note 12)                                              | 1.2    | -     | -      | Α    |
| I <sub>LIMP1</sub>         | Output Peak Current High Side Switch (Note 12)                              | 1.5    | 1.8   | 2.1    | Α    |
| I <sub>LIMN1</sub>         | Output Peak Current Low Side Switch (Note 12)                               | -      | 1     | -      | Α    |
| R <sub>ON_H1</sub>         | High-Side MOSFET ON Resistance                                              | -      | 385   | -      | mΩ   |
| R <sub>ON_L1</sub>         | Low-Side MOSFET ON Resistance                                               | -      | 250   | -      | mΩ   |
| R <sub>DIS1</sub>          | Internal Active Output Discharge, from FB to PGND Vout = 3.3 V              | -      | 80    | -      | Ω    |
| DCDC2 (1 A LV I            | DCDC CONVERTER)                                                             |        |       |        |      |
| V <sub>OUT21</sub>         | Output Voltage Accuracy<br>Vin Range, Vout Range, Iout Range                | -1     | -     | +1     | %    |
| VOUT2_12_100mA             | Default Output Voltage Vin = 3.3 V, lout = 100 mA                           | 1.188  | 1.2   | 1.212  | V    |
| DC <sub>LOAD2</sub>        | Load Regulation, lout from 100 mA to 1 A                                    | -      | 0.05  | -      | %/A  |
| DC <sub>LINE2</sub>        | Line Regulation, Vin from 2.8 V to 5.5 V, lout = 100 mA                     | -      | 0.001 | -      | %/V  |
| I <sub>OUTMAX2</sub>       | Output Current Range (Note 12)                                              | 1      | -     | -      | Α    |
| I <sub>LIMP2</sub>         | Output Peak Current High Side Switch<br>P <sub>VIN2</sub> = 3.3 V (Note 12) | 1.65   | 2.0   | 2.35   | A    |
| I <sub>LIMN2</sub>         | Output Peak Current Low Side Switch<br>P <sub>VIN2</sub> = 3.3 V (Note 12)  | -      | 1.2   | -      | A    |
| R <sub>ON_H2</sub>         | High-Side MOSFET ON Resistance                                              | -      | 120   | -      | mΩ   |
| R <sub>ON_L2</sub>         | Low-Side MOSFET ON Resistance                                               | -      | 90    | -      | mΩ   |
| R <sub>DIS2</sub>          | Internal Active Output Discharge, from FB to PGND Vout = 1.2 V              | -      | 100   | -      | Ω    |
| DCDC3 (500 mA              | LV DCDC CONVERTER)                                                          |        |       |        |      |
| V <sub>OUT31</sub>         | Output Voltage Accuracy<br>Vin Range, Vout Range, Iout Range                | -1     | _     | +1     | %    |
| VOUT3_18_100mA             | Default Output Voltage Vin = 3.3 V, lout = 100 mA                           | 1.782  | 1.8   | 1.818  | V    |
| DC <sub>LOAD3</sub>        | Load Regulation, lout from 100 mA to 500 mA                                 | -      | 0.05  | -      | %/A  |
| DC <sub>LINE3</sub>        | Line Regulation, Vin from 2.8 V to 5.5 V, lout = 100 mA                     | -      | 0.001 | -      | %/V  |
| I <sub>OUTMAX3</sub>       | Output Current Range (Note 12)                                              | 0.5    | -     | -      | Α    |
| I <sub>LIMP3</sub>         | Output Peak Current High Side Switch<br>P <sub>VIN3</sub> = 3.3 V (Note 12) | 1.35   | 1.7   | 2.05   | A    |
| I <sub>LIMN3</sub>         | Output Peak Current Low Side Switch<br>P <sub>VIN3</sub> = 3.3 V (Note 12)  | -      | 1.2   | -      | A    |
| R <sub>ON_H3</sub>         | High-Side MOSFET ON Resistance                                              | _      | 220   | _      | mΩ   |

**ELECTRICAL CHARACTERISTICS** (Refer to the <u>Application Information</u> section of this data sheet for more details. Min and Max Limits apply for  $T_J = -40^{\circ}$ C to  $+150^{\circ}$ C,  $V_{IN}$  range (PVIN\_RANGE and VIN\_RANGE) and default configuration, unless otherwise specified. Typical values are referenced to  $T_J = +25^{\circ}$ C,  $V_{IN}$  = range and default configuration, unless otherwise specified.) (continued)

| Symbol                  | Parameter                                                                                                             | Min  | Тур   | Max  | Unit |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------|------|-------|------|------|
| DCDC3 (500 mA           | LV DCDC CONVERTER)                                                                                                    |      |       |      |      |
| R <sub>ON_L3</sub>      | Low-Side MOSFET ON Resistance                                                                                         | -    | 145   | -    | mΩ   |
| R <sub>DIS3</sub>       | Internal Active Output Discharge, from FB to PGND Vout = 1.8 V                                                        | -    | 100   | _    | Ω    |
| LOW DROPOUT             | REGULATOR                                                                                                             |      |       |      |      |
| I <sub>OUTLDO_1</sub>   | Maximum Output Current, V <sub>IN R</sub> ange, V <sub>OUT</sub> $\leq$ V <sub>IN</sub> $-$ 200 mV (Note 12)          | 300  | -     | _    | mA   |
| I <sub>LIMITLDO</sub>   | Current Limit, V <sub>INLDO</sub> = 3.1 V, V <sub>OUTLDO</sub> = 2.8 V                                                | 350  | -     | 620  | mA   |
| $\Delta V_{OUT\_LDO_1}$ | Output Voltage Accuracy, V <sub>IN</sub> = 3.3 V, V <sub>OUT</sub> = 2.8 V No Load                                    | -1.0 | VNOM  | +1.0 | %    |
| $\Delta V_{OUT\_LDO_2}$ | Output Voltage Accuracy, VINLDO Range, IOUTLDO Range                                                                  | -1.0 | VNOM  | +1.0 | %    |
| DC <sub>LOADLDO</sub>   | Load Regulation, I <sub>OUT</sub> = 0 mA to 200 mA                                                                    | _    | 0.04  | _    | %    |
| DC <sub>LINELDO</sub>   | Line Regulation, V <sub>INLDO</sub> = 3.1 V to 5.5 V I <sub>OUTLDO</sub> = 200 mA                                     | _    | 0.04  | _    | %    |
| V <sub>DROP</sub>       | Dropout Voltage, VOUT = 2.8 V, I <sub>OUT</sub> = 300 mA                                                              | 80   | 110   | 210  | mV   |
| PSRR_1k                 | Ripple Rejection, F = 1 kHz<br>V <sub>INLDO</sub> = 3.3 V, V <sub>OUTLDO</sub> = 2.8 V, I <sub>OUTLDO</sub> = 100 mA  | -    | -80   | -    | dB   |
| PSRR_10k                | Ripple Rejection, F = 10 kHz<br>V <sub>INLDO</sub> = 3.3 V, V <sub>OUTLDO</sub> = 2.8V, I <sub>OUTLDO</sub> = 100 mA  | _    | -75   | -    | dB   |
| PSRR_100k               | Ripple Rejection, F = 100 kHz<br>V <sub>INLDO</sub> = 3.3 V, V <sub>OUTLDO</sub> = 2.8V, I <sub>OUTLDO</sub> = 100 mA | _    | -60   | -    | dB   |
| PSRR_1M                 | Ripple Rejection, F = 1 MHz<br>V <sub>INLDO</sub> = 3.3 V, V <sub>OUTLDO</sub> = 2.8V, I <sub>OUTLDO</sub> = 100 mA   | _    | -35   | -    | dB   |
| Noise                   | Output Noise, 10 Hz $\rightarrow$ 100 kHz $V_{OUTLDO}$ = 2.8 V                                                        | -    | 34    | _    | μV   |
| R <sub>DISLDO</sub>     | LDO Active Output Discharge, V <sub>OUT</sub> = 2.8 V                                                                 | -    | 105   | _    | Ω    |
| UVLO AND OVL            | 0                                                                                                                     |      |       |      |      |
| V <sub>INUV-</sub>      | $V_{\text{IN}}$ UVLO Falling Threshold, $P_{\text{VIN1}}$ Pin, Default Setting                                        | 5    | 5.1   | _    | V    |
| V <sub>INUV+</sub>      | V <sub>IN</sub> UVLO Rising Threshold, P <sub>VIN1</sub> Pin, Default Setting                                         |      | 6.8   | 7    | V    |
| VINUVRANGE              | $V_{\text{IN}}$ UVLO Falling Threshold, $P_{\text{VIN1}}$ Pin, Programmability Range (See Table x)                    | 4.35 | -     | 7    | V    |
| VINUV+_RANGE            | $V_{\text{IN}}$ UVLO Rising Threshold, $P_{\text{VIN1}}$ Pin, Programmability Range (See Table x)                     | 4.5  | -     | 8    | V    |
| V <sub>INOV+</sub>      | V <sub>IN</sub> OVF Rising Threshold, P <sub>VIN1</sub> Pin                                                           | 18   | 18.3  | 18.6 | V    |
| VINOVHYST               | V <sub>IN</sub> OVF Hysteresis                                                                                        | _    | 204   | _    | mV   |
| V <sub>INOVDBN</sub>    | V <sub>IN</sub> OVF Debounce Time, P <sub>VIN1</sub> Pin                                                              | -    | 10    | _    | μs   |
| WINDOWS VOL             | TAGE MONITORING                                                                                                       |      |       |      |      |
| VL                      | Undervoltage Detection Threshold, Programmability (3 Bits)                                                            | -10  | -     | -3   | %    |
| V <sub>H</sub>          | Overvoltage Detection Threshold, Programmability (3 Bits)                                                             | 3    | -     | 10   | %    |
| V <sub>LH</sub>         | Undervoltage Detection Hysteresis, $V_{OUT} \le 2.2 V$                                                                | -    | 4.5   | 7.6  | mV   |
| V <sub>HH</sub>         | Overvoltage Detection Hysteresis, $V_{OUT} \le 2.2 V$                                                                 | _    | 4.5   | 7.6  | mV   |
| V <sub>LH SC</sub>      | Undervoltage Detection Hysteresis, V <sub>OUT</sub> > 2.2 V                                                           | _    | 11.25 | 19   | mV   |
| V <sub>HH_SC</sub>      | Overvoltage Detection Hysteresis, V <sub>OUT</sub> > 2.2 V                                                            | _    | 11.25 | 19   | mV   |
| D <sub>ACC1</sub>       | Detection Accuracy, 0.6 V $\leq$ V <sub>OUT</sub> < 1 V                                                               | -10  | -     | 10   | mV   |
| D <sub>ACC2</sub>       | Detection Accuracy, V <sub>OUT</sub> ≥ 1 V                                                                            | -1   | -     | 1    | %    |
| T <sub>L_R</sub>        | Undervoltage Detection Debounce Programmability, Rising Edge                                                          | 32   | _     | 256  | μs   |

**ELECTRICAL CHARACTERISTICS** (Refer to the <u>Application Information</u> section of this data sheet for more details. Min and Max Limits apply for  $T_J = -40^{\circ}$ C to  $+150^{\circ}$ C,  $V_{IN}$  range (PVIN\_RANGE and VIN\_RANGE) and default configuration, unless otherwise specified. Typical values are referenced to  $T_J = +25^{\circ}$ C,  $V_{IN}$  = range and default configuration, unless otherwise specified.) (continued)

| Symbol                    | Symbol Parameter                                                                                                       |                                  |       | Max  | Unit |
|---------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------|------|------|
| WINDOWS VOL               | rage monitoring                                                                                                        | - <b>-</b>                       |       | -    | -    |
| T <sub>L_F</sub>          | Undervoltage Detection Debounce Programmability, Falling Edge                                                          | 0                                | -     | 128  | μs   |
| T <sub>H_R</sub>          | Overvoltage Detection Debounce Programmability, Rising Edge                                                            | 0                                | _     | 128  | μs   |
| T <sub>H_F</sub>          | Overvoltage Detection Debounce Programmability, Falling Edge                                                           | 32                               | _     | 256  | μs   |
| VDISABLE_DCDC1            | Disable Detection Threshold DCDC1                                                                                      | - 1                              | 2000  | -    | mV   |
| VDISABLE_DCDC2            | Disable Detection Threshold DCDC2                                                                                      | -                                | 600   | -    | mV   |
| VDISABLE_DCDC3            | Disable Detection Threshold DCDC3                                                                                      | -                                | 600   | -    | mV   |
| V <sub>DISABLE</sub> LDO1 | Disable Detection Threshold LDO1                                                                                       | -                                | 100   | -    | mV   |
| TURN ON TIME              | AND SOFT-START                                                                                                         |                                  |       |      |      |
| T <sub>SS</sub>           | Turn ON time, Default Setting, from PVIN1 to Power Up Sequence Start                                                   | -                                | 5.12  | -    | ms   |
| T <sub>SS1</sub>          | Soft-start Time DCDC1, Time from 10% to 90% of Output Voltage Target (Default Setting), Vout = 3.3 V                   | -                                | 0.845 | -    | ms   |
| T <sub>SS2</sub>          | Soft-start Time DCDC2, Time from 10% to 90% of Output Voltage Target (Default Setting), Vout = 1.2 V                   | -                                | 0.31  | -    | ms   |
| T <sub>SS3</sub>          | Soft-start Time DCDC3, Time from 10% to 90% of Output Voltage Target (Default Setting), Vout = 1.8 V                   | -                                | 0.45  | -    | ms   |
| T <sub>SS4</sub>          | Soft–start Time LDO, Time from 10% to 90% of Output Voltage Target (Default Setting), Vout = 2.8 V, COUT = 2.2 $\mu F$ | -                                | 1.45  | -    | ms   |
| INTERNAL CLO              | CKS                                                                                                                    | 1                                |       |      |      |
| CLK <sub>SYSOSC</sub>     | Internal System Clock                                                                                                  | 1.86                             | 2.00  | 2.14 | MHz  |
| F <sub>SW</sub>           | DCDC Switching Frequency                                                                                               | 2                                | 2.15  | 2.3  | MHz  |
| $\Phi_{	t DCDC2}$ DCDC1   | Phase Shift between DCDC2 and DCDC1                                                                                    | -                                | 120   | -    | 0    |
| ΦDCDC3 DCDC1              | Phase Shift between DCDC3 and DCDC1                                                                                    | -                                | 240   | -    | 0    |
| THERMAL SHUT              | rdown                                                                                                                  |                                  |       |      |      |
| T <sub>SD</sub>           | Thermal Shutdown                                                                                                       | -                                | 163   | -    | °C   |
| T <sub>WNG</sub>          | Thermal Warning                                                                                                        | -                                | 152   | -    | °C   |
| T <sub>WNGH</sub>         | Thermal Warning Hysteresis                                                                                             | -                                | 10    | -    | °C   |
| T <sub>PWNG</sub>         | Thermal Pre-Warning (Default)                                                                                          | -                                | 138   | -    | °C   |
| T <sub>PWNGH</sub>        | Thermal Pre-Warning Hysteresis (Default)                                                                               | -                                | 6     | -    | °C   |
| T <sub>GATING</sub>       | Thermal Gating Threshold / Thermal Shutdown Low Threshold                                                              | -                                | 125   | -    | °C   |
| /RST AND /INT F           | PINS (PUSH-PULL)                                                                                                       |                                  |       |      |      |
| V <sub>INT_L</sub>        | /INT Pin Low Voltage, I <sub>INT</sub> = 3 mA                                                                          | -                                | -     | 0.3  | V    |
| V <sub>INT_H1</sub>       | /INT Pin High Voltage, $I_{INT}$ = –3 mA $V_{OUT}$ $\geq$ 1.2 V                                                        | V <sub>OUT_DCDC3</sub><br>x 0.65 | _     | _    | V    |
| V <sub>INT_H2</sub>       | /INT Pin High Voltage, I <sub>INT</sub> = -3 mA V <sub>OUT</sub> < 1.2 V                                               | V <sub>OUT_DCDC3</sub><br>- 0.45 | -     | -    | V    |
| V <sub>RST_L</sub>        | /RST Pin Low Voltage, I <sub>RST</sub> = 3 mA                                                                          | -                                | -     | 0.3  | V    |
| V <sub>RST_H1</sub>       | /RST Pin High Voltage, $I_{RST} = -3 \text{ mA V}_{OUT} \ge 1.2 \text{ V}$                                             | V <sub>OUT_DCDC3</sub><br>x 0.65 | -     | -    | V    |
| V <sub>RST_H2</sub>       | /RST Pin High Voltage, I <sub>RST</sub> = -3 mA V <sub>OUT</sub> < 1.2 V                                               | V <sub>OUT_DCDC3</sub><br>- 0.45 | _     | _    | V    |

**ELECTRICAL CHARACTERISTICS** (Refer to the <u>Application Information</u> section of this data sheet for more details. Min and Max Limits apply for  $T_J = -40^{\circ}$ C to  $+150^{\circ}$ C,  $V_{IN}$  range (PVIN\_RANGE and VIN\_RANGE) and default configuration, unless otherwise specified. Typical values are referenced to  $T_J = +25^{\circ}$ C,  $V_{IN}$  range and default configuration, unless otherwise specified.) (continued)

| Symbol                     | Parameter                                                                    | Min  | Тур | Max  | Unit |
|----------------------------|------------------------------------------------------------------------------|------|-----|------|------|
| I <sup>2</sup> C INTERFACE |                                                                              |      |     |      |      |
| V <sub>I2C_H</sub>         | SCL and SDA Input Logic High (Note 13, 14, 15)                               | 1.15 | -   | -    | V    |
| V <sub>I2C_L</sub>         | SCL and SDA Input Logic Low (Note 16)                                        | -    | -   | 0.45 | V    |
| V <sub>SDAO_L</sub>        | SDA Output Active Low, Sink 15 mA (Note 17)                                  | -    | -   | 0.4  | V    |
| I <sub>SDAO_H</sub>        | SDA Output Open Drain Leakage, 5.5 V                                         |      | -   | 500  | nA   |
| F <sub>I2C</sub>           | SCL Clock Frequency, 1.8 V Supplied I/O Rail (Note 13, 17, 18)               | 0    | -   | 1    | MHz  |
| I2C <sub>SS</sub>          | Pulse Width of Spikes that Must Be Suppressed by the Pinout Filter (Note 19) | -    | -   | 50   | ns   |
| C <sub>I2C</sub>           | SCL and SDA Input Pin Capacitance                                            | -    | 5   | -    | pF   |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

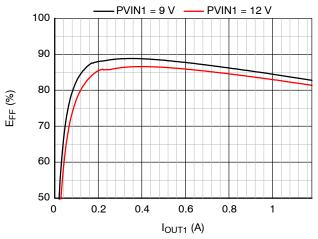
12. Junction temperature must be maintained below 150°C. Output load current capability depends on the application thermal capability.

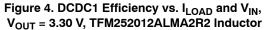
13. In support of Fast Mode Plus, 1.8 V supplied I/O rails and the related 100 mV of drop totaling 1.7 V minimum.

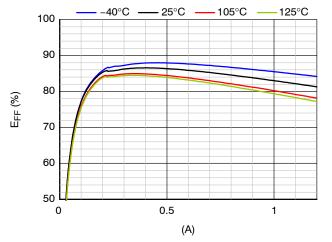
14. For any input voltage greater than the minimum value indicated the signal is guaranteed detected high.

15. I<sup>2</sup>C typical VIO 1.8 V to 3.3 V.

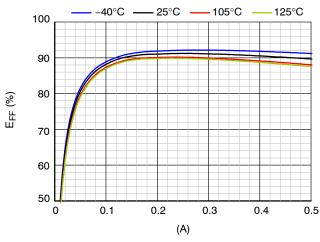
16. For any input voltage smaller than the maximum value indicated the signal is guaranteed detected low.

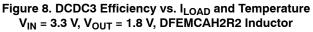

17. Fast Mode Plus fall time (tf) and rise time (tr) required (120 ns maximum).


18.I<sup>2</sup>C bus frequency may be adjusted depending on the actual operating voltage, pull-up resistance, bus capacitance (which could be up to 400 pF) and master GPIO driver strength.


19. Input filters on the SDA and SCL inputs suppress noise spikes of less than 50 ns.

## **TYPICAL OPERATING CHARACTERISTICS**


 $(PV_{IN1} = 9 \text{ V} \text{ (Unless otherwise noted)}. T_A = +25^{\circ}C, DCDC2 = 1.20 \text{ V}, DCDC2 = 1.3 \text{ V}, LDO1 = 2.8 \text{ V}, C_{LDO} = 2.2 \mu\text{F} 0603, L_{DCDC} = 1.0 \mu\text{H} (2016) - C_{DCDC} = 10 \mu\text{F} 0603 / X7T)$ 













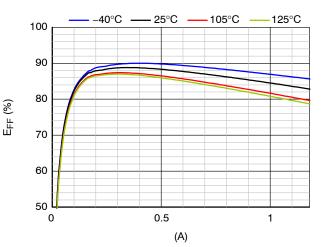




Figure 5. DCDC1 Efficiency Temperature  $V_{IN}$  = 9.0 V,  $V_{OUT}$  = 3.30 V, TFM252012ALMA2R2 Inductor

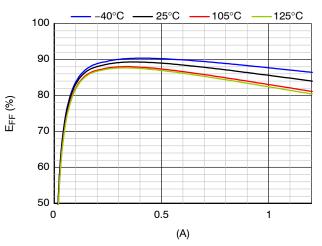



Figure 7. DCDC2 Efficiency vs.  $I_{LOAD}$  and Temperature  $V_{IN}$  = 3.3 V,  $V_{OUT}$  = 1.2 V, DFEMCAH2R2 Inductor

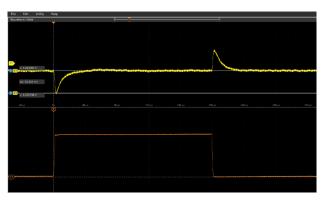
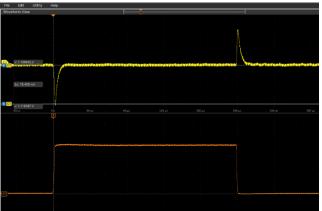
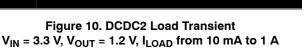





Figure 9. DCDC1 Load Transient VIN = 9 V, VOUT = 3.3 V, ILOAD from 10 mA to 1A

## **TYPICAL OPERATING CHARACTERISTICS**

 $(PV_{IN1} = 9 V (Unless otherwise noted). T_A = +25^{\circ}C, DCDC2 = 1.20 V, DCDC2 = 1.3 V, LDO1 = 2.8 V, C_{LDO} = 2.2 \mu F 0603, L_{DCDC} = 1.0 \mu H (2016) - C_{DCDC} = 10 \mu F 0603 / X7T) (Continued)$ 





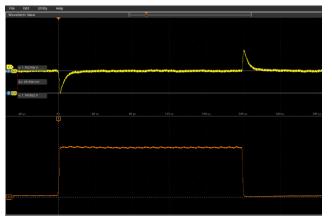
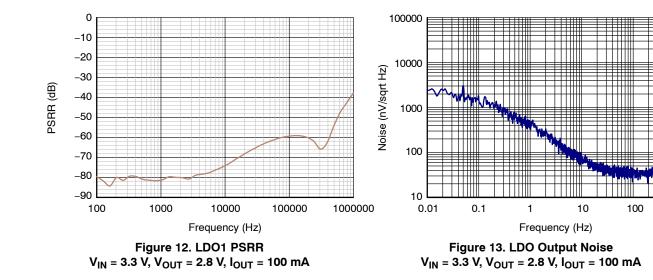




Figure 11. DCDC3 Load Transient  $V_{IN}$  = 3.3 V,  $V_{OUT}$  = 1.8 V,  $I_{LOAD}$  from 10 mA to 500 mA



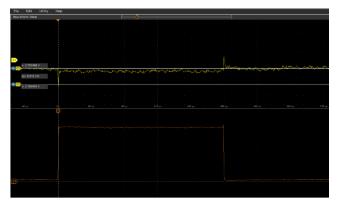
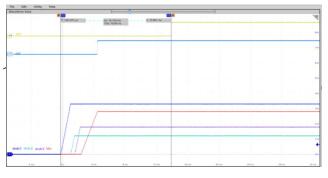




Figure 14. LDO1 Load Transient  $V_{\rm IN}$  = 3.3 V,  $V_{\rm OUT}$  = 2.8 V,  $I_{\rm LOAD}$  from 10 mA to 300 mA



1000



#### DETAILED OPERATING DESCRIPTION

#### General

The NCV92310 is optimized to supply cameras of automotive Power over Coax applications.

It integrates one Power Over Coax switched mode DCDC converters, two low voltage switched mode DCDC converters and one low dropout linear regulator. The IC is widely programmable through an I<sup>2</sup>C interface with a default setting provided by the internal OTP memory set during the manufacturing process. The core of the NCV92310 is supplied from PVIN1 from where a low voltage core voltage VCORE is derived. The VCORE supplies most of the on-chip analog and digital circuitry. PVIN1 can be supplied from a 5 V regulated source or connected directly to the filtered power over coax supply.

The output voltage range, current capabilities and performances of the switched mode DCDC converters are well suited to supply a camera module. For PWM operation, the converters run on a local 2.15 MHz. All the switching components are integrated including the compensation networks and synchronous rectifier. Only a small size inductor (2.2  $\mu$ H for the PoC DCDC and 1  $\mu$ H for the LV DCDCs) and 10  $\mu$ F bypass capacitor are required for typical applications. Higher output capacitor value may be needed depending on the load transient requirement.

The low noise low dropout regulator can be used to supply the lower power rails in the application. The regulator is bypassed with a small size 2.2  $\mu$ F capacitor. Higher output capacitor value may be needed depending on the load transient requirement.

The low voltage regulators (DCDC2, DCDC3, LDO1) each have their own input supply pin to be able to connect it either independently to the system supply rail or to the DCDC converter output, in the application. Like DCDC1, each converter and LDO is enabled smoothly with a controlled ramp up in order to avoid any inrush current.

All supply rails are monitored by on-chip voltage window monitors. The window size and detection speed are programmable. When a monitor is tripped, an interrupt is generated and shutdown scenarios can be engaged. The monitors are also used to verify if the order of the power up and power down sequences are respected. Both mechanisms are essential in reaching a high level of functional safety.

The overall operation of the NCV92310 PMIC is governed by a state machine that will handle the initialization of the IC and the built–in self–test, the fault states, and the different operating modes.

All regulators include an active output discharge which can be independently enabled / disabled by the appropriate settings in the DIS register (refer to the register definition section). However to prevent any disturbances on the power-up sequence, a quick active output discharge is done during the start-up sequence for all output channels.

#### **DCDCs PWM Mode Operation**

All internal DCDCs operate in PWM mode from a fixed clock and adapts its duty cycle to regulate the desired output voltage. In this mode, the inductor current is in CCM and the voltage is regulated by PWM. The internal low side switch operates as synchronous rectifier and is driven complementary to the high side switch. In CCM, the lower side switch in a synchronous converter provides a lower voltage drop than the diode in an asynchronous converter, which provides less loss and higher efficiency.

#### **DCDCs Switching Clock and Spread Spectrum**

Switching Clock of the 3 DCDCs operates at 2.15 MHz. To avoid a too high inrush current, a phase shift is applied for each DCDC converter (DCDC1: 0°, DCDC2: 120°, DCDC3: 240°)

In order to optimize the peak emission of the DC to DC converters switching frequency, a frequency spreading option allows to spread the switching frequency of the converters which can be useful in meeting system EMI requirements. This option, available with on chip internal oscillator, is factory programmable and can be changed thru  $I^2C$ .

NCV92310 integrates a random spread spectrum (16 frequencies) with OTPs and  $I^2C$  programmable tolerance (5% max and 10% max).

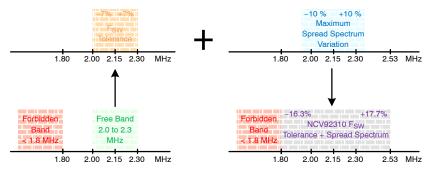



Figure 16. Tolerance + Spread Spectrum with Spread = 10% Max

Different spread spectrum modulations are available based on 16 frequency bins. By default, the triangular double peak modulation is used with OTPs and  $I^2C$ programmable tolerance ( $\pm 5\%$  max,  $\pm 10\%$  max). The frequency change can occur every n buck cycles (n is spread spectrum modulation divider from 1 to 128). Resulting modulation frequency is

$$F_{M} = \frac{F_{SW}}{n \times 32}$$
 (eq. 1)

(with n is spread spectrum modulation divider)

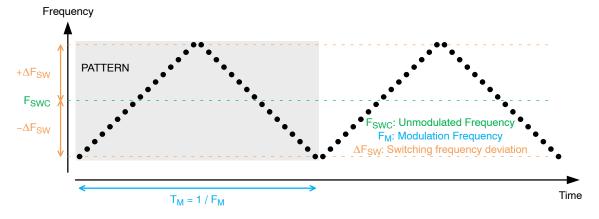



Figure 17. Tolerance + Spread Spectrum with Spread = 10% Max

Pseudorandom modulation with 16 bits pattern is also available.

#### Low Dropout Regulator

Internal LDO is a low noise, high PSRR and high bandwidth regulator intended to supply image sensor analog pixel input.

Its extended bandwidth allows best in class load transient performances, which helps improve image quality.

Internal LDO limit the output current at 90 mA worst case ( $I_{LDO\_STARTUP}$ ) during the startup phase. LDO soft start setting and total output capacitor connected at the VOUTLDO is selected by the following equation:

Cout\_ldo\_max = IIdo\_startup 
$$\times \frac{\Delta t}{\Delta V}$$
 (eq. 2)

If C<sub>OUT\_LDO</sub> exceed C<sub>OUT\_LDO\_MAX</sub>, internal short circuit protection may be triggered.

#### Soft Start Time Setting

Soft start timing is set thru I<sup>2</sup>C and On Time Programmable internal memory.

#### Table 1. SOFT START SETTINGS

| Buck Soft Start Time (ms)                           | LDO Soft Start Time (ms)                   |
|-----------------------------------------------------|--------------------------------------------|
| 0.64 <sub>(ms/V)</sub> x V <sub>OUT</sub>           | 1.28 <sub>(ms/V)</sub> x V <sub>OUT</sub>  |
| 0.32 <sub>(ms/V)</sub> x V <sub>OUT</sub> (default) | $0.64_{(ms/V)} \times V_{OUT}$ (default)   |
| 0.16 <sub>(ms/V)</sub> x V <sub>OUT</sub>           | 0.32 <sub>(ms/V)</sub> x V <sub>OUT</sub>  |
| 0.08 <sub>(ms/V)</sub> x V <sub>OUT</sub>           | 0.16 <sub>(ms/V</sub> ) x V <sub>OUT</sub> |

It allows limiting the inrush current at the input during the power–up sequence.

#### **Regulator Stability**

#### DCDC Regulators

DCDC1, DCDC2 and DCDC3 use a voltage mode architecture. Regulators stability depends on the output LC filter.

Each regulator embeds an OTP bit that allow managing the stability versus the total output capacitor value. With the default inductor value (DCDC1 =  $2.2 \mu$ H, DCDC2 and DCDC3 =  $1 \mu$ H), output capacitor range without derating is:

- $10 \ \mu\text{F}$  to  $50 \ \mu\text{F}$  (default setting).
- 50 µF to 100 µF.

#### Low Dropout Regulator

Bandwidth of the low dropout regulator has been adapted to improve the load transient response. In case lower ripple is required, internal LDO of the NCV92310 allows using high output capacitor value. In that case, internal stability has to be set thru OTP:

- Up to 50 μF (default setting).
- 50 µF to 100 µF.

# STATE MACHINE

The overall operation of the NCV92310 is governed by a state machine that handles the initialization of the IC and the built–in self–test, the fault states, and the different operating modes.

The below diagram represents the behavior as described in the remainder of this document.

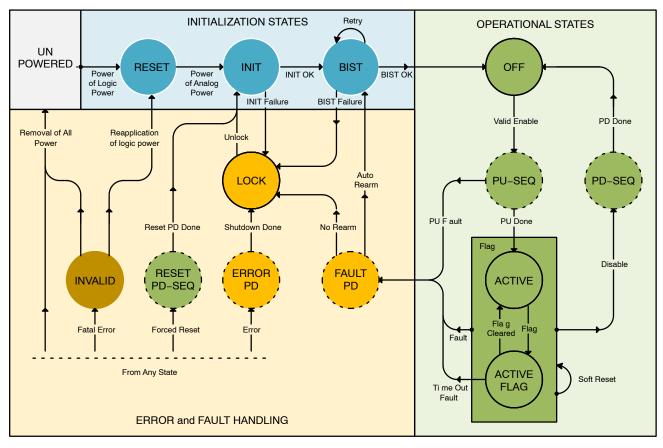



Figure 18. Default State Machine

The state machine is comprised of a number of states of which some are only transitional. The state machine transitions from state to state based on certain specific conditions. Below tables provide a detailed description of each of the states as well as of the transitions.

## Table 2. STATE MACHINE STATES

| Group                     | State           | Туре         | RSTB       | INTB       | l <sup>2</sup> C | Description                                                                                                                                         |
|---------------------------|-----------------|--------------|------------|------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| NO POWER                  | -               | -            | -          | -          | -                | The supply conditions on PVIN1 and VCORE are too low for the state machine to operate.                                                              |
| INITIALIZATION            | RESET           | Steady       | L          | L          | No               | Only the logic circuitry has sufficient supply and is being held in reset.                                                                          |
|                           | INIT            | Transitional | L          | L          | No               | Upon entry, all logic is reset to default and OTP content is loaded. The analog circuitry is enabled.                                               |
|                           | BIST            | Transitional | L          | L          | No               | Upon entry, a built-in self-test is started                                                                                                         |
| OPERATIONAL               | OFF             | Steady       | L          | Ι          | R/W              | The IC is biased and ready to accept a power up sequence request                                                                                    |
|                           | ACTIVE          | Steady       | R          | I          | R/W              | A power up sequence has been executed and the IC is operating normally                                                                              |
|                           | ACTIVE<br>FLAG  | Transitional | R          | L          | R/W              | Similar to ACTIVE but a flag is raised and upon<br>entry a flag timer starts running                                                                |
|                           | PU-SEQ          | Transitional | See<br>PUS | See<br>PUS | R only           | Upon entry, a power up sequence is started.                                                                                                         |
|                           | PD-SEQ          | Transitional | See<br>PDS | See<br>PDS | R only           | Upon entry, a power down sequence is started                                                                                                        |
| ERROR & FAULT<br>HANDLING | RESET<br>PD-SEQ | Transitional | L          | Ι          | R only           | Upon entry, a power down sequence is started                                                                                                        |
|                           | FAULT PD        | Transitional | L          | I          | R only           | Upon entry, all supplies are powered down<br>simultaneously. Internal delay equal to PDS Time<br>Out delay is integrated before going to next state |
|                           | ERROR PD        | Transitional | L          | I          | R only           | Upon entry, all supplies are powered down simultaneously                                                                                            |
|                           | LOCK            | Steady       | L          | I          | R/W              | The state machine is in the safe state with all supplies disabled.                                                                                  |
|                           | INVALID         | Steady       | L          | I          | No               | Upon entry, an emergency powered down is initiated and product set in reset.                                                                        |

L means Low, R means Released, I reflect the actual state of the Interrupts

## Table 3. STATE MACHINE TRANSITIONS

| Transition                      | From                    | То                      | Description                                                                                                                                                                                                                                                                                        |
|---------------------------------|-------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Application of<br>Logic Power   | NO POWER                | RESET                   | PVIN1 becomes greater than the logic undervoltage detection level                                                                                                                                                                                                                                  |
| Application of<br>Analog Power  | RESET                   | INIT                    | PVIN1 becomes greater than the PVIN1 undervoltage lockout detection level                                                                                                                                                                                                                          |
| INIT Done                       | INIT                    | BIST                    | The initialization has been finished                                                                                                                                                                                                                                                               |
| BIST OK                         | BIST                    | OFF                     | The built-in self-test was successful                                                                                                                                                                                                                                                              |
| BIST Failure                    | BIST                    | LOCK                    | The built-in self-test failed, and the BIST error counter has reached its limit                                                                                                                                                                                                                    |
| Retry                           | BIST                    | BIST                    | The built-in self-test failed, the BIST error counter has not reached its limit, and a new built in self-test is started                                                                                                                                                                           |
| Valid Enable                    | OFF                     | PU-SEQ                  | A power up sequence is requested through I <sup>2</sup> C                                                                                                                                                                                                                                          |
| PU Done                         | PU-SEQ                  | ACTIVE                  | The power up sequence has been executed and no faults are detected in the sequencing                                                                                                                                                                                                               |
| PU Fault                        | PU-SEQ                  | FAULT PD                | A fault is detected during the power up sequence                                                                                                                                                                                                                                                   |
| Flag                            | ACTIVE                  | ACTIVE FLAG             | An event occurred and is signaled to the host through INTB                                                                                                                                                                                                                                         |
| Flag Cleared                    | ACTIVE FLAG             | ACTIVE                  | The signaled event is cleared by the host through I <sup>2</sup> C before a time out occurs                                                                                                                                                                                                        |
| Time Out Fault                  | ACTIVE FLAG             | FAULT PD                | The signaled event is not cleared in time by the host                                                                                                                                                                                                                                              |
| Disable                         | ACTIVE &<br>ACTIVE FLAG | PD-SEQ                  | A power down sequence is requested through I <sup>2</sup> C                                                                                                                                                                                                                                        |
| PD Done                         | ACTIVE &<br>ACTIVE FLAG | OFF                     | The power down sequence has been executed                                                                                                                                                                                                                                                          |
| Reset PD Done                   | RESET PD-SEQ            | INIT                    | The power down sequence has been executed                                                                                                                                                                                                                                                          |
| Soft Reset                      | ACTIVE &<br>ACTIVE FLAG | ACTIVE &<br>ACTIVE FLAG | The RSTB pin is temporarily made low by the Watchdog engine, or upon request through $\mathrm{I}^{2}\mathrm{C}$                                                                                                                                                                                    |
| Fault                           | ACTIVE &<br>ACTIVE FLAG | FAULT PD                | A fault is detected that necessitates a power down                                                                                                                                                                                                                                                 |
| Forced reset                    | Any State               | RESET PD-SEQ            | A power down sequence is requested through I <sup>2</sup> C.                                                                                                                                                                                                                                       |
| Error                           | Any State               | ERROR PD                | An abnormal operation condition has occurred which necessitates a power down                                                                                                                                                                                                                       |
| Fatal Error                     | Any State               | INVALID                 | A short circuit condition is detected at VCORE or an internal clock error<br>occurs                                                                                                                                                                                                                |
| Removal of Logic                | Any State               | UNPOWERED               | PVIN1 falls below the logic POR threshold                                                                                                                                                                                                                                                          |
| Power                           | INVALID                 | UNPOWERED               | PVIN1 falls below the logic POR threshold. Power cycling is the only way to recover from an internal clock error                                                                                                                                                                                   |
| Reapplication of<br>Logic Power | INVALID                 | RESET                   | VCORE supply recovers its default voltage from a previous short circuit condition                                                                                                                                                                                                                  |
| Shutdown Done                   | ERROR PD                | LOCK                    | The shutdown has been executed                                                                                                                                                                                                                                                                     |
| Auto Rearm                      | FAULT PD                | BIST                    | A shutdown has been executed and the fault counter has not reached its limit. Only allowed if the source of the fault has disappeared.                                                                                                                                                             |
| No Rearm                        | FAULT PD                | LOCK                    | A shutdown has been executed and the fault counter has reached its limit                                                                                                                                                                                                                           |
| Unlock                          | LOCK                    | INIT                    | An unlock has been requested through I <sup>2</sup> C or a restart after TSD or UVLO was permitted. The transition is only permitted if the source of the error has disappeared.<br>NOTE: The IC can also be unlocked by cycling power (from any state, removal of logic power and reapplication). |

#### **Auto Rearm Description**

After a "FAULT", if AutoRearmCnt < AutoRearmCntMax (I<sup>2</sup>C and OTP programmable) NCV92310 restart automatically and goes to the BIST state.

if AutoRearmCnt = AutoRearmCntMax, NCV92310 goes in LOCK mode.  $P_{VIN1}$  has to be removed and applied again to restart the NCV92310. Otherwise a new power-up sequence is started.

See "<u>INTERRUPTION</u>" and "<u>FUNCTIONAL</u> <u>SAFETY</u>" sections to have the FAULT description.

Table 4. AUTO REARM COUNTER

| Bits | AutoRearmCnt_max |
|------|------------------|
| 00   | No restart       |
| 01   | 3                |
| 10   | 15               |
| 11   | 63               |

#### **Bist Retry Description**

BIST error has its own error counter. If BistCnt < BistCnt max, a BIST retry is performed. If BistCnt = BistCntMax ( $I^2C$  and OTP programmable), NCV92310 goes in lock mode.

#### Table 5. BIST COUNTER

| Bits | BistCnt_max |
|------|-------------|
| 0    | No retry    |
| 1    | 1           |

## **Unlock Description**

Once in lock state, NCV92310 regulators are off with INTB and RSTB pins low. Any I<sup>2</sup>C command to start a new power–up sequence or enable one of the regulators will be acknowledged, but power up sequence cannot start if the NCV92310 is locked.

To recover, the NCV92310 must receive one of the following unlock commands.

- Cycling power on PVIN1 pin or
- Set high NLOCK bit or
- In case of TSD having TSD\_REARM bit set high or
- In case of UVLO having UVLO\_REARM bit set high.

After an unlock command, NCV92310 goes in INIT state and reloads the default value of the OTP by resetting all the registers with the exception of the INTERRUPT\_FLAG\_ERR1 and INTERRUPT\_FLAG\_ERR2 registers.

#### Power Up Sequence

All supply rails can be assigned to the power up sequencer. The sequence can be started upon application of power at PVIN1 or through I<sup>2</sup>C. The sequence is preprogrammed through OTP but can be overwritten through I<sup>2</sup>C as well. Once a sequence is started it cannot be interrupted with the exception of the occurrence of a fault or error.

A sequence is built up out of three portions: initialization, the sequence with its slots, and a sequence done wait period. During the initialization it is verified that all assigned rails have no residual voltage on their outputs. A delay can be inserted before starting the first rail, allowing for a delay between the request for a power up sequence and the actual start. The sequence itself consists of slots, and at each slot, one or more power rails can be enabled. A slot is started after the rails of the previous slot are successfully powered up plus an optional delay. The sequence done wait period is added at the end of the sequence and can be used to delay the RSTB signal.

During the initialization phase, the active discharge on the assigned rails is enabled. If, at the end of the initialization phase, one of the assigned supply rails still has a residual voltage on its output, this event is logged and a power up sequence is not started.

A supply is considered enabled when its output voltage is established above the undervoltage detection thresholds of that rail, including its debounce "See <u>VOLTAGE</u> <u>MONITORING</u>" section.

Each rail needs to power up within a timeout period. In case of a timeout, the sequence is considered fault and a shutdown is engaged. The event, and the rail causing this are logged. The device will attempt a new startup sequence if the conditions allow.

Rails can be enabled while operating the device. When enabling, and if that rail is originally assigned to a power up sequence, it is being verified that the rail powers up within the timeout period. Any violation is logged. The violation can be cleared through  $I^2C$ .

The sequence will power up each voltage rail at its default output voltage setting as set through OTP. This default setting can be overwritten through  $I^2C$ .

During the power up sequence, and despite the soft start mechanisms in place, it may be that, during the soft start of DCDC1, the PVIN1 trips the undervoltage lockout detection due to an excessive impedance of the coaxial cable. If DCDC1 is assigned to slot 0 and enabled, and only in this specific case, the device enters a hiccup mode. The power up sequence is aborted so the input supply can recover, and once recovered, the device will continue to soft start DCDC1 repeatedly until the rail is successfully powered up within the timeout period. In all other configurations (DCDC1 assigned to another slot, disabled or another rail assigned to slot 0), this recovery procedure is not supported.

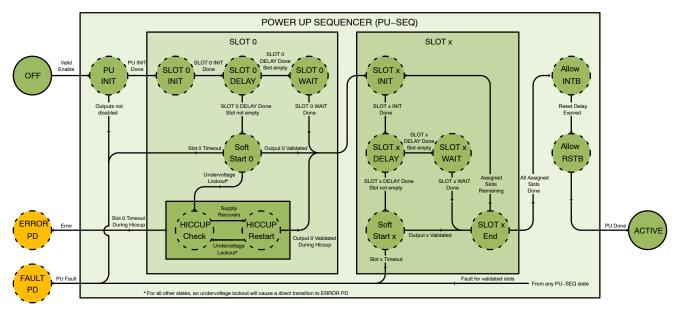



Figure 19. Power-up Sequence State Machine

#### **Table 6. POWER UP SEQUENCER STATES**

| Group  | State             | Туре         | l <sup>2</sup> C | Description                                                                                                                                                                                                                                                                                   |
|--------|-------------------|--------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | PU INIT           | Transitional | R only           | Only the active discharge on all assigned rails are activated, a timeout is started (64 ms max), the output voltage of the rails are verified with respect to the disable threshold. The state of INTB is frozen and will not change during the power up sequence itself, RSTB is forced low, |
|        | Allow INTB        | Transitional | R only           | The INTB pin is no longer frozen and reflects the actual state of the interrupts, a sequence done wait timer is started                                                                                                                                                                       |
|        | Allow RSTB        | Transitional | R only           | The RSTB pin is released                                                                                                                                                                                                                                                                      |
| SLOT 0 | SLOT 0 INIT       | Transitional | R only           | Upon entry, the slot counter is set to 0, the active discharge of the rails assigned to slot 0 are disabled                                                                                                                                                                                   |
|        | SLOT 0 DELAY      | Transitional | R only           | An initial delay timer is started upon entry                                                                                                                                                                                                                                                  |
|        | SLOT 0 WAIT       | Transitional | R only           | An optional slot length wait timer is started upon entry                                                                                                                                                                                                                                      |
|        | Soft Start 0      | Transitional | R only           | The slot length timer is started upon entry and the assigned rails are ramped up                                                                                                                                                                                                              |
|        | HICCUP Check      | Transitional | R only           | The ramp up of the assigned rails is stopped, the active discharge remains disabled, the slot length timer continues running, the under voltage lockout is checked.                                                                                                                           |
|        | HICCUP<br>Restart | Transitional | R only           | The soft start resumes. The active discharge remains disabled, the slot length timer continues running.                                                                                                                                                                                       |
| SLOT x | SLOT x INIT       | Transitional | R only           | Upon entry the slot counter is increased with $+1$ , the active discharge of the rails assigned to slot x are disabled                                                                                                                                                                        |
|        | SLOT x DELAY      | Transitional | R only           | An optional initial delay timer is started upon entry                                                                                                                                                                                                                                         |
|        | SLOT x WAIT       | Transitional | R only           | An optional slot length wait timer is started upon entry                                                                                                                                                                                                                                      |
|        | Soft Start x      | Transitional | R only           | The slot length timer is started upon entry and the assigned rails are ramped up                                                                                                                                                                                                              |
|        | SLOT x End        | Transitional | R only           | Upon entry it is verified if there is still an assigned rail on the remaining slots                                                                                                                                                                                                           |

# Table 7. POWER UP SEQUENCER TRANSITIONS

| Transition                              | From                                | То                  | Description                                                                                                                                                                                                                                                                           |
|-----------------------------------------|-------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Valid Enable                            | OFF                                 | (PU-SEQ) PU<br>INIT | A power up sequence is requested through $I^2C$ , or, in case the GPIO is configured for this, through the HWEN signal going high.                                                                                                                                                    |
| PU Fault                                | (PU-SEQ)                            | FAULT PD            | A fault is detected during the power up sequence                                                                                                                                                                                                                                      |
| Outputs Not<br>Disabled                 | PU INIT                             | FAULT PD            | After the initialization timeout, one or more of the assigned rails still has<br>a residual voltage above the disable threshold. The state of non-assigned rails<br>has no influence.                                                                                                 |
| PU INIT Done                            | PU INIT                             | SLOT 0 INIT         | The PU INIT has been executed and no faults are detected                                                                                                                                                                                                                              |
| SLOT 0 INIT<br>Done                     | SLOT 0 INIT                         | SLOT 0 DELAY        | The SLOT 0 INIT has been executed                                                                                                                                                                                                                                                     |
| SLOT 0 DELAY<br>Done, Slot Empty        | SLOT 0 DELAY                        | SLOT 0 WAIT         | The initial delay timer has expired and slot 0 is not assigned                                                                                                                                                                                                                        |
| SLOT 0 WAIT<br>Done                     | SLOT 0 WAIT                         | SLOT x INIT         | The optional slot wait timer has expired                                                                                                                                                                                                                                              |
| SLOT 0 DELAY<br>Done, Slot Not<br>Empty | SLOT 0 DELAY                        | Soft Start 0        | The initial delay timer has expired and slot 0 is assigned                                                                                                                                                                                                                            |
| Output 0<br>Validated                   | Soft Start 0                        | SLOT x INIT         | The output voltage of all the rails assigned to slot 0 have raised to above the<br>undervoltage detection level for that rail                                                                                                                                                         |
| Slot 0 Timeout                          | Soft Start 0                        | FAULT PD            | The output voltage of one or more of the rails assigned to slot 0 did not cross the undervoltage detection level for that rail within the slot timeout                                                                                                                                |
| Undervoltage<br>Lockout                 | Soft Start 0 &<br>HICCUP<br>Restart | HICCUP Check        | An undervoltage lockout is detected at PVIN1 during the ramp up of DCDC1.<br>This transition is allowed if, and only if, DCDC1 is enabled and assigned to Slot<br>0. In all other cases an undervoltage lockout is treated as an abnormal operating<br>condition leading to ERROR PD. |
| Supply<br>Recovers                      | HICCUP Check                        | HICCUP<br>Restart   | The input supply at PVIN1 raised to above the undervoltage lockout threshold                                                                                                                                                                                                          |
| Output 0<br>Validated<br>During Hiccup  | HICCUP<br>Restart                   | SLOT x INIT         | The output voltage of all the rails assigned to slot 0 have raised to above the undervoltage detection level for that rail                                                                                                                                                            |
| Slot 0 Timeout<br>During Hiccup         | HICCUP Check<br>& HICCUP<br>Restart | ERROR PD            | The input supply at PVIN1 did not raise to above the undervoltage lockout threshold before the slot timeout, or the rails assigned to slot 0 did not cross the undervoltage detection level for that rail within the slot timeout                                                     |
| SLOT x INIT<br>Done                     | SLOT x INIT                         | SLOT x DELAY        | The SLOT x INIT has been executed                                                                                                                                                                                                                                                     |
| SLOT x DELAY<br>Done, Slot Empty        | SLOT x DELAY                        | SLOT x WAIT         | The initial delay timer has expired and slot x is not assigned                                                                                                                                                                                                                        |
| SLOT x WAIT<br>Done                     | SLOT x WAIT                         | SLOT x END          | The optional slot wait timer has expired                                                                                                                                                                                                                                              |
| SLOT x DELAY<br>Done, Slot Not<br>Empty | SLOT x DELAY                        | Soft Start x        | The initial delay timer has expired and slot x is assigned                                                                                                                                                                                                                            |
| Output x<br>Validated                   | Soft Start x                        | SLOT x END          | The output voltage of all the rails assigned to slot x have raised to above the undervoltage detection level for that rail                                                                                                                                                            |
| Slot x Timeout                          | Soft Start x                        | FAULT PD            | The output voltage of one or more of the rails assigned to slot x did not cross the undervoltage detection level for that rail within the slot timeout                                                                                                                                |
| Assigned Slots<br>Remaining             | SLOT x END                          | SLOT x INIT         | Not all rails that were assigned to the power up sequencer are yet enabled                                                                                                                                                                                                            |
| All Assigned<br>Slots Done              | SLOT x END                          | Allow INTB          | All rails that were assigned to the power up sequencer are enabled, the remain-<br>ing slots will be skipped.                                                                                                                                                                         |
| Reset Delay<br>Expired                  | Allow INTB                          | Allow RSTB &<br>PG  | The sequence done wait timer has expired                                                                                                                                                                                                                                              |
| PU Done                                 | (PU-SEQ)                            | ACTIVE              | The power up sequence has been executed and no faults are detected in the sequencing                                                                                                                                                                                                  |
| Fault for<br>Validated Slots            | Any PU–SEQ<br>State                 | FAULT PD            | A fault has occurred on an already validated slot such as an unexpected<br>undervoltage detection                                                                                                                                                                                     |

## Power Down Sequence

All supply rails can be assigned to the power down sequencer. The sequence can be started through  $I^2C$ . The sequence is preprogrammed through OTP but can be overwritten through  $I^2C$  as well. Once a sequence is started it cannot be interrupted.

A sequence is built up out of two portions: an initial delay and the sequence with its slots. The initial delay allows for inserting a delay between the request for a power down sequence and the actual start. The sequence itself consists of slots, and at each slot, one or more power rails can be disabled. A slot is started after the rails of the previous slot are successfully powered down. The INTB and RSTB signal are made low after the initial delay timing. A supply is considered disabled when its output voltage has fallen below the disable threshold of that rail, "See <u>VOLTAGE MONITORING</u>" section.

Each rail needs to power down within a timeout period. In case of a timeout, this violation is logged but no further specific action is taken. Upon the next power up, the sequence will not be started until all rails that are assigned to the power up sequence are below the disable threshold.

The programming of the power down sequence is fully independent from the power up sequence.

The power down sequence flow diagram and detailed description of each state and transition are provided below.

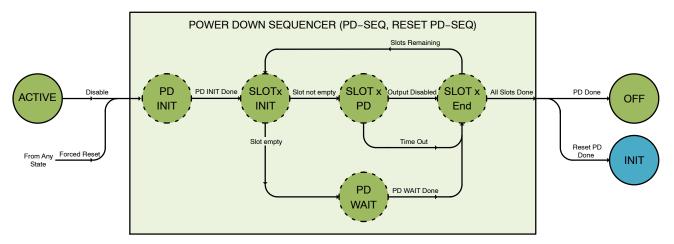


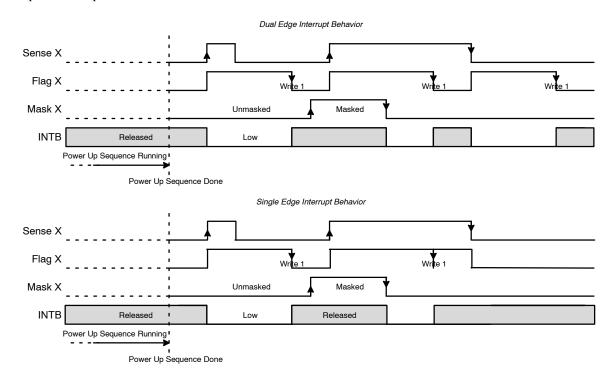

Figure 20. Power Down Sequence State Machine

| Group  | State       | Туре         | l <sup>2</sup> C | Description                                                                                                 |
|--------|-------------|--------------|------------------|-------------------------------------------------------------------------------------------------------------|
| Global | PD INIT     | Transitional | R only           | Upon entry an optional initial delay timer is started                                                       |
|        | SLOT x INIT | Transitional | R only           | It is verified if slot x has a rail assigned to it                                                          |
|        | PD WAIT     | Transitional | R only           | Upon entry a timeslot wait timer is started                                                                 |
|        | SLOT x PD   | Transitional | R only           | For the rails assigned to slot x, the active output discharge is enabled and the output voltage ramped down |
|        | SLOT x End  | Transitional | R only           | It is verified if there are still slots left to be treated. The slot number is increased by $+1$            |

| Table 9  |         | P SEQUENCER |        |
|----------|---------|-------------|--------|
| Taple 8. | POWER U | P SEQUENCER | SIALES |

| Transition                       | From                   | То                  | Description                                                                                                                                |
|----------------------------------|------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Disable                          | ACTIVE                 | (PD-SEQ)<br>PD INIT | A power down sequence is requested through I <sup>2</sup> C.                                                                               |
| Forced Reset                     | Any State              | (PD-SEQ)<br>PD INIT | A power down sequence is requested through I <sup>2</sup> C.                                                                               |
| PD INIT Done                     | PD INIT                | SLOT x INIT         | The initial delay timer has expired                                                                                                        |
| Slot Empty                       | SLOT x INIT            | PD WAIT             | Slot x has no rail assigned to it                                                                                                          |
| PD WAIT Done                     | PD WAIT                | SLOT x End          | The timeslot timer has expired                                                                                                             |
| Slot Not Empty                   | SLOT x INIT            | SLOT x PD           | Slot x has one or more rails assigned to it                                                                                                |
| Output Disabled                  | SLOT x PD              | SLOT x End          | The output voltages of all rails assigned to slot x have crossed the disable threshold                                                     |
| Time Out                         | SLOT x PD              | SLOT x End          | One or more of the output voltages of the rails assigned to slot $x$ did not cross the disable threshold before the timeslot timer expired |
| Slots<br>Remaining               | SLOT x End             | SLOT x INIT         | Not all slots have yet been treated (being assigned or not).                                                                               |
| All Slots Done,<br>PD Done       | (PD-SEQ)<br>SLOT x End | OFF                 | All slots have been treated and the power down sequence has been executed                                                                  |
| All Slots Done,<br>Reset PD Done | (PD-SEQ)<br>SLOT x End | INIT                | All slots have been treated and the power down sequence has been executed                                                                  |

## Table 9. POWER UP SEQUENCER TRANSITIONS


## INTERRUPTION

In order to inform the system about essential events an interrupt pin INTB is provided. This avoids continuous software pulling for status verification and reduces overall latency for reporting events. There are different interrupt behavior configurations possible.

- Dual edge interrupt: INTB is by default released (high), and is pulled low upon the occurrence of a fault condition or upon the resolution of it. The pin is released when the flag is cleared, even if a fault condition is still present.
- Single edge interrupt: INTB is by default released (high), and is pulled low upon the occurrence of a fault condition.

The pin is released when the flag is cleared, even if a fault condition is still present. For INTB released, it is not pulled low upon the resolution of a fault.

Nearly all events have three bits associated: a sense bit, an interrupt flag bit and a mask bit. Below diagrams show the basic functioning of these for all four interrupt configurations. The arrow indicates the edge of the event that influences the other signals.





Below, the behavior of the dual edge interrupt is described, followed by a short description of the differences with the other configurations.

The sense bit reflects the real time status of a detector, like for instance the undervoltage detection of LDO2. When the sense bit changes, the associated interrupt flag bit will be set and latched to a 1. When an interrupt flag bit is 1, the pin INTB is pulled low. An interrupt flag bit is cleared by writing a 1 to the interrupt bit location. If all unmasked interrupt flag bits are cleared the INTB pin will be released. The INTB line will only go high if no other device on the bus continuous to pull it low.

Each interrupt flag bit has an associated mask bit. When the mask bit is set 1 the interrupt flag bit value is of no influence on the interrupt pin INTB. Masking interrupt bits will make sure only the most essential interrupts will cause INTB to be pulled low. Mask bit default settings depends on OTP configuration. Given the number of possible interrupts and in order to reduce the read–out time, a status register regroups all

interrupts of the same type to a single bit. Only unmasked interrupts will be reflected through the status bits. As an example, if one of the unmasked undervoltage interrupts is generated, the undervoltage status bit is also set. By reading only the status register software can decide if the type of interrupt is of high importance or verify that the IC is the one that pulled the interrupt line low.

In case of a single edge interrupt configuration, the behavior of the sense bits is identical to that of the dual edge configuration. The behavior of the interrupt flag bit and INTB behavior is slightly different. Like for the dual edge interrupt, when the sense bit changes from 0 to a 1, the associated interrupt flag bit will be set and latched to a 1. This interrupt flag bit can be cleared by writing a 1 which will release the INTB pin, however, as long as the corresponding sense bit remains high, the read back of the

flag bit stays a 1. A cleared flag bit will automatically read back a 0 when the corresponding sense bit reverts to 0. This way, the INTB pin will only be forced low upon the detection of the event reflected by the sense bit, but not when the event disappears. The mask bit behavior is identical to the dual edge configuration.

After the startup of the device the INTB pin (push-pull configuration) is driven low and will be driven high at the end of the power –up sequence. If a flag event has occurred during the power–up sequence, NCV92310 will keep the pin low until the flag is cleared.

Due to defects, such as short to supply, the interrupt line might stay high permanently. Therefore, I<sup>2</sup>C content should be consulted after power up even if the interrupt line pin is not going low in order to verify the integrity of the interrupt line. A dedicated read/write bit is provided to force INTB low if set to 1 or let INTB released when set to 0 in order to assist the system in verifying the overall signal integrity.

#### Table 10. INTERRUPT SOURCES (ERROR)

| Interrupt Sources         | Description                            |  |
|---------------------------|----------------------------------------|--|
| OVERTEMP (ERROR           | ٦)                                     |  |
| TSD                       | Thermal Shutdown                       |  |
| SELF TEST FAILURE (ERROR) |                                        |  |
| BIST                      | BIST error                             |  |
| OTP_ERROR                 | Error not corrected during OTP loading |  |

**ABNORMAL OPERATING CONDITIONS (ERROR)** 

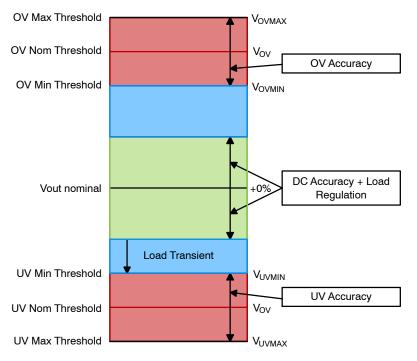
| SC_DCDC1     | Short Circuit DCDC1                                          |
|--------------|--------------------------------------------------------------|
| SC_DCDC2     | Short Circuit DCDC2                                          |
| SC_DCDC3     | Short Circuit DCDC3                                          |
| SC_LDO1      | Short Circuit LDO1                                           |
| SC_SW1_DCDC1 | DCDC1 SW pin                                                 |
| SC_SW2_DCDC2 | DCDC2 SW pin                                                 |
| SC_SW3_DCDC3 | DCDC3 SW pin                                                 |
| I2C_REGERROR | Register map integrity error                                 |
| UVLO         | UVLO state                                                   |
| OVE          | Input Over Voltage Error<br>(input overvoltage flag disable) |
| FB1 open     | DCDC1 feedback pin open                                      |

#### **CORE FAILURE (FATAL ERROR)**

| SC_VCORE    | Short Circuit Internal Vcore Supply |
|-------------|-------------------------------------|
| Clock_Error | Internal Clock Error                |

#### Table 11. INTERRUPT SOURCES (FAULT AND FLAG)

| Interrupt SourcesDescriptionFAULTFault_Time_OutTime out when in ACTIVE FLAG modePUS_FAILPower up sequence FailureUVT_BUCK1DCDC1 Under Voltage ThresholdOVT_BUCK1DCDC1 Over Voltage ThresholdFLAGDCDC1 Converter Positive Inductor<br>Peak Current ProtectionDCDC1_IPK posDCDC1 Converter Negative Inductor<br>Peak Current ProtectionDCDC2_IPK posDCDC2 Converter Negative Inductor<br>Peak Current ProtectionDCDC2_IPK posDCDC2 Converter Negative Inductor<br>Peak Current ProtectionDCDC3_IPK posDCDC3 Converter Negative Inductor<br>Peak Current ProtectionILD01_OCPLDO1 Output Over CurrentI2C_FAILI²C communication errorTSD_PWRNGThermal WarningOVFInput Over Voltage Flag<br>(input overvoltage error disable)PDS_FAILPower down sequence FailureFULT OR FLAGDCDC2 Over Voltage ThresholdOVT_BUCK2DCDC3 Over Voltage ThresholdOVT_BUCK3DCDC3 Over Voltage ThresholdOVT_LDO1LDO1 Under Voltage ThresholdOVT_LDO | TADIE TT. INTERRUPT SOURCES (FAULT AND FLAG) |                                      |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------|--|--|--|
| Fault_Time_OutTime out when in ACTIVE FLAG modePUS_FAILPower up sequence FailureUVT_BUCK1DCDC1 Under Voltage ThresholdOVT_BUCK1DCDC1 Over Voltage ThresholdDCDC1_IPK posDCDC1 Converter Positive Inductor<br>Peak Current ProtectionDCDC2_IPK posDCDC2 Converter Negative Inductor<br>Peak Current ProtectionDCDC2_IPK posDCDC2 Converter Positive Inductor<br>Peak Current ProtectionDCDC3_IPK posDCDC2 Converter Negative Inductor<br>Peak Current ProtectionDCDC3_IPK posDCDC3 Converter Negative Inductor<br>Peak Current ProtectionLDO1_OCPLDO1 Output Over CurrentI2C_FAILI²C communication lostI2C_CRC_ERRORI²C communication errorTSD_PWRNGThermal WarningOVFInput Over Voltage Flag<br>(input overvoltage error disable)PDS_FAILPower down sequence FailureFULT OR FLAG (DCDC2 Under Voltage ThresholdOVT_BUCK2DCDC2 Over Voltage ThresholdOVT_BUCK3DCDC3 Over Voltage ThresholdOVT_LDO1LDO1 Under Voltage ThresholdOVT_LDO1LDO1 Over Voltage ThresholdOVT_LDO1DCDC2 feedback pin open                                                                                                                                                    | Interrupt Sources                            | Description                          |  |  |  |
| PUS_FAILPower up sequence FailurePUS_FAILDCDC1 Under Voltage ThresholdOVT_BUCK1DCDC1 Over Voltage ThresholdDCDC1_IPK posDCDC1 Converter Positive Inductor<br>Peak Current ProtectionDCDC1_IPK posDCDC1 Converter Negative Inductor<br>Peak Current ProtectionDCDC2_IPK posDCDC2 Converter Positive Inductor<br>Peak Current ProtectionDCDC2_IPK posDCDC2 Converter Negative Inductor<br>Peak Current ProtectionDCDC3_IPK posDCDC3 Converter Negative Inductor<br>Peak Current ProtectionILD01_OCPLDO1 Output Over CurrentI2C_FAILI²C communication lostI2C_FAILI²C communication errorTSD_PWRNGThermal WarningOVFInput Over Voltage Flag<br>(input overvoltage error disable)PDS_FAILPower down sequence FailureFAULT OR FLAG (DEDE2 Under Voltage ThresholdUVT_BUCK2DCDC2 Under Voltage ThresholdUVT_BUCK3DCDC3 Over Voltage ThresholdUVT_LDO1LDO1 Under Voltage ThresholdUVT_LDO1LDO1 Over Voltage ThresholdUVT_LDO1DCDC2 feedback pin open                                                                                                                             | FAULT                                        |                                      |  |  |  |
| UVT_BUCK1DCDC1 Under Voltage ThresholdOVT_BUCK1DCDC1 Over Voltage ThresholdFLAGDCDC1_IPK posDCDC1 Converter Positive Inductor<br>Peak Current ProtectionDCDC1_IPK negDCDC1 Converter Negative Inductor<br>Peak Current ProtectionDCDC2_IPK posDCDC2 Converter Positive Inductor<br>Peak Current ProtectionDCDC2_IPK negDCDC2 Converter Negative Inductor<br>Peak Current ProtectionDCDC3_IPK posDCDC3 Converter Negative Inductor<br>Peak Current ProtectionDCDC3_IPK negDCDC3 Converter Negative Inductor<br>Peak Current ProtectionDCDC3_IPK negDCDC3 Converter Negative Inductor<br>Peak Current ProtectionDCDC3_IPK negDCDC3 Converter Negative Inductor<br>Peak Current ProtectionLD01_OCPLD01 Output Over CurrentI2C_FAILI²C communication lostI2C_CRC_ERRORI²C communication errorTSD_PWRNGThermal Pre-WarningTSD_WRNGThermal WarningOVFInput Over Voltage Flag<br>(input overvoltage error disable)PDS_FAILPOwer down sequence FailureFAULT OR FLAG (UEVENDS ON OTP CONFIGURATION)UVT_BUCK2DCDC2 Under Voltage ThresholdOVT_BUCK3DCDC3 Over Voltage ThresholdOVT_BUCK3DCDC3 Over Voltage ThresholdOVT_LDO1LD01 Over Voltage ThresholdOVT_LDO1LD01 Over Voltage ThresholdOVT_LDO1DCDC2 feedback pin open                                                                                                                                                               | Fault_Time_Out                               | Time out when in ACTIVE FLAG mode    |  |  |  |
| OVT_BUCK1DCDC1 Over Voltage ThresholdFLAGDCDC1_IPK posDCDC1 Converter Positive Inductor<br>Peak Current ProtectionDCDC1_IPK negDCDC1 Converter Negative Inductor<br>Peak Current ProtectionDCDC2_IPK posDCDC2 Converter Positive Inductor<br>Peak Current ProtectionDCDC2_IPK negDCDC2 Converter Negative Inductor<br>Peak Current ProtectionDCDC3_IPK posDCDC3 Converter Negative Inductor<br>Peak Current ProtectionDCDC3_IPK negDCDC3 Converter Negative Inductor<br>Peak Current ProtectionLD01_OCPLD01 Output Over CurrentI2C_FAILI²C communication lostI2C_CRC_ERRORI²C communication errorTSD_PWRNGThermal WarningOVFInput Over Voltage Flag<br>(input overvoltage error disable)PDS_FAILPOwer down sequence FailureFAULT OR FLAG (DEC2 Under Voltage ThresholdOVT_BUCK2DCDC2 Over Voltage ThresholdOVT_BUCK3DCDC3 Under Voltage ThresholdOVT_LDO1LD01 Over Voltage ThresholdOVT_LDO1LD01 Over Voltage ThresholdOVT_LDO1DCDC3 Over Voltage ThresholdOVT_LDO1DCDC3 Over Voltage ThresholdOVT_LDO1DCDC3 Over Voltage ThresholdOVT_LDO1DCDC3 Over Voltage ThresholdOVT_LDO1DCDC2 feedback pin open                                             | PUS_FAIL                                     | Power up sequence Failure            |  |  |  |
| FLAGFLAGDCDC1_IPK posDCDC1 Converter Positive Inductor<br>Peak Current ProtectionDCDC1_IPK negDCDC1 Converter Negative Inductor<br>Peak Current ProtectionDCDC2_IPK posDCDC2 Converter Positive Inductor<br>Peak Current ProtectionDCDC2_IPK negDCDC2 Converter Negative Inductor<br>Peak Current ProtectionDCDC3_IPK posDCDC3 Converter Negative Inductor<br>Peak Current ProtectionDCDC3_IPK negDCDC3 Converter Negative Inductor<br>Peak Current ProtectionDCDC3_IPK negDCDC3 Converter Negative Inductor<br>Peak Current ProtectionLD01_OCPLD01 Output Over CurrentI2C_FAILI²C communication lostI2C_CRC_ERRORI²C communication errorTSD_PWRNGThermal Pre-WarningTSD_WRNGThermal VarningOVFInput Over Voltage Flag<br>(input overvoltage error disable)PDS_FAILPower down sequence FailureFAULT OR FLAG (DEVENDS ON OTP CONFIGURATION)UVT_BUCK2DCDC2 Under Voltage Threshold0VT_BUCK3DCDC3 Under Voltage Threshold0VT_LDO1LD01 Under Voltage Threshold0VT_LDO1LD01 Over Voltage Threshold0VT_LDO1LD01 Over Voltage Threshold0VT_LDO1LD01 Over Voltage Threshold0VT_LDO1DCDC3 Over Voltage Threshold0VT_LDO1DCDC3 Over Voltage Threshold0VT_LDO1LD01 Over Voltage Threshold0VT_LDO1DCDC3 Over Voltage Threshold0VT_LDO1DCDC3 Over Voltage Threshold0VT_LDO1DCDC2 feedback pin open                                                                                         | UVT_BUCK1                                    | DCDC1 Under Voltage Threshold        |  |  |  |
| DCDC1_IPK posDCDC1 Converter Positive Inductor<br>Peak Current ProtectionDCDC1_IPK negDCDC1 Converter Negative Inductor<br>Peak Current ProtectionDCDC2_IPK posDCDC2 Converter Positive Inductor<br>Peak Current ProtectionDCDC2_IPK negDCDC2 Converter Negative Inductor<br>Peak Current ProtectionDCDC3_IPK posDCDC3 Converter Negative Inductor<br>Peak Current ProtectionDCDC3_IPK negDCDC3 Converter Negative Inductor<br>Peak Current ProtectionDCDC3_IPK negDCDC3 Converter Negative Inductor<br>Peak Current ProtectionDCDC3_IPK negDCDC3 Converter Negative Inductor<br>Peak Current ProtectionLD01_OCPLD01 Output Over CurrentI2C_FAILI²C communication lostI2C_CRC_ERRORI²C communication errorTSD_PWRNGThermal Pre-WarningTSD_WRNGThermal WarningOVFInput Over Voltage Flag<br>(input overvoltage error disable)PDS_FAILPower down sequence FailureFAULT OR FLAG (DEEENDS ON OTP CONFIGURATION)UVT_BUCK2DCDC2 Under Voltage Threshold0VT_BUCK3DCDC3 Under Voltage Threshold0VT_BUCK3DCDC3 Over Voltage Threshold0VT_LDO1LDO1 Under Voltage Threshold0VT_LDO1LDO1 Over Voltage Threshold0VT_LDO1DCDC2 feedback pin open                                                                                                                                                                                                                                            | OVT_BUCK1                                    | DCDC1 Over Voltage Threshold         |  |  |  |
| Peak Current ProtectionDCDC1_IPK negDCDC1 Converter Negative Inductor<br>Peak Current ProtectionDCDC2_IPK posDCDC2 Converter Positive Inductor<br>Peak Current ProtectionDCDC2_IPK negDCDC2 Converter Negative Inductor<br>Peak Current ProtectionDCDC3_IPK posDCDC3 Converter Positive Inductor<br>Peak Current ProtectionDCDC3_IPK negDCDC3 Converter Negative Inductor<br>Peak Current ProtectionDCDC3_IPK negDCDC3 Converter Negative Inductor<br>Peak Current ProtectionLD01_OCPLD01 Output Over CurrentI2C_FAILI²C communication lostI2C_CRC_ERRORI²C communication errorTSD_WRNGThermal Pre-WarningTSD_WRNGThermal WarningOVFInput Over Voltage Flag<br>(input overvoltage error disable)PDS_FAILPower down sequence FailureFAULT OR FLAG (DEDC2 Over Voltage ThresholdUVT_BUCK2DCDC2 Over Voltage ThresholdOVT_BUCK3DCDC3 Over Voltage ThresholdUVT_BUCK3DCDC3 Over Voltage ThresholdUVT_LDO1LD01 Under Voltage ThresholdUVT_LDO1DCDC3 Over Voltage ThresholdOVT_LDO1DCDC3 Over Voltage ThresholdUVT_LDO1DCDC3 Over Voltage ThresholdDVT_LDO1DCDC3 Over Voltage ThresholdDVT_LDO1DCDC3 Over Voltage ThresholdDVT_LDO1DCDC3 feedback pin open                                                                                                                                                                                                                          | FLAG                                         |                                      |  |  |  |
| Peak Current ProtectionDCDC2_IPK posDCDC2 Converter Positive Inductor<br>Peak Current ProtectionDCDC2_IPK negDCDC2 Converter Negative Inductor<br>Peak Current ProtectionDCDC3_IPK posDCDC3 Converter Positive Inductor<br>Peak Current ProtectionDCDC3_IPK negDCDC3 Converter Negative Inductor<br>Peak Current ProtectionDCDC3_IPK negDCDC3 Converter Negative Inductor<br>Peak Current ProtectionLDO1_OCPLDO1 Output Over CurrentI2C_FAILI²C communication lostI2C_CRC_ERRORI²C communication errorTSD_PWRNGThermal WarningOVFInput Over Voltage Flag<br>(input overvoltage error disable)PDS_FAILPower down sequence FailureFAULT OR FLAGDCDC2 Under Voltage ThresholdUVT_BUCK2DCDC2 Over Voltage ThresholdUVT_BUCK3DCDC3 Over Voltage ThresholdUVT_BUCK3DCDC3 Over Voltage ThresholdUVT_LDO1LDO1 Over Voltage ThresholdOVT_LDO1DCDC3 Over Voltage ThresholdOVT_LDO1DCDC3 Over Voltage ThresholdOVT_LDO1DCDC3 Over Voltage Threshold                                                                                                                                                                                                                                                                                                                                                                                                                                      | DCDC1_IPK pos                                |                                      |  |  |  |
| Peak Current ProtectionDCDC2_IPK negDCDC2 Converter Negative Inductor<br>Peak Current ProtectionDCDC3_IPK posDCDC3 Converter Positive Inductor<br>Peak Current ProtectionDCDC3_IPK negDCDC3 Converter Negative Inductor<br>Peak Current ProtectionLD01_OCPLDO1 Output Over CurrentI2C_FAILI²C communication lostI2C_CRC_ERRORI²C communication errorTSD_PWRNGThermal Pre-WarningTSD_WRNGThermal WarningOVFInput Over Voltage Flag<br>(input overvoltage error disable)PDS_FAILPower down sequence FailureFAULT OR FLAG (DEPENDS ON OTP CONFIGURATION)UVT_BUCK2DCDC2 Under Voltage ThresholdOVT_BUCK3DCDC3 Over Voltage ThresholdOVT_BUCK3DCDC3 Over Voltage ThresholdOVT_LDO1LDO1 Under Voltage ThresholdOVT_LDO1LDO1 Over Voltage ThresholdOVT_LDO1DCDC3 Over Voltage ThresholdOVT_LDO1DCDC3 Over Voltage ThresholdOVT_LDO1DCDC3 Over Voltage ThresholdOVT_LDO1DCDC3 Over Voltage Threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DCDC1_IPK neg                                |                                      |  |  |  |
| Peak Current ProtectionDCDC3_IPK posDCDC3 Converter Positive Inductor<br>Peak Current ProtectionDCDC3_IPK negDCDC3 Converter Negative Inductor<br>Peak Current ProtectionLD01_OCPLDO1 Output Over CurrentI2C_FAILI²C communication lostI2C_CRC_ERRORI²C communication errorTSD_PWRNGThermal Pre-WarningTSD_WRNGThermal WarningOVFInput Over Voltage Flag<br>(input overvoltage error disable)PDS_FAILPower down sequence FailureFAULT OR FLAG (DEVENDS ON OTP CONFIGURATION)UVT_BUCK2DCDC2 Under Voltage ThresholdOVT_BUCK3DCDC3 Under Voltage ThresholdUVT_LDO1LDO1 Under Voltage ThresholdUVT_LDO1LDO1 Over Voltage ThresholdOVT_LDO1LDO1 Over Voltage ThresholdOVT_LDO1DCDC2 feedback pin open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DCDC2_IPK pos                                |                                      |  |  |  |
| Peak Current ProtectionDCDC3_IPK negDCDC3 Converter Negative Inductor<br>Peak Current ProtectionLD01_OCPLD01 Output Over CurrentI2C_FAILI²C communication lostI2C_CRC_ERRORI²C communication errorTSD_PWRNGThermal Pre-WarningTSD_WRNGThermal WarningOVFInput Over Voltage Flag<br>(input overvoltage error disable)PDS_FAILPower down sequence FailureFAULT OR FLAG (DEPENDS ON OTP CONFIGURATION)UVT_BUCK2DCDC2 Under Voltage ThresholdOVT_BUCK3DCDC3 Under Voltage ThresholdOVT_LD01LD01 Under Voltage ThresholdOVT_LD01LD01 Over Voltage ThresholdOVT_LD01DCDC2 feedback pin open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DCDC2_IPK neg                                |                                      |  |  |  |
| Peak Current ProtectionLDO1_OCPLDO1 Output Over CurrentI2C_FAILI²C communication lostI2C_CRC_ERRORI²C communication errorTSD_PWRNGThermal Pre-WarningTSD_WRNGThermal WarningOVFInput Over Voltage Flag<br>(input overvoltage error disable)PDS_FAILPower down sequence FailureFAULT OR FLAG (DEVENDS ON OTP CONFIGURATION)UVT_BUCK2DCDC2 Under Voltage ThresholdOVT_BUCK3DCDC3 Under Voltage ThresholdUVT_BUCK3DCDC3 Over Voltage ThresholdUVT_LDO1LDO1 Under Voltage ThresholdOVT_LDO1LDO1 Over Voltage ThresholdOVT_LDO1DCDC2 feedback pin open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DCDC3_IPK pos                                |                                      |  |  |  |
| I2C_FAILI2C communication lostI2C_CRC_ERRORI2C communication errorTSD_PWRNGThermal Pre-WarningTSD_WRNGThermal WarningOVFInput Over Voltage Flag<br>(input overvoltage error disable)PDS_FAILPower down sequence FailureFAULT OR FLAG (DEVENDS ON OTP CONFIGURATION)UVT_BUCK2DCDC2 Under Voltage ThresholdOVT_BUCK3DCDC3 Under Voltage ThresholdUVT_BUCK3DCDC3 Over Voltage ThresholdUVT_LDO1LDO1 Under Voltage ThresholdOVT_LDO1DCDC2 feedback pin open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DCDC3_IPK neg                                |                                      |  |  |  |
| I2C_CRC_ERRORI2C communication errorI2C_CRC_ERRORIAC communication errorTSD_PWRNGThermal Pre-WarningTSD_WRNGThermal WarningOVFInput Over Voltage Flag<br>(input overvoltage error disable)PDS_FAILPower down sequence FailureFAULT OR FLAG (DEPENDS ON OTP CONFIGURATION)UVT_BUCK2DCDC2 Under Voltage ThresholdOVT_BUCK3DCDC3 Under Voltage ThresholdUVT_BUCK3DCDC3 Over Voltage ThresholdUVT_LDO1LDO1 Under Voltage ThresholdOVT_LDO1DCDC2 feedback pin open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LDO1_OCP                                     | LDO1 Output Over Current             |  |  |  |
| TSD_PWRNGThermal Pre-WarningTSD_WRNGThermal WarningOVFInput Over Voltage Flag<br>(input overvoltage error disable)PDS_FAILPower down sequence FailureFAULT OR FLAG (DEVENDS ON OTP CONFIGURATION)UVT_BUCK2DCDC2 Under Voltage ThresholdOVT_BUCK3DCDC3 Under Voltage ThresholdUVT_BUCK3DCDC3 Over Voltage ThresholdUVT_LDO1LDO1 Under Voltage ThresholdOVT_LDO1DCDC2 feedback pin open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I2C_FAIL                                     | I <sup>2</sup> C communication lost  |  |  |  |
| TSD_WRNGThermal WarningOVFInput Over Voltage Flag<br>(input overvoltage error disable)PDS_FAILPower down sequence FailureFAULT OR FLAG (DEPENDS ON OTP CONFIGURATION)UVT_BUCK2DCDC2 Under Voltage ThresholdOVT_BUCK2DCDC2 Over Voltage ThresholdUVT_BUCK3DCDC3 Under Voltage ThresholdOVT_BUCK3DCDC3 Over Voltage ThresholdUVT_LDO1LDO1 Under Voltage ThresholdOVT_LDO1DCDC2 feedback pin open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I2C_CRC_ERROR                                | I <sup>2</sup> C communication error |  |  |  |
| OVFInput Over Voltage Flag<br>(input overvoltage error disable)PDS_FAILPower down sequence FailureFAULT OR FLAG (DEPENDS ON OTP CONFIGURATION)UVT_BUCK2DCDC2 Under Voltage ThresholdOVT_BUCK2DCDC2 Over Voltage ThresholdUVT_BUCK3DCDC3 Under Voltage ThresholdOVT_BUCK3DCDC3 Over Voltage ThresholdUVT_LDO1LDO1 Under Voltage ThresholdOVT_LDO1DCDC2 feedback pin open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TSD_PWRNG                                    | Thermal Pre-Warning                  |  |  |  |
| PDS_FAILPower down sequence FailureFAULT OR FLAG (DEPENDS ON OTP CONFIGURATION)UVT_BUCK2DCDC2 Under Voltage ThresholdOVT_BUCK2DCDC3 Over Voltage ThresholdUVT_BUCK3DCDC3 Over Voltage ThresholdOVT_LDO1LDO1 Under Voltage ThresholdOVT_LDO1LDO1 Over Voltage ThresholdOVT_LDO1DCDC3 feedback pin open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TSD_WRNG                                     | Thermal Warning                      |  |  |  |
| FAULT OR FLAG (DEPENDS ON OTP CONFIGURATION)         UVT_BUCK2       DCDC2 Under Voltage Threshold         OVT_BUCK2       DCDC2 Over Voltage Threshold         UVT_BUCK3       DCDC3 Under Voltage Threshold         OVT_BUCK3       DCDC3 Over Voltage Threshold         OVT_LDO1       LDO1 Under Voltage Threshold         OVT_LDO1       LDO1 Over Voltage Threshold         FB2_OPEN       DCDC2 feedback pin open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OVF                                          |                                      |  |  |  |
| UVT_BUCK2DCDC2 Under Voltage ThresholdOVT_BUCK2DCDC2 Over Voltage ThresholdUVT_BUCK3DCDC3 Under Voltage ThresholdOVT_BUCK3DCDC3 Over Voltage ThresholdUVT_LD01LD01 Under Voltage ThresholdOVT_LD01LD01 Over Voltage ThresholdFB2_OPENDCDC2 feedback pin open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PDS_FAIL                                     | Power down sequence Failure          |  |  |  |
| OVT_BUCK2     DCDC2 Over Voltage Threshold       UVT_BUCK3     DCDC3 Under Voltage Threshold       OVT_BUCK3     DCDC3 Over Voltage Threshold       UVT_LD01     LD01 Under Voltage Threshold       OVT_LD01     LD01 Over Voltage Threshold       FB2_OPEN     DCDC2 feedback pin open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FAULT OR FLAG (D                             | EPENDS ON OTP CONFIGURATION)         |  |  |  |
| UVT_BUCK3DCDC3 Under Voltage ThresholdOVT_BUCK3DCDC3 Over Voltage ThresholdUVT_LD01LD01 Under Voltage ThresholdOVT_LD01LD01 Over Voltage ThresholdFB2_OPENDCDC2 feedback pin open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UVT_BUCK2                                    | DCDC2 Under Voltage Threshold        |  |  |  |
| OVT_BUCK3     DCDC3 Over Voltage Threshold       UVT_LDO1     LDO1 Under Voltage Threshold       OVT_LDO1     LDO1 Over Voltage Threshold       FB2_OPEN     DCDC2 feedback pin open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OVT_BUCK2                                    | DCDC2 Over Voltage Threshold         |  |  |  |
| UVT_LDO1     LDO1 Under Voltage Threshold       OVT_LDO1     LDO1 Over Voltage Threshold       FB2_OPEN     DCDC2 feedback pin open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UVT_BUCK3                                    | DCDC3 Under Voltage Threshold        |  |  |  |
| OVT_LDO1     LDO1 Over Voltage Threshold       FB2_OPEN     DCDC2 feedback pin open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OVT_BUCK3                                    | DCDC3 Over Voltage Threshold         |  |  |  |
| FB2_OPEN DCDC2 feedback pin open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UVT_LDO1                                     | LDO1 Under Voltage Threshold         |  |  |  |
| _ ''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OVT_LDO1                                     | LDO1 Over Voltage Threshold          |  |  |  |
| FB3_OPEN DCDC3 feedback pin open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FB2_OPEN                                     | DCDC2 feedback pin open              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FB3_OPEN                                     | DCDC3 feedback pin open              |  |  |  |


## **FUNCTIONAL SAFETY**

NCV92310 embeds several safety mechanism, which allow the part to be ASIL B compliant.

#### **Voltage Monitoring**

NCV92310 integrates four windows voltage monitoring (one per channel). During normal operation, the under

voltage comparator is used to detect if an established supply rail does not go below the under voltage threshold  $V_{\rm UV}$  while the overvoltage comparator is used to detect if a supply rail does not exceed the overvoltage threshold  $V_{\rm OV}$ .





Overall monitoring accuracy is the sum of multiple accuracies:

- DC Accuracy.
- Load and Line Regulation.
- OV or OV monitoring accuracy.
- Load transient.

DC Accuracy, Load Regulation, Line Regulation, OV monitoring accuracy and UV monitoring accuracy are specified in the parametric table (see <u>Electrical</u> <u>Characteristics</u> section).

Load transient performance is dependent on both the NCV92310 and application implementation. The NCV92310 internal regulators load transient performance depends on the  $\Delta I / \Delta t$  and C<sub>OUT</sub>. It can be estimated with the following equation:

$$\Delta V = \frac{\Delta I}{2 \times \pi \times \text{COUT derated} \times \text{BW}}$$
 (eq. 3)

 $V_{UVMAX}$  and  $V_{OVMAX}$  are the maximum value of the monitoring threshold.  $V_{UV}$  and  $V_{OV}$  are I<sup>2</sup>C and OTP programmable with the following nominal thresholds:

A second bandgap is dedicated to the voltage monitoring to reach high level of functional safety.

NCV92310 windows monitoring function embeds digital filters which validate that the output of the comparators do not change state during the programmed debounce time. For each given channel, the debounce time  $T_{L_F}$  for the undervoltage falling edge, the  $T_{L_R}$  for the rising edge, as well as the  $T_{H_R}$  for the overvoltage rising edge and  $T_{H_F}$  for the falling edge are all independently programmable. The debouncers are programmable in a ratiometric fashion. This means that every next binary code will multiply the debounce of the previous binary code by a factor of 2, see parametric table for more details.

The digital filters can be bypassed for the undervoltage falling edge TL\_F and the overvoltage rising edge TH\_R. In that case the comparator output gets latched to avoid any synchronization error with the clock digital circuitry.

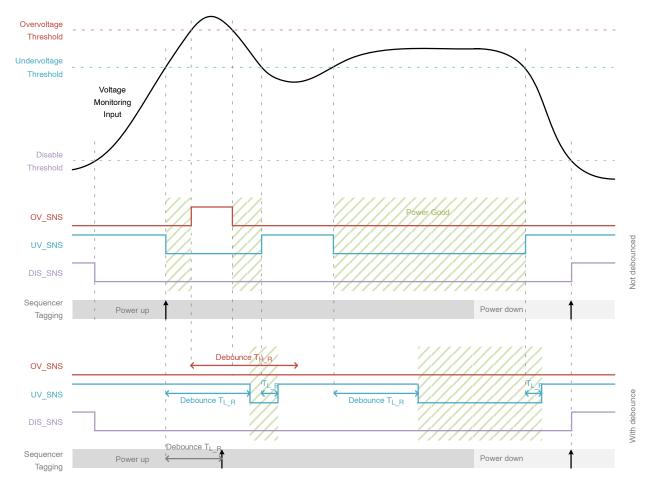



Figure 23. Illustration of Comparator Behavior

Output voltages of DCDC1, DCDC2, DCDC3, LDO1 shall be at their respective VOUT targets with a tolerance window defined by VH and VL.

Any violation of the respective VOUT windows greater than their respective TH\_R or TL\_F debounce time shall be detected.

Once one of the output voltages cross a  $V_{OV}$  or  $V_{UV}$  threshold, /INT goes low and in respect with the OTP/I<sup>2</sup>C configuration DCDCs and LDO are turned off and /RST pin goes low.

## **VCORE Short Circuit Protection**

Once a short circuit protection is detected in the VCORE pin, the NCV92310 goes into the RESET state until the short is removed. Short circuit current is limited at  $\approx 60$  mA.

## **Clock Error Protection**

NCV92310 embeds a 2 MHz system clock in addition of the 2.15 MHz DCDCs clock.

Once one regulator is turned on, availability and shift of the 2 MHz clock is monitored. In case of failure, NCV92310 is locked in RESET state. To recover, PVIN1 has to be removed and re–applied again.

## Self Test

• *ECC* 

A One Time Programmable memory with Error Code Correction is embedded with 6 ECC bits and 26 OTP bits per 32 OTP bits bank.

If one error is detected per bank, internal ECC correct the failing bit and ACK\_BIST bit is flagged.

If 2 errors are detected per bank, part goes in lock mode and ACK\_BIST bit is flagged. To recover, ACK\_BIST bit has to be cleared and an unlock command has to be done: set high the NLOCK bit or remove and re–apply PVIN.

• Windows voltage monitoring self test

At startup, an internal self test validate the windows voltage monitoring functionality (BIST state in the STATE MACHINE):

- Overvoltage and undervoltage detection.
- Overvoltage and undervoltage hysteresis functionality.
- Leakage detection.
- Offset calibration.

If failed ACK\_BIST is set high. One retry can be done if BistCnt bit is set high (OTP and  $I^2C$  configurable). Otherwise part goes in lock mode.

#### I<sup>2</sup>C Register Map Integrity Checking

Integrity of the configuration register in the register map is monitored continuously. If one configuration bit changed without the appropriate  $I^2C$  command, NCV92310 goes in LOCK state.

#### I<sup>2</sup>C Communication Lost Protection

To be able to check that the I<sup>2</sup>C communication operates properly and allow the system to do the appropriate action once a fault is flagged thru the interrupt pin, system has to write periodically in the I2CTMOUT register with a period defined by the I2C\_TIMEOUT bits in the IC CONFIGURATION I2CTMOUT register.

If not done, NCV92310 will flag the system thru the interrupt pin, which goes in ACTIVE Flag state and flag the dedicated acknowledge bit.

#### DCDC Positive Current Limitation

The internal DCDCs protect the device from over current with a fixed-value cycle-by-cycle current limitation. If inductor current exceeds the current limit threshold, the High Side Switch will be turned off cycle-by-cycle. Due to the propagation delay of the internal comparator, dynamic current limitation can be higher than the peak current threshold that is set internally.

The maximum peak current in the inductor can be computed with:

$$I_{PEAKPOS} = I_{LIMP} + \frac{\left(V_{IN} - V_{OUT}\right)}{L} \times T_{DELAY}$$
(eq. 4)

With  $T_{DELAY \ DCDC1} = 30$  ns (typ) and  $T_{DELAY \ DCDC2/DCDC3} = 40$  ns (typ).

The maximum output current can be computed with:

$$I_{MAX} = I_{PEAK} + \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{2 \times V_{IN} \times f_{SW} \times L}$$
(eq. 5)

Where  $V_{IN}$  is input supply voltage,  $V_{OUT}$  is output voltage, L is inductance of the filter inductor, and  $F_{SW}$  is 2.15 MHz normal switching frequency.

## DCDC Negative Current Protection

In addition, to protect the Low Side switch, the negative current protection (Ipeakn) limits potential excessive current from output (for example, when fault condition causes the output voltage to be higher than the nominal output voltage).

The maximum negative peak current in the inductor can be computed with:

$$I_{PEAKNEG} = -I_{LIMN} - \frac{V_{OUT}}{L} \times T_{DELAY}$$
 (eq. 6)

With  $T_{DELAY \ DCDC1} = 50$  ns (typ) and  $T_{DELAY \ DCDC2/DCDC3} = 20$  ns (typ).

## DCDC Short Circuit Protection

To protect against excessive load or short circuit to ground, if 2 Ipeak pos are counted when in power fail (so when  $V_{UV}$  is trigged) the NCV92310 goes in ERROR PD state with all the rail turned off immediately.

To protect against excessive short to high voltage, if 2 Ipeak neg are counted when in power fail (so when  $V_{OV}$  is trigged) the NCV92310 goes in ERROR PD state with all the rail turned off immediately.

## DCDC Switching Node Short Circuit Protection

NCV92310 embeds a short circuit on the SW pin of each regulator to avoid any damage in the part due to excessive current thru the internal output power stage. Once a short circuit is detected, part is turned OFF.

DCDC1 embeds a protection from SW1 to PGND1. DCDC2 and DCDC3 embeds a protection from SW2/3 to PVIN2/3 and PGND2/3.

Protection in case of internal short between PVIN1 and SW1. IC will flag it but it will not remove the short and avoid any damage thru the inductor on FB1 and PVIN2/PViN3/VINLDO if these 3 pins are connected at the output of the DCDC1.

#### DCDCs Feedback Pin Open Protection

## DCDC1

FB1 pin is connected internally to a resistor bridge. In case of open, internally the input of the error amplifier will be tied to ground and undervoltage detection will be triggued and NCV92310 turned off.

## DCDC2 and DCDC3

FB2 and FB3 pins, in addition of the connection to the error amplifier, are tied to Vin internally. Output voltage will decrease and overvoltage detection will be triggued to avoid any damage to the IC which are supplied by the NCV92310.

# LDO Over Current Protection and Output Short Circuit Protection

The low drop out regulator (LDO) on the IC is based on an embedded PMOS and requires no external stability components or feedback networks.

The output must be by passed with at least a 2.2  $\mu F$  ceramic capacitor.

Internal LDO includes an over current protection circuit ( $I_{LIMITLDO}$ ). Once crossed, the dedicated acknowledge bit is set high to advise the system that the LDO is overloaded.

After crossing the  $I_{LIMITLDO}$ , if the load continue to increase internal LDO will start to deregulate. A short circuit protection is embedded with  $I_{SCLDO}$  set 15 mA higher than  $I_{LIMITLDO}$ . Once in short circuit, NCV92310 goes in ERROR PD state and all the regulators are turned off immediately.

## Under Voltage Lockout

The input voltage PVIN1 must reach or exceed the UVLO rising threshold before the NCV92310 enables the converter output to begin the power up sequence.

When PVIN1 cross the UVLO falling threshold, no power down sequence is expected. All the supplies are disabled and output discharged simultaneously.

UVLO Thresholds and hysteresis are I<sup>2</sup>C and OTP programmable to fit multiple camera applications use cases.

## **Over Voltage Detection**

To protect from input voltage higher than 18V, NCV92310 includes an internal comparator in the PVIN1 pin. Depending on the OTP configuration:

- NCV92310 will flag the system thru the /INT pin if a supply voltage higher than 18.3 V (typical) is detected on PVIN1 input. System has to safely turn off the load of the NCV92310 before removing the power supply if the OverVoltage is still present. Otherwise the system has to clear the fault in the dedicated acknowledge bit.
- NCV92310 will turn off all the regulators, pull low INTB and RSTB pins and goes in lock state.

## Thermal Protection

NCV92310 has a thermal shutdown protection to protect the device from overheating. After the thermal protection is triggered, All the supplies are disabled and output discharged simultaneously.

NCV92310 includes a thermal warning and thermal pre-warning thresholds to advise the system that the die temperature has become too high. The dedicated ACK\_THERMAL\_PRWNG, ACK\_THERMAL\_WNG bits and /INT pin are flagged depending on the MSK\_THERMAL\_PRWNG and MSK\_THERMAL\_WNG setting. Thermal Warning Threshold is the last flag before going in TSD and shutdown the part.

Thermal Pre–Warning threshold is I<sup>2</sup>C and OTP programmable.

If TSD\_REARM bit is high, NCV92310 recovers automatically and goes to the INIT state to reload the OTP and restart with the default settings.

To prevent the camera application, and in particular the image sensor, from powering up under too high ambient temperature conditions, the power up sequence is conditioned by the die temperature of the IC. Before engaging a power up sequence, the on-chip dissipation is close to zero, which makes that the die temperature of the IC will be a good representation of the ambient temperature. (Thermal gating threshold, can be deactivated by  $I^2C$  / OTP).

## Fault Time Out

Once in Active Flag state after an internal FLAG highlighted to the system thru the /INT pin, system has to clear the dedicated acknowledge bit within a delay set thru the FAULT\_TIMEOUT[0:1] bits. If not done, NCV92310 goes in FAULT PD state and can restart or goes in lock mode depending on the AutoRearm setting. ACK\_FAULT\_TIMEOUT bit is set high to highlight the fault.

## Power-up Sequence Fail

During the PUS, if a rail does not reach its default value by triggering its undervoltage rising monitoring threshold once the SLOT time out is done, NCV92310 goes in FAULT PD state and flag the ACK\_PUS bit.

## Power-down Sequence Fail

During the PDS, if a rail does not reach the  $V_{DISABLE}$  threshold once the SLOT time out is done, NCV92310 continue the power down sequence but flag the ACK\_PUS bit and /INT pin goes low.

## I<sup>2</sup>C COMPATIBLE INTERFACE

NCV92310 can support a subset of the I<sup>2</sup>C protocol as detailed below (Read, Write, Write then read sequences).

#### **I2C Communication Description**

The device is widely programmable through an  $I^2C$  compatible interface available at SCL and SDA. The  $I^2C$  interface has no dedicated I/O supply and the logic low and high levels are therefore fixed and not adjusted to the actual drive levels. Events are signaled on a side signal at INTB. The address of the device on the  $I^2C$  bus is 7-bit long of which the 3 bits can be set with OTP.

For robust I<sup>2</sup>C transfers an 8–bit CRC (cyclic redundancy check) mechanism is implemented with fixed CRC code X8+X2+X+1. This is the same code as used in SMBus communication, for more information refer to the System Management Bus Specification version 3.1, sections 6.4 and 6.5 (specifically, refer to section 6.4.1.3 for details on slave implementation). The CRC-coding can be enabled or disabled based on OTP setting and I<sup>2</sup>C programming.

With CRC-coding disabled, single byte write and read as well as continuous write and read are supported. With CRC-coding enabled, only single byte write and read are supported. In the latter case an 8-bit PEC (packet error code) is transmitted as the last byte of the transfer. Below, the protocol is shown in detail for the different use cases, with and without CRC.

When using CRC, for a write access, the PEC is calculated over the 3 bytes included in the entire transfer from Start to Stop. This includes the I<sup>2</sup>C address and R/W bit, the register address and the data, but excludes the (Repeated)Start/Stop and the ACK/NACK signaling. The PEC is appended by the master as the second data byte at the end of the transfer. If the PEC received by the slave does not correspond the PEC byte calculated by the slave, the data written will be ignored and the transaction will be NACKed by the slave. Since also the NACK could get corrupted an interrupt is generated as well.

For a read access the PEC is calculated over the 4 bytes included in the entire transfer from Start to Stop. This includes the I<sup>2</sup>C address and R/W bit, the register address, again the I<sup>2</sup>C address and R/W bit and the data, but excludes the (Repeated) Start/Stop and the ACK/NACK signaling. The PEC is appended by the slave as the second data byte at the end of the transfer.

For clarification, the bytes over which the PEC is calculated are highlighted in below diagram.

|                                                                      | I <sup>2</sup> C Compatible Interface – Protocol without CRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S Start                                                                                                                                        |  |  |  |  |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Single Write<br>Register N                                           | S         Slave Address         W         A         Register Address N         A         Data Register N         A         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sr         Repeated Start           PS         or Park – Start           P         Park (Stop)                                                 |  |  |  |  |
| Multiple Single Register<br>Register N, K                            | gister S Slave Address W A Register Address N A Data Register N A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                |  |  |  |  |
| Continuous Write<br>Registers N to N+m                               | Not supported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A ACKnowledge                                                                                                                                  |  |  |  |  |
| Write followed by Read<br>Register N                                 | S       Slave Address       W       A       Register Address N       A       Data Register N       A           - Sr       Slave Address       W       A       Register Address N       A       S slave Address       R       A       Data Register N       N A       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                |  |  |  |  |
| Single Read<br>Register N                                            | S Slave Address W A Register Address N A Sr PS Slave Address R A Data Register N NA P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                |  |  |  |  |
| Multiple Single Read<br>Register N, K                                | S     Slave Address     W     A     Register Address     N     A     Sr<br>PS     Slave Address     R     A     Data Register N     NA        -     -     -     -     -     -     -     -     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                |  |  |  |  |
| Multiple Read<br>Register N<br>(Polling)                             | S       Slave Address       W       A       Register Address       R       A       Data Register N       NA           -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                |  |  |  |  |
| Continuous Read<br>Registers N to N+m                                | S       Slave Address       W       A       Register Address       N       A       Slave Address       R       A       Data Register N       A       Data Register N+1       A       -       -       -       Data Register N+m       Nr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A P                                                                                                                                            |  |  |  |  |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                |  |  |  |  |
| Single Write<br>Register N<br>Multiple Single Write<br>Register N, K | Image: Size Address       Image: Size Address< | S         Start           Sr         Repeated Start           P         Park (Stop)           W         0 = Write           R         1 = Read |  |  |  |  |
| Continuous Write<br>Registers N to N+m                               | S     Slave Address     W     A     Register Address     K     A     Data Register K     A     PEC     A     P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A ACKnowledge                                                                                                                                  |  |  |  |  |
| Write followed by Read<br>Register N                                 | S       Slave Address       W       A       Register Address N       A       Data Register N       A       PEC       A       P         S       Slave Address       W       A       Register Address N       A       Sr       Slave Address       R       A       Data Register N       A       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bytes used for PEC<br>Byte PEC<br>Byte PEC<br>Byte PEC<br>Byte PEC                                                                             |  |  |  |  |
| Single Read<br>Register N                                            | S Slave Address W A Register Address N A Sr Slave Address R A Data Register N A PEC NA P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                |  |  |  |  |
| Multiple Single Read<br>Register N, K                                | S       Slave Address       W       A       Register Address N       A       Sr       Slave Address       R       A       Data Register N       A       PEC       NA       P         S       Slave Address       W       A       Register Address K       A       Sr       Slave Address       R       A       Data Register N       A       PEC       NA       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                |  |  |  |  |
| Multiple Read<br>Registers N<br>(Polling)                            | S       Slave Address       W       A       Register Address       R       A       Data Register N       A       PEC       NA       P         S       Slave Address       W       A       Register Address       R       A       Data Register N       A       PEC       NA       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                |  |  |  |  |
|                                                                      | S       Slave Address       W       A       Register Address       R       A       Data Register N+m       A       PEC       NA       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                |  |  |  |  |
| Multiple Read<br>Registers N to N+m                                  | S       Slave Address       W       A       Register Address       N       A       Sr       Slave Address       R       A       Data Register N       A       PEC       NA       P         S       Slave Address       W       A       Register Address N+1       A       Sr       Slave Address       R       A       Data Register N+1       A       PEC       NA       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                |  |  |  |  |
|                                                                      | S     Slave Address     W     A     Register Address     N+m     A     Sr     Slave Address     R     A     Data Register N+m     A     PEC     NA     P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                |  |  |  |  |
| Continuous Read<br>Registers N to N+m                                | Not supported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rev A                                                                                                                                          |  |  |  |  |

Figure 24. I<sup>2</sup>C Bus Protocol

# I<sup>2</sup>C Slave Address

The NCV92310 has 8 available I<sup>2</sup>C addresses selectable by factory settings (ADD0 to ADD7). Different address settings can be generated upon request to **onsemi**.

## Table 12. I<sup>2</sup>C SLAVE ADDRESS

| l <sup>2</sup> C Slave<br>Address | Hex              | A7 | A6 | A5      | A4 | A3 | A2      | A1 | A0  |
|-----------------------------------|------------------|----|----|---------|----|----|---------|----|-----|
| ADD0                              | W 0x20<br>R 0x21 | 0  | 0  | 1       | 0  | 0  | 0       | 0  | R/W |
|                                   | Add              |    |    |         |    |    |         |    | -   |
| ADD1<br>(default)                 | W 0x28<br>R 0x29 | 0  | 0  | 1       | 0  | 1  | 0       | 0  | R/W |
|                                   | Add              |    |    |         |    |    |         |    | -   |
| ADD2                              | W 0x30<br>R 0x31 | 0  | 0  | 1       | 1  | 0  | 0       | 0  | R/W |
|                                   | Add              |    |    |         |    |    |         |    | -   |
| ADD3                              | W 0x38<br>R 0x39 | 0  | 0  | 1       | 1  | 1  | 0       | 0  | R/W |
|                                   | Add              |    |    |         |    |    |         |    | -   |
| ADD4                              | W 0xC0<br>R 0xC1 | 1  | 1  | 0       | 0  | 0  | 0       | 0  | R/W |
|                                   | Add              |    | •  |         |    |    |         |    | -   |
| ADD5                              | W 0xC8<br>R 0xC9 | 1  | 1  | 0       | 0  | 1  | 0       | 0  | R/W |
|                                   | Add              |    | •  |         |    |    |         |    | -   |
| ADD6                              | W 0xD0<br>R 0xD1 | 1  | 1  | 0       | 1  | 0  | 0       | 0  | R/W |
|                                   | Add              |    |    | <b></b> |    |    | <b></b> |    | -   |
| ADD7                              | W 0xD8<br>R 0xD9 | 1  | 1  | 0       | 1  | 1  | 0       | 0  | R/W |
|                                   | Add              |    |    | •       |    | •  | •       |    | -   |

## I<sup>2</sup>C UNLOCK Write Protected Register

By default, all the registers after the UNLOCK\_WRITE\_PROTECT\_REG register are locked. Only read access is allowed.

To write in a register, user has to send a write command with 0x69 in the unlock register, and then send a write command with the register address to write. Once the write command has been sent to the unlocked register with the write data, this register is locked again.

## Table 13. REGMAP

| Addr    | Register Name             | Register<br>Type | Def.            | Function                                                                  |
|---------|---------------------------|------------------|-----------------|---------------------------------------------------------------------------|
| 0h      | PID                       | R                | 00111010b (3Ah) | Product Id                                                                |
| 1h      | RID                       | R                | 0000000b (0h)   | Revision Id                                                               |
| 2h      | FID                       | R                | 0000000b (0h)   | Features Id                                                               |
| 3h      | INT_STATUS                | R                | 0000000b (0h)   | Interrupt Status Register                                                 |
| 4h      | INTERRUPT_FLAG_IC         | W1CSingle        | 0000000b (0h)   | Interrupt Flag IC Acknowledge Register                                    |
| 5h      | INTERRUPT_FLAG_ERR1       | W1CSingle        | 0000000b (0h)   | Interrupt Flag Error Acknowledge Register 1                               |
| 6h      | INTERRUPT_FLAG_ERR2       | W1CSingle        | 0000000b (0h)   | Interrupt Flag Error Acknowledge Register 2                               |
| 7h      | INTERRUPT_FLAG_OV         | W1CSingle        | 00000000b (0h)  | Interrupt Flag Over Voltage Threshold Monitoring<br>Acknowledge Register  |
| 8h      | INTERRUPT_FLAG_UV         | W1CSingle        | 00000000b (0h)  | Interrupt Flag Under Voltage Threshold Monitoring<br>Acknowledge Register |
| 9h      | INTERRUPT_FLAG_OC         | W1CSingle        | 0000000b (0h)   | Interrupt Over Current Acknowledge Register                               |
| 0Ah     | INTERRUPT_SENSE_IC        | R                | 0000000b (0h)   | Interrupt Flag IC Sense Register                                          |
| 0Bh     | INTERRUPT_SENSE_ERR       | R                | 0000000b (0h)   | Interrupt Flag Error System Sense Register                                |
| 0Ch     | INTERRUPT_SENSE_OV        | R                | 00000000b (0h)  | Interrupt Flag Over Voltage Threshold Monitoring Sense Register           |
| 0Dh     | INTERRUPT_SENSE_UV        | R                | 00000000b (0h)  | Interrupt Flag Under Voltage Threshold Monitoring<br>Sense Register       |
| 0Eh     | IC_STATUS_DISCHARGED      | R                | 0000000b (0h)   | IC output discharged status register                                      |
| 0Fh     | IC_STATUS_SAFE_STATE      | R                | 0000000b (0h)   | IC Regulator safe state status register                                   |
| 10h     | IC_STATUS_MISCELLANEOUS_1 | R                | 0000000b (0h)   | IC status error counter register                                          |
| 11h     | IC_STATUS_MISCELLANEOUS_2 | R                | 0000000b (0h)   | IC status state machine counter register                                  |
| 12h     | I2CTMOUT                  | RW               | 00000000b (0h)  | I <sup>2</sup> C Timeout Write register                                   |
| 13h     | UNLOCK_WRITE_PROTECT_REG  | RW               | 00000000b (0h)  | Unlock Register                                                           |
| 14h     | IC_CONFIGURATION_I2CTMOUT | CRC              | 00000000b (0h)  | I <sup>2</sup> C timeout setting register                                 |
| 15h     | IC_CONFIGURATION_1        | CRC              | 00100101b (25h) | IC Configurations Register 1                                              |
| 16h     | IC_CONFIGURATION_2        | CRC              | 00000000b (0h)  | IC Configurations Register 2                                              |
| 17h     | IC_CONFIGURATION_3        | CRC              | 00001100b (Ch)  | IC Configurations Register 3                                              |
| 18h     | IC_CONFIGURATION_4        | CRC              | 0000000b (0h)   | IC Configurations Register 4                                              |
| 19h     | INTERRUPT_MASK_IC         | CRC              | 00000000b (0h)  | Interrupt Flag IC Mask Register                                           |
| 1Ah     | INTERRUPT_MASK_OV         | CRC              | 00000000b (0h)  | Interrupt mask register Overvoltage monitoring threshold                  |
| 1Bh     | INTERRUPT_MASK_UV         | CRC              | 00000000b (0h)  | Interrupt mask register Undervoltage monitoring threshold                 |
| 1Ch     | INTERRUPT_MASK_OC         | CRC              | 00101010b (2Ah) | Interrupt mask register Overcurrent protection                            |
| 1Dh     | OUTPUT_VOLTAGE_DCDC1      | CRC              | 00000101b (5h)  | DCDC1 Output Voltage Programmation Register                               |
| 1Eh     | CONFIGURATION_DCDC1       | CRC              | 00001101b (Dh)  | DCDC1 Configuration register                                              |
| 1F<br>h | OUTPUT_VOLTAGE_DCDC2      | CRC              | 00011000b (18h) | DCDC2 Output Voltage Programmation Register                               |
| 20h     | CONFIGURATION_DCDC2       | CRC              | 00001101b (Dh)  | DCDC2 Configuration register                                              |
| 21h     | OUTPUT_VOLTAGE_DCDC3      | CRC              | 00110000b (30h) | DCDC3 Output Voltage Programmation Register                               |
| 22h     | CONFIGURATION_DCDC3       | CRC              | 00001101b (Dh)  | DCDC3 Configuration register                                              |
| 23h     | OUTPUT_VOLTAGE_LDO1       | CRC              | 00000010b (2h)  | LDO1 Output Voltage Programmation Register                                |
| 24h     | CONFIGURATION_LDO1        | CRC              | 00001101b (Dh)  | LDO1 Configuration register                                               |

## Table 13. REGMAP (continued)

| Addr | Register Name              | Register<br>Type | Def.            | Function                               |
|------|----------------------------|------------------|-----------------|----------------------------------------|
| 25h  | MONITORING_UV_DCDC1        | CRC              | 00100100b (24h) | Monitoring Undervoltage DCDC1 settings |
| 26h  | MONITORING_OV_DCDC1        | CRC              | 01010000b (50h) | Monitoring Overvoltage DCDC1 settings  |
| 27h  | MONITORING_UV_DCDC2        | CRC              | 00100100b (24h) | Monitoring Undervoltage DCDC2 settings |
| 28h  | MONITORING_OV_DCDC2        | CRC              | 01010000b (50h) | Monitoring Overvoltage DCDC2 settings  |
| 29h  | MONITORING_UV_DCDC3        | CRC              | 00100100b (24h) | Monitoring Undervoltage DCDC3 settings |
| 2Ah  | MONITORING_OV_DCDC3        | CRC              | 01010000b (50h) | Monitoring Overvoltage DCDC3 settings  |
| 2Bh  | MONITORING_UV_LDO1         | CRC              | 00100100b (24h) | Monitoring Undervoltage LDO1 settings  |
| 2Ch  | MONITORING_OV_LDO1         | CRC              | 01010000b (50h) | Monitoring Overvoltage LDO1 settings   |
| 2Dh  | SEQUENCER_ASSIGNMENT_DCDC1 | CRC              | 00000000b (0h)  | Sequencer Assignment DCDC1 register    |
| 2Eh  | SEQUENCER_ASSIGNMENT_DCDC2 | CRC              | 00010001b (11h) | Sequencer Assignment DCDC2 register    |
| 30h  | SEQUENCER_ASSIGNMENT_DCDC3 | CRC              | 00100010b (22h) | Sequencer Assignment DCDC3 register    |
| 31h  | SEQUENCER_ASSIGNMENT_LDO1  | CRC              | 00110011b (33h) | Sequencer Assignment LDO1 register     |
| 32h  | SEQUENCER_CONFIGURATION_1  | CRC              | 00001101b (Dh)  | Sequencer configuration register 1     |
| 33h  | SEQUENCER_CONFIGURATION_2  | CRC              | 01101011b (6Bh) | Sequencer configuration register 2     |

# Table 14. PRODUCT ID

|     | Register Name | PID Address 00 |            |                 |
|-----|---------------|----------------|------------|-----------------|
|     | Туре          | R              | Default    | 00111010b (3Ah) |
|     | Trigger       |                |            |                 |
| Bit | Name          | Description    |            |                 |
| 7   | PID           |                | Product Id |                 |
| 6   |               |                |            |                 |
| 5   |               |                |            |                 |
| 4   |               |                |            |                 |
| 3   |               |                |            |                 |
| 2   |               |                |            |                 |
| 1   | 1             |                |            |                 |
| 0   |               |                |            |                 |

## Table 15. REVISION ID

|     | Register Name | RID Address 01 |             |               |
|-----|---------------|----------------|-------------|---------------|
|     | Туре          | R              | Default     | 0000000b (0h) |
|     | Trigger       |                |             |               |
| Bit | Name          |                | Description |               |
| 7   | RID           |                | Revision Id |               |
| 6   |               |                |             |               |
| 5   |               |                |             |               |
| 4   |               |                |             |               |
| 3   |               |                |             |               |
| 2   |               |                |             |               |
| 1   | 1             |                |             |               |
| 0   | 1             |                |             |               |

## Table 16. FEATURES ID

|     | Register Name | FID         | Address | 02            |  |
|-----|---------------|-------------|---------|---------------|--|
|     | Туре          | R           | Default | 0000000b (0h) |  |
|     | Trigger       |             |         |               |  |
| Bit | Name          | Description |         |               |  |
| 7   | FID           | Features Id |         |               |  |
| 6   |               |             |         |               |  |
| 5   |               |             |         |               |  |
| 4   |               |             |         |               |  |
| 3   |               |             |         |               |  |
| 2   | ]             |             |         |               |  |
| 1   | ]             |             |         |               |  |
| 0   |               |             |         |               |  |

## Table 17. INTERRUPT STATUS REGISTER

|         | Register Name | INT_STATUS                                                                  | Address                                                                       | 03            |  |  |  |
|---------|---------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------|--|--|--|
|         | Туре          | R                                                                           | Default                                                                       | 0000000b (0h) |  |  |  |
| Trigger |               |                                                                             |                                                                               |               |  |  |  |
| Bit     | Name          |                                                                             | Description                                                                   |               |  |  |  |
| 7       | empty         |                                                                             |                                                                               |               |  |  |  |
| 6       | empty         |                                                                             |                                                                               |               |  |  |  |
| 5       | ST_OC         | Status bit Over current Fault<br>Or between FLAG_OC bits (u                 | Status bit Over current Fault<br>Or between FLAG_OC bits (unmasked bits)      |               |  |  |  |
| 4       | ST_DIS        | Status bit disable threshold no                                             | ot crossed during a PDS                                                       |               |  |  |  |
| 3       | ST_MUV        | Status bit monitoring undervo<br>Or between FLAG_OV bits (u                 | Status bit monitoring undervoltage<br>Or between FLAG_OV bits (unmasked bits) |               |  |  |  |
| 2       | ST_MOV        |                                                                             | Status bit monitoring overvoltage<br>Or between FLAG_OV bits (unmasked bits)  |               |  |  |  |
| 1       | ST_ERR        | Status bit Interrupt flar error<br>Or between FLAG_ERR bits (unmasked bits) |                                                                               |               |  |  |  |
| 0       | ST_IC         | Status bit flag IC<br>Or between FLAG_IC bits (unmasked bits)               |                                                                               |               |  |  |  |

## Table 18. INTERRUPT FLAG IC ACKNOWLEDGE REGISTER

|     | Register Name     | INTERRUPT_FLAG_IC                                                                   | Address                    | 04                   |  |  |
|-----|-------------------|-------------------------------------------------------------------------------------|----------------------------|----------------------|--|--|
|     | Туре              | W1CSingle Default                                                                   |                            | 0000000b (0h)        |  |  |
|     | Trigger           |                                                                                     |                            |                      |  |  |
| Bit | Name              |                                                                                     | Description                |                      |  |  |
| 7   | ACK_PDS           | Power down sequence Fault A<br>0: Cleared<br>1: Event Detected                      | cknowledge                 |                      |  |  |
| 6   | ACK_PUS           | Power up sequence Fault Ack<br>0: Cleared<br>1: Event Detected                      | nowledge                   |                      |  |  |
| 5   | ACK_TSD_WRNG      | Thermal Warning Fault Acknowledge<br>0: Cleared<br>1: Event Detected                |                            |                      |  |  |
| 4   | ACK_TSD_PTWRNG    | Thermal Pre-Warning Fault Acknowledge<br>0: Cleared<br>1: Event Detected            |                            |                      |  |  |
| 3   | ACK_I2CFAIL       | Watchdog Fault Acknowledge<br>0: Cleared<br>1: Event Detected                       |                            |                      |  |  |
| 2   | ACK_FAULT_TIMEOUT | Fault timeout Acknowledge<br>0: Cleared<br>1: Event Detected                        |                            |                      |  |  |
| 1   | ACK_I2CERROR      | I <sup>2</sup> C interface CRC Fault Acknowledge<br>0: Cleared<br>1: Event Detected |                            |                      |  |  |
| 0   | ACK_OVF           | Input Over Voltage Detection F<br>0: Cleared<br>1: Event Detected                   | lag Acknowledge (depends o | n OTP configuration) |  |  |

## Table 19. INTERRUPT FLAG ERROR ACKNOWLEDGE REGISTER 1

|     | Register Name    | INTERRUPT_FLAG_ERR1                                                                                              | Address     | 05 |  |  |  |
|-----|------------------|------------------------------------------------------------------------------------------------------------------|-------------|----|--|--|--|
|     | Туре             | W1CSingle Default 0000000b (0                                                                                    |             |    |  |  |  |
|     | Trigger          |                                                                                                                  |             |    |  |  |  |
| Bit | Name             |                                                                                                                  | Description |    |  |  |  |
| 7   | ACK_FRCRST       | Force reset power down sequer<br>0: cleared<br>1: Force Reset done                                               |             |    |  |  |  |
| 6   | ACK_UVLO         | Input Under Voltage Threshold Fault Acknowledge<br>0: Cleared<br>1: Event Detected                               |             |    |  |  |  |
| 5   | ACK_TSD          | Thermal Shutdown Fault Acknowledge<br>0: Cleared<br>1: Event Detected                                            |             |    |  |  |  |
| 4   | empty            |                                                                                                                  |             |    |  |  |  |
| 3   | ACK_OVE          | Input Over Voltage Detection Error Acknowledge (depends on OTP configuration)<br>0: Cleared<br>1: Event Detected |             |    |  |  |  |
| 2   | ACK_AUTOREARMCNT | Auto Rearm Error Acknowledge<br>0: Cleared<br>1: Event Detected                                                  |             |    |  |  |  |
| 1   | ACK_I2CREGERROR  | Write Register CRC Fault Acknowledge<br>0: Cleared<br>1: Event Detected                                          |             |    |  |  |  |
| 0   | ACK_BIST         | BIST Fault Acknowledge (BIST or OTP ECC Error)<br>0: Cleared<br>1: Event Detected                                |             |    |  |  |  |

|     | Register Name     | INTERRUPT_FLAG_ERR2                                               | Address     | 06             |
|-----|-------------------|-------------------------------------------------------------------|-------------|----------------|
|     | Туре              | W1CSingle                                                         | Default     | 00000000b (0h) |
|     | Trigger           |                                                                   |             |                |
| Bit | Name              |                                                                   | Description |                |
| 7   | empty             |                                                                   |             |                |
| 6   | ACK_SC_SW_DCDC3   | DCDC3 Short Circuit Protection<br>0: Cleared<br>1: Event Detected | I           |                |
| 5   | ACK_SC_SW_DCDC2   | DCDC2 Short Circuit Protection<br>0: Cleared<br>1: Event Detected | I           |                |
| 4   | ACK_SC_SW_DCDC1   | DCDC1 Short Circuit Protection<br>0: Cleared<br>1: Event Detected | I           |                |
| 3   | ACK_SC_LDO1       | LDO1 Short Circuit Protection<br>0: Cleared<br>1: Event Detected  |             |                |
| 2   | ACK_SC_VOUT_DCDC3 | DCDC3 Short Circuit Protection<br>0: Cleared<br>1: Event Detected | I           |                |
| 1   | ACK_SC_VOUT_DCDC2 | DCDC2 Short Circuit Protection<br>0: Cleared<br>1: Event Detected |             |                |
| 0   | ACK_SC_VOUT_DCDC1 | DCDC1 Short Circuit Protection<br>0: Cleared<br>1: Event Detected |             |                |

## Table 21. INTERRUPT FLAG OVER VOLTAGE THRESHOLD MONITORING ACKNOWLEDGE REGISTER

|     | Register Name | INTERRUPT_FLAG_OV                                                                      | Address     | 07            |
|-----|---------------|----------------------------------------------------------------------------------------|-------------|---------------|
|     | Туре          | W1CSingle                                                                              | Default     | 0000000b (0h) |
|     | Trigger       |                                                                                        |             |               |
| Bit | Name          |                                                                                        | Description |               |
| 7   | empty         |                                                                                        |             |               |
| 6   | empty         |                                                                                        |             |               |
| 5   | empty         |                                                                                        |             |               |
| 4   | empty         |                                                                                        |             |               |
| 3   | ACK_OV_LDO1   | LDO1 Monitoring Over Voltage Threshold Acknowledge<br>0: Cleared<br>1: Event Detected  |             |               |
| 2   | ACK_OV_DCDC3  | DCDC3 Monitoring Over Voltage Threshold Acknowledge<br>0: Cleared<br>1: Event Detected |             |               |
| 1   | ACK_OV_DCDC2  | DCDC2 Monitoring Over Voltage Threshold Acknowledge<br>0: Cleared<br>1: Event Detected |             |               |
| 0   | ACK_OV_DCDC1  | DCDC1 Monitoring Over Voltage Threshold Acknowledge<br>0: Cleared<br>1: Event Detected |             |               |

## Table 22. INTERRUPT FLAG UNDER VOLTAGE THRESHOLD MONITORING ACKNOWLEDGE REGISTER

|     | Register Name | INTERRUPT_FLAG_UV                                                                       | Address     | 08            |
|-----|---------------|-----------------------------------------------------------------------------------------|-------------|---------------|
|     | Туре          | W1CSingle                                                                               | Default     | 0000000b (0h) |
|     | Trigger       |                                                                                         |             |               |
| Bit | Name          |                                                                                         | Description |               |
| 7   | empty         |                                                                                         |             |               |
| 6   | empty         |                                                                                         |             |               |
| 5   | empty         |                                                                                         |             |               |
| 4   | empty         |                                                                                         |             |               |
| 3   | ACK_UV_LDO1   | LDO1 Monitoring Under Voltage Threshold Acknowledge<br>0: Cleared<br>1: Event Detected  |             |               |
| 2   | ACK_UV_DCDC3  | DCDC3 Monitoring Under Voltage Threshold Acknowledge<br>0: Cleared<br>1: Event Detected |             |               |
| 1   | ACK_UV_DCDC2  | DCDC2 Monitoring Under Voltage Threshold Acknowledge<br>0: Cleared<br>1: Event Detected |             |               |
| 0   | ACK_UV_DCDC1  | DCDC1 Monitoring Under Voltage Threshold Acknowledge<br>0: Cleared<br>1: Event Detected |             |               |

## Table 23. INTERRUPT OVER CURRENT ACKNOWLEDGE REGISTER

|     | Register Name       | INTERRUPT_FLAG_OC                                                                      | Address     | 09            |  |
|-----|---------------------|----------------------------------------------------------------------------------------|-------------|---------------|--|
|     | Туре                | W1CSingle                                                                              | Default     | 0000000b (0h) |  |
|     | Trigger             |                                                                                        |             |               |  |
| Bit | Name                |                                                                                        | Description |               |  |
| 7   | empty               |                                                                                        |             |               |  |
| 6   | ACK_LDO1_OCP        | LDO1 Over Current Protection<br>0: Cleared<br>1: Event Detected                        | Acknowledge |               |  |
| 5   | ACK_IPEAK_NEG_DCDC3 | DCDC3 Negative current limitation Acknowledge<br>0: Cleared<br>1: Event Detected       |             |               |  |
| 4   | ACK_IPEAK_POS_DCDC3 | DCDC3 Inductor IPEAK current limitation Acknowledge<br>0: Cleared<br>1: Event Detected |             |               |  |
| 3   | ACK_IPEAK_NEG_DCDC2 | DCDC2 Negative current limitation Acknowledge<br>0: Cleared<br>1: Event Detected       |             |               |  |
| 2   | ACK_IPEAK_POS_DCDC2 | DCDC2 Inductor IPEAK current limitation Acknowledge<br>0: Cleared<br>1: Event Detected |             |               |  |
| 1   | ACK_IPEAK_NEG_DCDC1 | DCDC1 Negative current limitation Acknowledge<br>0: Cleared<br>1: Event Detected       |             |               |  |
| 0   | ACK_IPEAK_POS_DCDC1 | DCDC1 Inductor IPEAK current limitation Acknowledge<br>0: Cleared<br>1: Event Detected |             |               |  |

## Table 24. INTERRUPT FLAG IC SENSE REGISTER

|     | Register Name  | INTERRUPT_SENSE_IC                                                                            | Address                                                                                                   | 0A            |  |
|-----|----------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------|--|
|     | Туре           | R                                                                                             | Default                                                                                                   | 0000000b (0h) |  |
|     | Trigger        |                                                                                               |                                                                                                           |               |  |
| Bit | Name           |                                                                                               | Description                                                                                               |               |  |
| 7   | empty          |                                                                                               |                                                                                                           |               |  |
| 6   | empty          |                                                                                               |                                                                                                           |               |  |
| 5   | SEN_TSD_WRNG   | TSD Warning Sense<br>0: Thermal warning below threshold<br>1: Thermal warning above threshold |                                                                                                           |               |  |
| 4   | SEN_TSD_PRWRNG |                                                                                               | TSD Pre-Warning Sense<br>0: Thermal Pre-warning below threshold<br>1: Thermal Pre-warning above threshold |               |  |
| 3   | empty          |                                                                                               |                                                                                                           |               |  |
| 2   | empty          |                                                                                               |                                                                                                           |               |  |
| 1   | empty          |                                                                                               |                                                                                                           |               |  |
| 0   | SEN_OVF        | OVF Sense<br>0: PVIN1 below threshold<br>1: PVIN1 above threshold                             |                                                                                                           |               |  |

### Table 25. INTERRUPT FLAG ERROR SYSTEM SENSE REGISTER

|     | Register Name | INTERRUPT_SENSE_ERR Address 0B                                            |             |               |
|-----|---------------|---------------------------------------------------------------------------|-------------|---------------|
|     | Туре          | R                                                                         | Default     | 0000000b (0h) |
|     | Trigger       |                                                                           | ł           |               |
| Bit | Name          |                                                                           | Description |               |
| 7   | empty         |                                                                           |             |               |
| 6   | SEN_UVLO      | UVLO Sense<br>0: PVIN1 above threshold<br>1: PVIN1 below threshold        |             |               |
| 5   | SEN_TSD       | TSD Sense<br>0: Thermal Shutdown below th<br>1: Thermal shutdown above th |             |               |
| 4   | empty         |                                                                           |             |               |
| 3   | empty         |                                                                           |             |               |
| 2   | empty         |                                                                           |             |               |
| 1   | empty         |                                                                           |             |               |
| 0   | empty         |                                                                           |             |               |

## Table 26. INTERRUPT FLAG OVER VOLTAGE THRESHOLD MONITORING SENSE REGISTER

|     | Register Name | INTERRUPT_SENSE_OV                                                                                                                    | Address                                                                                                                               | OC             |  |  |
|-----|---------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|
|     | Туре          | R                                                                                                                                     | Default                                                                                                                               | 00000000b (0h) |  |  |
|     | Trigger       |                                                                                                                                       | •                                                                                                                                     |                |  |  |
| Bit | Name          |                                                                                                                                       | Description                                                                                                                           |                |  |  |
| 7   | empty         |                                                                                                                                       |                                                                                                                                       |                |  |  |
| 6   | empty         |                                                                                                                                       |                                                                                                                                       |                |  |  |
| 5   | empty         |                                                                                                                                       |                                                                                                                                       |                |  |  |
| 4   | empty         |                                                                                                                                       |                                                                                                                                       |                |  |  |
| 3   | SEN_OV_LDO1   | LDO1 Monitoring Over Voltage Threshold Sense<br>0: LDO1 Output Voltage within nominal range<br>1: LDO1 Output Voltage Above Target    |                                                                                                                                       |                |  |  |
| 2   | SEN_OV_DCDC3  | 0: DCDC3 Output Voltage within r                                                                                                      | DCDC3 Monitoring Over Voltage Threshold Sense<br>0: DCDC3 Output Voltage within nominal range<br>1: DCDC3 Output Voltage Above Target |                |  |  |
| 1   | SEN_OV_DCDC2  | DCDC2 Monitoring Over Voltage Threshold Sense<br>0: DCDC2 Output Voltage within nominal range<br>1: DCDC2 Output Voltage Above Target |                                                                                                                                       |                |  |  |
| 0   | SEN_OV_DCDC1  | DCDC1 Monitoring Over Voltage Threshold Sense<br>0: DCDC1 Output Voltage within nominal range<br>1: DCDC1 Output Voltage Above Target |                                                                                                                                       |                |  |  |

#### Table 27. INTERRUPT FLAG UNDER VOLTAGE THRESHOLD MONITORING SENSE REGISTER

|     | Register Name | INTERRUPT_SENSE_UV Address 0D                                                                                                         |             |               |  |
|-----|---------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|--|
|     | Туре          | R                                                                                                                                     | Default     | 0000000b (0h) |  |
|     | Trigger       |                                                                                                                                       |             |               |  |
| Bit | Name          |                                                                                                                                       | Description |               |  |
| 7   | empty         |                                                                                                                                       |             |               |  |
| 6   | empty         |                                                                                                                                       |             |               |  |
| 5   | empty         |                                                                                                                                       |             |               |  |
| 4   | empty         |                                                                                                                                       |             |               |  |
| 3   | SEN_UV_LDO1   | LDO1 Monitoring Over Voltage Threshold Sense<br>0: LDO1 Output Voltage within nominal range<br>1: LDO1 Output Voltage Above Target    |             |               |  |
| 2   | SEN_UV_DCDC3  | DCDC3 Monitoring Over Voltage Threshold Sense<br>0: DCDC3 Output Voltage within nominal range<br>1: DCDC3 Output Voltage Above Target |             |               |  |
| 1   | SEN_UV_DCDC2  | DCDC2 Monitoring Over Voltage Threshold Sense<br>0: DCDC2 Output Voltage within nominal range<br>1: DCDC2 Output Voltage Above Target |             |               |  |
| 0   | SEN_UV_DCDC1  | DCDC1 Monitoring Over Voltage Threshold Sense<br>0: DCDC1 Output Voltage within nominal range<br>1: DCDC1 Output Voltage Above Target |             |               |  |

### Table 28. IC OUTPUT DISCHARGED STATUS REGISTER

|     | Register Name | IC_STATUS_DISCHARGED                                  | Address                                                                                                                         | 0E             |  |
|-----|---------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------|--|
|     | Туре          | R                                                     | Default                                                                                                                         | 00000000b (0h) |  |
|     | Trigger       |                                                       |                                                                                                                                 |                |  |
| Bit | Name          |                                                       | Description                                                                                                                     |                |  |
| 7   | empty         |                                                       |                                                                                                                                 |                |  |
| 6   | empty         |                                                       |                                                                                                                                 |                |  |
| 5   | empty         |                                                       |                                                                                                                                 |                |  |
| 4   | OVLO_SAFE     |                                                       | OVLO SafeState status<br>0: DCDC1 windows monitoring used a interrupt<br>1: DCDC1 windows monitoring used as Error (safetstate) |                |  |
| 3   | S_LDO1_DIS    | Status bit for LDO1 discharge d                       | uring previous PD SEQ                                                                                                           |                |  |
| 2   | S_DCDC3_DIS   | Status bit for DCDC3 discharge during previous PD SEQ |                                                                                                                                 |                |  |
| 1   | S_DCDC2_DIS   | Status bit for DCDC2 discharge during previous PD SEQ |                                                                                                                                 |                |  |
| 0   | S_DCDC1_DIS   | Status bit for DCDC1 discharge                        | during previous PD SEQ                                                                                                          |                |  |

#### Table 29. IC REGULATOR SAFE STATE STATUS REGISTER

|     | Register Name | IC_STATUS_SAFE_STATE Address 0F                                                                                                  |                                                                                                                                  | 0F |  |
|-----|---------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----|--|
|     | Туре          | R         Default         0000000b (0h)                                                                                          |                                                                                                                                  |    |  |
|     | Trigger       |                                                                                                                                  |                                                                                                                                  |    |  |
| Bit | Name          |                                                                                                                                  | Description                                                                                                                      |    |  |
| 7   | LDO1_OV_SAFE  | LDO1 SafeState status<br>0: LDO1 windows monitoring u<br>1: LDO1 windows monitoring u                                            |                                                                                                                                  |    |  |
| 6   | DCDC3_OV_SAFE |                                                                                                                                  | DCDC3 SafeState status<br>0: DCDC3 windows monitoring used a interrupt<br>1: DCDC3 windows monitoring used as Error (safetstate) |    |  |
| 5   | DCDC2_OV_SAFE | DCDC2 SafeState status<br>0: DCDC2 windows monitoring used a interrupt<br>1: DCDC2 windows monitoring used as Error (safetstate) |                                                                                                                                  |    |  |
| 4   | DCDC1_OV_SAFE | DCDC1 SafeState status<br>0: DCDC1 windows monitoring used a interrupt<br>1: DCDC1 windows monitoring used as Error (safetstate) |                                                                                                                                  |    |  |
| 3   | LDO1_UV_SAFE  | LDO1 SafeState status<br>0: LDO1 windows monitoring used a interrupt<br>1: LDO1 windows monitoring used as Error (safetstate)    |                                                                                                                                  |    |  |
| 2   | DCDC3_UV_SAFE | DCDC3 SafeState status<br>0: DCDC3 windows monitoring used a interrupt<br>1: DCDC3 windows monitoring used as Error (safetstate) |                                                                                                                                  |    |  |
| 1   | DCDC2_UV_SAFE | DCDC2 SafeState status<br>0: DCDC2 windows monitoring used a interrupt<br>1: DCDC2 windows monitoring used as Error (safetstate) |                                                                                                                                  |    |  |
| 0   | DCDC1_UV_SAFE | DCDC1 SafeState status<br>0: DCDC1 windows monitoring<br>1: DCDC1 windows monitoring                                             |                                                                                                                                  |    |  |

#### Table 30. IC STATUS ERROR COUNTER REGISTER

|     | Register Name     | IC_STATUS_MISCELLANEOUS_1           | Address             | 10            |
|-----|-------------------|-------------------------------------|---------------------|---------------|
|     | Туре              | R                                   | Default             | 0000000b (0h) |
|     | Trigger           |                                     |                     |               |
| Bit | Name              |                                     | Description         |               |
| 7   | STAT_BIST         | Bist done                           |                     |               |
| 6   | AutoRearmCnt_STAT | Auto Rearm Counter status.          |                     |               |
| 5   |                   | Counter resetted when AutoRearmCnt_ | RST bit is set to 1 |               |
| 4   |                   |                                     |                     |               |
| 3   |                   |                                     |                     |               |
| 2   |                   |                                     |                     |               |
| 1   | ]                 |                                     |                     |               |
| 0   |                   |                                     |                     |               |

#### Table 31. IC STATUS STATE MACHINE COUNTER REGISTER

|     | Register Name | IC_STATUS_MISCELLANEOUS_2                                                                                                                                                 | Address     | 11            |  |
|-----|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|--|
|     | Туре          | R                                                                                                                                                                         | Default     | 0000000b (0h) |  |
|     | Trigger       |                                                                                                                                                                           |             |               |  |
| Bit | Name          |                                                                                                                                                                           | Description |               |  |
| 7   | STATPU        | 00: PUS ok<br>01: Rail required discharged                                                                                                                                |             |               |  |
| 6   |               | 10: Restart required due to UVLO for DCDC1 in SLOT0<br>11: Rail required discharged and Restart required due to UVLO for DCDC1 in SLOT0                                   |             |               |  |
| 5   | STATSLOTPU    | 00: No slot timeout fault 100: Slot timeout SLOT 0<br>101: Slot timeout SLOT 1<br>110: Slot timeout SLOT 2<br>111: Slot timeout SLOT 3<br>(updated at the end of the PUS) |             |               |  |
| 4   |               |                                                                                                                                                                           |             |               |  |
| 3   |               |                                                                                                                                                                           |             |               |  |
| 2   | STATMCH       | State Machine status 000: OFF<br>001: PU–SEQ<br>010: ACTIVE – ACTIVE FLAG                                                                                                 |             |               |  |
| 1   |               | 011: PD-SEQ<br>100: FAULT PD                                                                                                                                              |             |               |  |
| 0   |               | 101: ERROR PD<br>110: RESET-SEQ<br>111: LOCK                                                                                                                              |             |               |  |

## Table 32. I<sup>2</sup>C TIMEOUT WRITE REGISTER

|     | Register Name  | I2CTMOUT                                                                                                                                                                                                            | Address     | 12            |
|-----|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|
|     | Туре           | RW                                                                                                                                                                                                                  | Default     | 0000000b (0h) |
|     | Trigger        |                                                                                                                                                                                                                     |             |               |
| Bit | Name           |                                                                                                                                                                                                                     | Description |               |
| 7   | empty          |                                                                                                                                                                                                                     |             |               |
| 6   | empty          |                                                                                                                                                                                                                     |             |               |
| 5   | empty          |                                                                                                                                                                                                                     |             |               |
| 4   | empty          |                                                                                                                                                                                                                     |             |               |
| 3   | empty          |                                                                                                                                                                                                                     |             |               |
| 2   | empty          |                                                                                                                                                                                                                     |             |               |
| 1   | empty          |                                                                                                                                                                                                                     |             |               |
| 0   | I2C_TIMEOUT_WR | I <sup>2</sup> C access to this register has to be done continuously with a max period defined by the I <sup>2</sup> C Time Out delay.<br>If not done, the dedicated ACK bit is flagged and /INT pin is pulled low. |             |               |

#### Table 33. UNLOCK REGISTER

|     | Register Name | UNLOCK_WRITE_PROTECT_REG                   | Address                      | 13              |
|-----|---------------|--------------------------------------------|------------------------------|-----------------|
|     | Туре          | RW                                         | Default                      | 00000000b (0h)  |
|     | Trigger       |                                            |                              |                 |
| Bit | Name          |                                            | Description                  |                 |
| 7   | UNLOCK        | 8 bits to unlock configuration registers.  |                              | hanna thru 120  |
| 6   |               | By default, configuration registers are lo | ocked to avoid unexpected of | change thru 140 |
| 5   |               |                                            |                              |                 |
| 4   |               |                                            |                              |                 |
| 3   |               |                                            |                              |                 |
| 2   |               |                                            |                              |                 |
| 1   |               |                                            |                              |                 |
| 0   |               |                                            |                              |                 |

## Table 34. I<sup>2</sup>C TIMEOUT SETTING REGISTER

|     | Register Name | IC_CONFIGURATION_I2CTMOUT                                                  | Address     | 14            |
|-----|---------------|----------------------------------------------------------------------------|-------------|---------------|
|     | Туре          | CRC                                                                        | Default     | 0000000b (0h) |
|     | Trigger       |                                                                            |             |               |
| Bit | Name          |                                                                            | Description |               |
| 7   | empty         |                                                                            |             |               |
| 6   | empty         |                                                                            |             |               |
| 5   | empty         |                                                                            |             |               |
| 4   | empty         |                                                                            |             |               |
| 3   | empty         |                                                                            |             |               |
| 2   | empty         |                                                                            |             |               |
| 1   | I2C_TIMEOUT   | 2 bits for I <sup>2</sup> C communication timeout<br>00: disable 01: 16 ms |             |               |
| 0   |               | 10: 128 ms 11: 1024 ms                                                     |             |               |

#### Table 35. IC CONFIGURATIONS REGISTER 1

|     | Register Name              | IC_CONFIGURATION_1 Address 15                                                                                                                                                         |             |                 |
|-----|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------|
|     | Type CRC Default 00100101b |                                                                                                                                                                                       |             | 00100101b (25h) |
|     | Trigger                    |                                                                                                                                                                                       |             |                 |
| Bit | Name                       |                                                                                                                                                                                       | Description |                 |
| 7   | UVLO_REARM                 | UVLO Auto rearm when in loc<br>0: no rearm.<br>1: auto rearm.                                                                                                                         | k mode:     |                 |
| 6   | TSD_REARM                  | TSD Auto rearm when in lock<br>0: no rearm.<br>1: auto rearm.                                                                                                                         | mode:       |                 |
| 5   | TSD_Gating                 | Avoid startup of power–up sequence if Tj > 125°C<br>0: disable<br>1: enable                                                                                                           |             |                 |
| 4   | TSD_PRWRNG                 | Thermal shutdown pre-warning selection<br>0: 140°C<br>1: 130°C                                                                                                                        |             |                 |
| 3   | UVLO                       | UVLO Programmability:<br>Rising Falling<br>0000: 4.5 V 4.3 V<br>0001: 6.0 V 4.3 V<br>0010: 7.0 V 4.3 V                                                                                |             |                 |
| 2   |                            | 0011:         8.0 V         4.3 V           0100:         6.0 V         5.0 V           0101:         7.0 V         5.0 V           0110:         8.0 V         5.0 V                 |             |                 |
| 1   |                            | 0111:       6.0 V       5.5 V         1000:       7.0 V       5.5 V         1001:       8.0 V       5.5 V         1010:       7.0 V       6.0 V         1011:       8.0 V       6.0 V |             |                 |
| 0   |                            | 1100: N/A N/A<br>1101: N/A N/A<br>1110: N/A N/A<br>1111: N/A N/A                                                                                                                      |             |                 |

## Table 36. IC CONFIGURATIONS REGISTER 2

|     | Register Name    | IC_CONFIGURATION_2 Address 16                                                                                                     |             | 16            |
|-----|------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|
|     | Туре             | CRC                                                                                                                               | Default     | 0000000b (0h) |
|     | Trigger          |                                                                                                                                   |             |               |
| Bit | Name             |                                                                                                                                   | Description |               |
| 7   | empty            |                                                                                                                                   |             |               |
| 6   | CRCEN            | I <sup>2</sup> C communication CRC enab<br>0: I <sup>2</sup> C communication without<br>1: I <sup>2</sup> C communication with CR | CRC         |               |
| 5   | AutoRearmCnt_RST | Once set to 1, internal error co<br>This bit is self cleared to 0 onc                                                             |             |               |
| 4   | empty            |                                                                                                                                   |             |               |
| 3   | AutoRearmCnt     | Safe state auto restart:<br>00: No restart 01: 3 rest                                                                             | o. + 0      |               |
| 2   | 1                | 00: No restart         01: 3 rest           10: 15 restarts         11: 63 rest                                                   |             |               |
| 1   | empty            |                                                                                                                                   |             |               |
| 0   | BistCnt          | BIST Retry:<br>0: no retry<br>1: one retry                                                                                        |             |               |

### Table 37. IC CONFIGURATIONS REGISTER 3

|         | Register Name  | IC_CONFIGURATION_3                                                                                     | Address                       | 17                           |
|---------|----------------|--------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------|
|         | Туре           | CRC                                                                                                    | Default                       | 00001100b (Ch)               |
| Trigger |                |                                                                                                        |                               |                              |
| Bit     | Name           |                                                                                                        | Description                   |                              |
| 7       | FRCINTB        | Bit to force interrupt pin low or h<br>0: INTB follow the state machin<br>1: INTB pin forced low       |                               |                              |
| 6       | NLOCK          | NLOCK bit when NCV92310 in lock mode. Self cleared once done.<br>0: no unlock<br>1: NCV92310 unlocked  |                               |                              |
| 5       | FAULT_TIMEOUT  | 2 bits for Active Flag Mode stat                                                                       | e timeout:                    |                              |
| 4       |                | 00: disable         01: 45 ms           10: 95 ms         11: 150 ms                                   |                               |                              |
| 3       | Soft_RST_Timer | Soft Reset Timer:                                                                                      |                               |                              |
| 2       |                | 00: 1 ms         01: 4 ms           01: 16 ms         11: 64 ms                                        |                               |                              |
| 1       | Soft_RST       | Soft Reset bit:<br>0: no soft reset.<br>1: /RST pin pulled low. Timing s                               | et in the Soft Reset Timer. S | elf cleared once done        |
| 0       | Forced_RST     | Forced Reset bit:<br>0: no reset<br>1: Reset, NCV92310 will start a<br>Sequence. Bit is cleared once o |                               | wed by a BIST and a Power up |

#### Table 38. IC CONFIGURATIONS REGISTER 4

|     | Register Name | IC_CONFIGURATION_4                                                                            | Address                    | 18            |
|-----|---------------|-----------------------------------------------------------------------------------------------|----------------------------|---------------|
|     | Туре          | CRC                                                                                           | Default                    | 0000000b (0h) |
|     | Trigger       |                                                                                               |                            |               |
| Bit | Name          |                                                                                               | Description                |               |
| 7   | empty         |                                                                                               |                            |               |
| 6   | empty         |                                                                                               |                            |               |
| 5   | empty         |                                                                                               |                            |               |
| 4   | SPREAD_FSW    | Spread Spectrum Switching Frequency Variation:<br>0: 10% max<br>1: 5% max                     |                            |               |
| 3   | SPREAD_MODF   | Spread spectrum divider (frequer<br>LFSR Triangular<br>00: Divider = 1, Divider = 4           | ncy changed every x cycles | )             |
| 2   |               | 01: Divider = 2, Divider = 5<br>10: Divider = 3, Divider = 6<br>11: Divider = 4, Divider = 7  |                            |               |
| 1   | SPREAD_MODT   | Spread Spectrum modulation sch<br>0: LFSR (16 bits Pseudo random<br>1: Triangular (dual peak) | eme<br>equal distribution) |               |
| 0   | SPREAD_EN     | Spread Spectrum Enable bit:<br>0: Disable<br>1: Enable                                        |                            |               |

### Table 39. INTERRUPT FLAG IC MASK REGISTER

|     | Register Name  | INTERRUPT_MASK_IC                                                                                                                                                      | Address           | 19            |
|-----|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
|     | Туре           | CRC                                                                                                                                                                    | Default           | 0000000b (0h) |
|     | Trigger        |                                                                                                                                                                        |                   |               |
| Bit | Name           |                                                                                                                                                                        | Description       |               |
| 7   | empty          |                                                                                                                                                                        |                   |               |
| 6   | empty          |                                                                                                                                                                        |                   |               |
| 5   | MSK_TSD_WRNG   | Thermal Shutdown Warning Inter<br>0: Interrupt is Enabled<br>1: Interrupt is Masked                                                                                    | rupt Source Mask  |               |
| 4   | MSK_TSD_PRWRNG | Thermal Shutdown Pre-Warning Interrupt Source Mask<br>0: Interrupt is Enabled<br>1: Interrupt is Masked                                                                |                   |               |
| 3   | empty          |                                                                                                                                                                        |                   |               |
| 2   | empty          |                                                                                                                                                                        |                   |               |
| 1   | MSK_I2CERROR   | I <sup>2</sup> C communication error Interrupt Source Mask<br>0: Interrupt is Enabled<br>1: Interrupt is Masked<br>OTP bit available to desactivate the whole function |                   |               |
| 0   | MSK_OVF        | OVD Interrupt Source Mask<br>0: Interrupt is Enabled<br>1: Interrupt is Masked<br>OTP bit available to desactivate                                                     | he whole function |               |

#### Table 40. INTERRUPT MASK REGISTER OVERVOLTAGE MONITORING THRESHOLD

|     | Register Name | INTERRUPT_MASK_OV Address 1A                                                                                                                                                |             |               |  |
|-----|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|--|
|     | Туре          | CRC                                                                                                                                                                         | Default     | 0000000b (0h) |  |
|     | Trigger       |                                                                                                                                                                             |             |               |  |
| Bit | Name          |                                                                                                                                                                             | Description |               |  |
| 7   | empty         |                                                                                                                                                                             |             |               |  |
| 6   | empty         |                                                                                                                                                                             |             |               |  |
| 5   | empty         |                                                                                                                                                                             |             |               |  |
| 4   | empty         |                                                                                                                                                                             |             |               |  |
| 3   | MSK_OV_LDO1   | LDO1 Monitoring Over Voltage Threshold Interrupt Source Mask<br>0: Interrupt is Enabled<br>1: Interrupt is Masked<br>If LDO1_SAFE bit is set high, fault cannot be masked   |             |               |  |
| 2   | MSK_OV_DCDC3  | DCDC3 Monitoring Over Voltage<br>0: Interrupt is Enabled<br>1: Interrupt is Masked<br>If DCDC3_SAFE bit is set high, f                                                      |             | Mask          |  |
| 1   | MSK_OV_DCDC2  | DCDC2 Monitoring Over Voltage Threshold Interrupt Source Mask<br>0: Interrupt is Enabled<br>1: Interrupt is Masked<br>If DCDC2_SAFE bit is set high, fault cannot be masked |             |               |  |
| 0   | MSK_OV_DCDC1  | DCDC1 Monitoring Over Voltage Threshold Interrupt Source Mask<br>0: Interrupt is Enabled<br>1: Interrupt is Masked<br>If DCDC1_SAFE bit is set high, fault cannot be masked |             |               |  |

## Table 41. INTERRUPT MASK REGISTER UNDERVOLTAGE MONITORING THRESHOLD

|     | Register Name | INTERRUPT_MASK_UV                                                                                                                                                            | Address     | 1B            |
|-----|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|
|     | Туре          | CRC                                                                                                                                                                          | Default     | 0000000b (0h) |
|     | Trigger       |                                                                                                                                                                              |             |               |
| Bit | Name          |                                                                                                                                                                              | Description |               |
| 7   | empty         |                                                                                                                                                                              |             |               |
| 6   | empty         |                                                                                                                                                                              |             |               |
| 5   | empty         |                                                                                                                                                                              |             |               |
| 4   | empty         |                                                                                                                                                                              |             |               |
| 3   | MSK_UV_LDO1   | LDO1 Monitoring Under Voltage Threshold Interrupt Source Mask<br>0: Interrupt is Enabled<br>1: Interrupt is Masked<br>If LDO1 SAFE bit is set high, fault cannot be masked   |             |               |
| 2   | MSK_UV_DCDC3  | DCDC3 Monitoring Under Voltage<br>0: Interrupt is Enabled<br>1: Interrupt is Masked<br>If DCDC3_SAFE bit is set high, fa                                                     |             | e Mask        |
| 1   | MSK_UV_DCDC2  | DCDC2 Monitoring Under Voltage Threshold Interrupt Source Mask<br>0: Interrupt is Enabled<br>1: Interrupt is Masked<br>If DCDC2_SAFE bit is set high, fault cannot be masked |             |               |
| 0   | MSK_UV_DCDC1  | DCDC1 Monitoring Under Voltage<br>0: Interrupt is Enabled<br>1: Interrupt is Masked<br>If DCDC1_SAFE bit is set high, fa                                                     |             | e Mask        |

#### Table 42. INTERRUPT MASK REGISTER OVERCURRENT PROTECTION

|     | Register Name       | INTERRUPT_MASK_OC                                                                                                                                                                              | Address                           | 1C              |
|-----|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------|
|     | Туре                | CRC                                                                                                                                                                                            | Default                           | 00101010b (2Ah) |
|     | Trigger             |                                                                                                                                                                                                |                                   |                 |
| Bit | Name                | Description                                                                                                                                                                                    |                                   |                 |
| 7   | empty               |                                                                                                                                                                                                |                                   |                 |
| 6   | MSK_LDO1_OCP        | LDO1 Over Current Protection<br>0: Interrupt is Enabled<br>1: Interrupt is Masked                                                                                                              | Interrupt Source Mask             |                 |
| 5   | MSK_IPEAK_NEG_DCDC3 | DCDC3 Negative current limitation Interrupt Source Mask<br>0: Interrupt is Enabled<br>1: Interrupt is Masked<br>OTP bit available to mask the /INTB pin pulled low when Ipeak neg is triggered |                                   |                 |
| 4   | MSK_IPEAK_POS_DCDC3 | DCDC3 Inductor IPEAK current limitation Interrupt Source Mask<br>0: Interrupt is Enabled<br>1: Interrupt is Masked                                                                             |                                   |                 |
| 3   | MSK_IPEAK_NEG_DCDC2 | DCDC2 Negative current limitation Interrupt Source Mask<br>0: Interrupt is Enabled<br>1: Interrupt is Masked<br>OTP bit available to mask the /INTB pin pulled low when Ipeak neg is triggered |                                   |                 |
| 2   | MSK_IPEAK_POS_DCDC2 | DCDC2 Inductor IPEAK current limitation Interrupt Source Mask<br>0: Interrupt is Enabled<br>1: Interrupt is Masked                                                                             |                                   |                 |
| 1   | MSK_IPEAK_NEG_DCDC1 | DCDC1 Negative current limitation Interrupt Source Mask<br>0: Interrupt is Enabled<br>1: Interrupt is Masked<br>OTP bit available to mask the /INTB pin pulled low when Ipeak neg is triggered |                                   |                 |
| 0   | MSK_IPEAK_POS_DCDC1 | DCDC1 Inductor IPEAK currer<br>0: Interrupt is Enabled<br>1: Interrupt is Masked                                                                                                               | nt limitation Interrupt Source Ma | sk              |

## Table 43. DCDC1 OUTPUT VOLTAGE PROGRAMMATION REGISTER

|        | Register Name | OUTPUT_VOLTAGE_DCDC1                                                                                                                                                                                                                                                                                                                                                          | Address     | 1D             |
|--------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|
|        | Туре          | CRC                                                                                                                                                                                                                                                                                                                                                                           | Default     | 00000101b (5h) |
|        | Trigger       |                                                                                                                                                                                                                                                                                                                                                                               |             |                |
| Bit    | Name          |                                                                                                                                                                                                                                                                                                                                                                               | Description |                |
| 7      | empty         |                                                                                                                                                                                                                                                                                                                                                                               |             |                |
| 6      | empty         |                                                                                                                                                                                                                                                                                                                                                                               |             |                |
| 5      | empty         |                                                                                                                                                                                                                                                                                                                                                                               |             |                |
| 4      | empty         |                                                                                                                                                                                                                                                                                                                                                                               |             |                |
| 3<br>0 | VDCDC1        | DCDC1 Output Voltage Programm           0000: 2.8 V         0001: 2.9 V           0010: 3.0 V         0011: 3.1 V           0100: 3.2 V         0101: 3.3 V           0110: 3.4 V         0111: 3.5 V           1000: 3.6 V         1001: 3.8 V           1010: 4.0 V         1011: 4.2 V           1100: 4.4 V         1101: 4.6 V           1101: 4.8 V         1111: 5.0 V | nability    |                |

## Table 44. DCDC1 CONFIGURATION REGISTER

|     | Register Name    | CONFIGURATION_DCDC1                                                            | Address     | 1E             |
|-----|------------------|--------------------------------------------------------------------------------|-------------|----------------|
|     | Туре             | CRC                                                                            | Default     | 00001101b (Dh) |
|     | Trigger          |                                                                                |             | •              |
| Bit | Name             |                                                                                | Description |                |
| 7   | empty            |                                                                                |             |                |
| 6   | empty            |                                                                                |             |                |
| 5   | empty            |                                                                                |             |                |
| 4   | empty            |                                                                                |             |                |
| 3   | DIS_DCDC1        | DCDC1 active output discharge<br>0: Disabled (valid if PWR SEQ_E<br>1: Enabled | :N = 0)     |                |
| 2   | Soft_Start_DCDC1 | 2 bits to set the DCDC1 soft start<br>00: 0.08 ms/V                            | t           |                |
| 1   |                  | 01: 0.16 ms/V<br>10: 0.32 ms/V<br>11: 0.64 ms/V                                |             |                |
| 0   | ENDCDC1          | DCDC1 enable bit: (valid if SEQ_<br>0: Disabled<br>1: Enabled                  | EN = 0)     |                |

### Table 45. DCDC2 OUTPUT VOLTAGE PROGRAMMATION REGISTER

|     | Register Name | OUTPUT_VOLTAGE_DCDC2 Address 1F |             | 1F              |
|-----|---------------|---------------------------------|-------------|-----------------|
|     | Туре          | CRC                             | Default     | 00011000b (18h) |
|     | Trigger       |                                 |             |                 |
| Bit | Name          |                                 | Description |                 |
| 7   | empty         |                                 |             |                 |
| 6   | empty         |                                 |             |                 |
| 5   | VDCDC2        | DCDC2 Output Voltage Program    | nmability   |                 |
| 4   |               | From 0.6 V to 2.175 V with 25 n | iv Step     |                 |
| 3   |               |                                 |             |                 |
| 2   |               |                                 |             |                 |
| 1   |               |                                 |             |                 |
| 0   |               |                                 |             |                 |

#### Table 46. DCDC2 CONFIGURATION REGISTER

|     | Register Name    | CONFIGURATION_DCDC2                                                            | Address     | 20             |
|-----|------------------|--------------------------------------------------------------------------------|-------------|----------------|
|     | Туре             | CRC                                                                            | Default     | 00001101b (Dh) |
|     | Trigger          |                                                                                |             |                |
| Bit | Name             |                                                                                | Description |                |
| 7   | empty            |                                                                                |             |                |
| 6   | empty            |                                                                                |             |                |
| 5   | empty            |                                                                                |             |                |
| 4   | empty            |                                                                                |             |                |
| 3   | DIS_DCDC2        | DCDC2 active output discharge<br>0: Disabled (valid if PWR SEQ_I<br>1: Enabled |             |                |
| 2   | Soft_Start_DCDC2 | 2 bits to set the DCDC2 soft start<br>00: 0.08 ms/V<br>01: 0.16 ms/V           |             |                |
| 1   |                  | 10: 0.32 ms/V<br>11: 0.64 ms/V                                                 |             |                |
| 0   | ENDCDC2          | DCDC2 enable bit: (valid if SEQ<br>0: Disabled<br>1: Enabled                   | _EN = 0)    |                |

#### Table 47. DCDC3 OUTPUT VOLTAGE PROGRAMMATION REGISTER

|     | Register Name | OUTPUT_VOLTAGE_DCDC3            | Address     | 21              |
|-----|---------------|---------------------------------|-------------|-----------------|
|     | Туре          | CRC                             | Default     | 00110000b (30h) |
|     | Trigger       |                                 |             |                 |
| Bit | Name          |                                 | Description |                 |
| 7   | empty         |                                 |             |                 |
| 6   | empty         |                                 |             |                 |
| 5   | VDCDC3        | DCDC3 Output Voltage Progra     | mmability   |                 |
| 4   |               | From 0.6 V to 2.175 V with 25 i | nv Step     |                 |
| 3   |               |                                 |             |                 |
| 2   |               |                                 |             |                 |
| 1   | ]             |                                 |             |                 |
| 0   |               |                                 |             |                 |

## Table 48. DCDC3 CONFIGURATION REGISTER

|     | Register Name    | CONFIGURATION_DCDC3                                                           | Address     | 22             |  |
|-----|------------------|-------------------------------------------------------------------------------|-------------|----------------|--|
|     | Туре             | CRC                                                                           | Default     | 00001101b (Dh) |  |
|     | Trigger          |                                                                               |             | •              |  |
| Bit | Name             |                                                                               | Description |                |  |
| 7   | empty            |                                                                               |             |                |  |
| 6   | empty            |                                                                               |             |                |  |
| 5   | empty            |                                                                               |             |                |  |
| 4   | empty            |                                                                               |             |                |  |
| 3   | DIS_DCDC3        | DCDC3 active output discharge<br>0: Disabled (valid if PWR SEQ_<br>1: Enabled | EN = 0)     |                |  |
| 2   | Soft_Start_DCDC3 | 2 bits to set the DCDC3 soft sta<br>00: 0.08 ms/V                             | rt          |                |  |
| 1   |                  | 01: 0.16 ms/V<br>10: 0.32 ms/V<br>11: 0.64 ms/V                               |             |                |  |
| 0   | ENDCDC3          | DCDC3 enable bit: (valid if SEG<br>0: Disabled<br>1: Enabled                  | _EN = 0)    |                |  |

## Table 49. LDO1 OUTPUT VOLTAGE PROGRAMMATION REGISTER

|     | Register Name | OUTPUT_VOLTAGE_LDO1                                           | Address     | 23             |
|-----|---------------|---------------------------------------------------------------|-------------|----------------|
|     | Туре          | CRC                                                           | Default     | 00000010b (2h) |
|     | Trigger       |                                                               |             |                |
| Bit | Name          |                                                               | Description |                |
| 7   | empty         |                                                               |             |                |
| 6   | empty         |                                                               |             |                |
| 5   | empty         |                                                               |             |                |
| 4   | empty         |                                                               |             |                |
| 3   | empty         |                                                               |             |                |
| 2   | VLDO1         | LDO1 Output Voltage Program<br>From 2.6 V to 3.3 V with 100 n | mability    |                |
| 1   | ]             |                                                               | iv slep     |                |
| 0   |               |                                                               |             |                |

## Table 50. LDO1 CONFIGURATION REGISTER

|     | Register Name   | CONFIGURATION_LDO1                                                            | Address     | 24             |  |
|-----|-----------------|-------------------------------------------------------------------------------|-------------|----------------|--|
|     | Туре            | CRC                                                                           | Default     | 00001101b (Dh) |  |
|     | Trigger         |                                                                               |             | •              |  |
| Bit | Name            |                                                                               | Description |                |  |
| 7   | empty           |                                                                               |             |                |  |
| 6   | empty           |                                                                               |             |                |  |
| 5   | empty           |                                                                               |             |                |  |
| 4   | empty           |                                                                               |             |                |  |
| 3   | DIS_LDO1        | LDO1 active output discharge<br>0: Disabled (valid if PWR SEQ_E<br>1: Enabled | N = 0)      |                |  |
| 2   | Soft_Start_LDO1 | 2 bits to set the LDO1 soft start<br>00: 0.16 ms/V                            |             |                |  |
| 1   |                 | 01: 0.32 ms/V<br>10: 0.64 ms/V<br>11: 1.28 ms/V                               |             |                |  |
| 0   | ENLDO1          | LDO1 enable bit: (valid if SEQ_E<br>0: Disabled<br>1: Enabled                 | N = 0)      |                |  |

## Table 51. MONITORING UNDERVOLTAGE DCDC1 SETTINGS

|     | Register Name | MONITORING_UV_DCDC1                                  | Address     | 25                       |
|-----|---------------|------------------------------------------------------|-------------|--------------------------|
|     | Туре          | CRC                                                  | Default     | 00100100b (24h)          |
|     | Trigger       |                                                      |             |                          |
| Bit | Name          |                                                      | Description |                          |
| 7   | DCDC1_UVT     | DCDC1 Under Voltage Monito<br>000: -3.0% 001: -3.5   |             | ogrammed output voltage: |
| 6   |               | 010: -4.0% 011: -4.5%<br>100: -5.0% 101: -6.0%       | 6           |                          |
| 5   |               | 110: -8.0% 111: -10%                                 |             |                          |
| 4   | DCDC1_DBN_TLR | Debounce Rising edge progra<br>00: 32 μs 01: 64 μs   | nmability:  |                          |
| 3   |               | 10: 128 μs 11: 256 μs                                |             |                          |
| 2   | DCDC1_DBN_TLF | Debounce falling edge program<br>000: none 001: 2 µs | nmability:  |                          |
| 1   |               | 010: 4 μs 011: 8 μs<br>100: 16 μs 101: 32 μs         | s           |                          |
| 0   |               | 110: 64 μs 111: 128 μ                                |             |                          |

## Table 52. MONITORING OVERVOLTAGE DCDC1 SETTINGS

|     | Register Name | MONITORING_OV_DCDC1                                  | Address     | 26                       |
|-----|---------------|------------------------------------------------------|-------------|--------------------------|
|     | Туре          | CRC                                                  | Default     | 01010000b (50h)          |
|     | Trigger       |                                                      |             |                          |
| Bit | Name          |                                                      | Description |                          |
| 7   | DCDC1_OVT     | DCDC1 Under Voltage Monito<br>000: 3.0% 001: 3.5%    |             | ogrammed output voltage: |
| 6   |               | 010: 4.0% 011: 4.5%<br>100: 5.0% 101: 6.0%           |             |                          |
| 5   |               | 110: 8.0% 111: 10%                                   | ,           |                          |
| 4   | DCDC1_DBN_THR | Debounce rising edge program<br>000: none 001: 2 μs  |             |                          |
| 3   |               | 010: 4 μs 011: 8 μs<br>100: 16 μs 101: 32 μs         |             |                          |
| 2   |               | 110: 64 μs 111: 128 μ                                |             |                          |
| 1   | DCDC1_DBN_THF | Debounce falling edge program<br>00: 32 μs 01: 64 μs | nmability:  |                          |
| 0   |               | 10: 128 μs 11: 256 μs                                | 3           |                          |

#### Table 53. MONITORING UNDERVOLTAGE DCDC2 SETTINGS

|     | Register Name | MONITORING_UV_DCDC2                                  | Address     | 27                       |
|-----|---------------|------------------------------------------------------|-------------|--------------------------|
|     | Туре          | CRC                                                  | Default     | 00100100b (24h)          |
|     | Trigger       |                                                      |             |                          |
| Bit | Name          |                                                      | Description |                          |
| 7   | DCDC2_UVT     | DCDC2 Under Voltage Monito<br>000: -3.0% 001: -3.5%  |             | ogrammed output voltage: |
| 6   |               | 010: -4.0% 011: -4.5%<br>100: -5.0% 101: -6.0%       | 6           |                          |
| 5   |               | 110: -8.0% 111: -10%                                 |             |                          |
| 4   | DCDC2_DBN_TLR | Debounce Rising edge program<br>00: 32 μs 01: 64 μs  | nmability:  |                          |
| 3   |               | 10: 128 μs 11: 256 μs                                |             |                          |
| 2   | DCDC2_DBN_TLF | Debounce falling edge program<br>000: none 001: 2 µs | nmability:  |                          |
| 1   |               | 010: 4 μs 011: 8 μs<br>100: 16 μs 101: 32 μs         |             |                          |
| 0   |               | 110: 64 μs 111: 128 μ                                |             |                          |

## Table 54. MONITORING OVERVOLTAGE DCDC2 SETTINGS

|     | Register Name | MONITORING_OV_DCDC2                                                   | Address     | 28                       |
|-----|---------------|-----------------------------------------------------------------------|-------------|--------------------------|
|     | Туре          | CRC                                                                   | Default     | 01010000b (50h)          |
|     | Trigger       |                                                                       |             |                          |
| Bit | Name          |                                                                       | Description |                          |
| 7   | DCDC2_OVT     | DCDC2 Under Voltage Monito<br>000: 3.0% 001: 3.5%                     |             | ogrammed output voltage: |
| 6   |               | 010: 4.0% 011: 4.5%<br>100: 5.0% 101: 6.0%                            |             |                          |
| 5   |               | 110: 8.0% 111: 10%                                                    |             |                          |
| 4   | DCDC2_DBN_THR | Debounce rising edge progran<br>000: none 001: 2 µs                   | nmability:  |                          |
| 3   |               | 010: 4 μs 011: 8 μs                                                   |             |                          |
| 2   |               | 100: 16 μs         101: 32 μs           110: 64 μs         111: 128 μ |             |                          |
| 1   | DCDC2_DBN_THF | Debounce falling edge programmability:<br>00: 32 μs 01: 64 μs         |             |                          |
| 0   |               | 10: 128 μs 11: 256 μs                                                 | 3           |                          |

## Table 55. MONITORING UNDERVOLTAGE DCDC3 SETTINGS

|     | Register Name | MONITORING_UV_DCDC3                                                                                    | Address     | 29              |  |
|-----|---------------|--------------------------------------------------------------------------------------------------------|-------------|-----------------|--|
|     | Туре          | CRC                                                                                                    | Default     | 00100100b (24h) |  |
|     | Trigger       |                                                                                                        |             |                 |  |
| Bit | Name          |                                                                                                        | Description |                 |  |
| 7   | DCDC3_UVT     | DCDC3 Under Voltage Monitoring Threshold in % of the programmed output voltage : 000: -3.0% 001: -3.5% |             |                 |  |
| 6   |               | 010: -4.0% 011: -4.5%<br>100: -5.0% 101: -6.0%                                                         | %           |                 |  |
| 5   |               | 110: -8.0% 111: -10%                                                                                   |             |                 |  |
| 4   | DCDC3_DBN_TLR | Debounce Rising edge programmability:                                                                  |             |                 |  |
| 3   |               | 00: 32 μs 01: 64 μs<br>10: 128 μs 11: 256 μs                                                           |             |                 |  |
| 2   | DCDC3_DBN_TLF | Debounce falling edge program<br>000: none 001: 2 μs                                                   | nmability:  |                 |  |
| 1   |               | 010: 4 μs 011: 8 μs<br>100: 16 μs 101: 32 μs                                                           |             |                 |  |
| 0   |               | 110: 64 μs 111: 128 μ                                                                                  |             |                 |  |

### Table 56. MONITORING OVERVOLTAGE DCDC3 SETTINGS

|     | Register Name | MONITORING_OV_DCDC3                                  | Address     | 2A                       |
|-----|---------------|------------------------------------------------------|-------------|--------------------------|
|     | Туре          | CRC                                                  | Default     | 01010000b (50h)          |
|     | Trigger       |                                                      |             |                          |
| Bit | Name          |                                                      | Description |                          |
| 7   | DCDC3_OVT     | DCDC3 Under Voltage Monito<br>000: 3.0% 001: 3.5%    |             | ogrammed output voltage: |
| 6   |               | 010: 4.0% 011: 4.5%<br>100: 5.0% 101: 6.0%           |             |                          |
| 5   |               | 110: 8.0% 111: 10%                                   |             |                          |
| 4   | DCDC3_DBN_THR | Debounce rising edge program<br>000: none 001: 2 μs  | nmability:  |                          |
| 3   |               | 010: 4 μs 011: 8 μs<br>100: 16 μs 101: 32 μs         |             |                          |
| 2   | ]             | 110: 64 μs 111: 128 μ                                |             |                          |
| 1   | DCDC3_DBN_THF | Debounce falling edge program<br>00: 32 μs 01: 64 μs | nmability:  |                          |
| 0   | ]             | 10: 128 μs 11: 256 μs                                |             |                          |

## Table 57. MONITORING UNDERVOLTAGE LDO1 SETTINGS

|     | Register Name | MONITORING_UV_LDO1                                                                                    | Address     | 2B              |
|-----|---------------|-------------------------------------------------------------------------------------------------------|-------------|-----------------|
|     | Туре          | CRC                                                                                                   | Default     | 00100100b (24h) |
|     | Trigger       |                                                                                                       |             |                 |
| Bit | Name          |                                                                                                       | Description |                 |
| 7   | LDO1_UVT      | LDO1 Under Voltage Monitoring Threshold in % of the programmed output voltage : 000; -3.0% 001; -3.5% |             |                 |
| 6   |               | 010: -4.0% 011: -4.5%<br>100: -5.0% 101: -6.0%                                                        | %           |                 |
| 5   |               | 110: -8.0% 111: -10%                                                                                  |             |                 |
| 4   | LDO1_DBN_TLR  | Debounce Rising edge progra<br>00: 32 μs 01: 64 μs                                                    | mmability:  |                 |
| 3   |               | 10: 128 μs 11: 256 μs                                                                                 |             |                 |
| 2   | LDO1_DBN_TLF  | Debounce falling edge program<br>000: none 001: 2 µs                                                  | nmability:  |                 |
| 1   |               | 010: 4 μs 011: 8 μs<br>100: 16 μs 101: 32 μs                                                          |             |                 |
| 0   |               | 110: 64 μs 111: 128 μ                                                                                 |             |                 |

## Table 58. MONITORING OVERVOLTAGE LDO1 SETTINGS

|     | Register Name | MONITORING_OV_LDO1                                   | Address    | 2C                     |
|-----|---------------|------------------------------------------------------|------------|------------------------|
|     | Туре          | CRC                                                  | Default    | 01010000b (50h)        |
|     | Trigger       |                                                      |            |                        |
| Bit | Name          | Description                                          |            |                        |
| 7   | LDO1_OVT      | LDO1 Under Voltage Monitorir<br>000: 3.0% 001: 3.5%  |            | rammed output voltage: |
| 6   |               | 010: 4.0% 011: 4.5%<br>100: 5.0% 101: 6.0%           |            |                        |
| 5   |               | 110: 8.0% 111: 10%                                   |            |                        |
| 4   | LDO1_DBN_THR  | Debounce rising edge program<br>000: none 001: 2 μs  | nmability: |                        |
| 3   |               | 010: 4 μs<br>100: 16 μs<br>101: 32 μs                |            |                        |
| 2   |               | 110: 64 μs 111: 128 μ                                |            |                        |
| 1   | LDO1_DBN_THF  | Debounce falling edge program<br>00: 32 μs 01: 64 μs | nmability: |                        |
| 0   | ]             | 10: 128 μs 11: 256 μs                                |            |                        |

#### Table 59. SEQUENCER ASSIGNMENT DCDC1 REGISTER

|     | Register Name | SEQUENCER_ASSIGNMENT_DCDC1          | Address     | 2D            |
|-----|---------------|-------------------------------------|-------------|---------------|
|     | Туре          | CRC                                 | Default     | 0000000b (0h) |
|     | Trigger       |                                     |             |               |
| Bit | Name          |                                     | Description |               |
| 7   | empty         |                                     |             |               |
| 6   | empty         |                                     |             |               |
| 5   | SLOTPDS_DCDC1 | DCDC1 Power Down Sequence SLOT as   | signment    |               |
| 4   | 1             |                                     |             |               |
| 3   | empty         |                                     |             |               |
| 2   | empty         |                                     |             |               |
| 1   | SLOTPUS_DCDC1 | DCDC1 Power up Sequence SLOT assign | nment       |               |
| 0   |               |                                     |             |               |

#### Table 60. SEQUENCER ASSIGNMENT DCDC2 REGISTER

|     | Register Name | SEQUENCER_ASSIGNMENT_DCDC2            | Address   | 2E              |
|-----|---------------|---------------------------------------|-----------|-----------------|
|     | Туре          | CRC                                   | Default   | 00010001b (11h) |
|     | Trigger       |                                       |           |                 |
| Bit | Name          | Des                                   | scription |                 |
| 7   | empty         |                                       |           |                 |
| 6   | empty         |                                       |           |                 |
| 5   | SLOTPDS_DCDC2 | DCDC2 Power Down Sequence SLOT assign | nment     |                 |
| 4   |               |                                       |           |                 |
| 3   | empty         |                                       |           |                 |
| 2   | empty         |                                       |           |                 |
| 1   | SLOTPUS_DCDC2 | DCDC2 Power up Sequence SLOT assignme | ent       |                 |
| 0   |               |                                       |           |                 |

### Table 61. SEQUENCER ASSIGNMENT DCDC3 REGISTER

|     | Register Name | SEQUENCER_ASSIGNMENT_DCDC3            | Address   | 30              |
|-----|---------------|---------------------------------------|-----------|-----------------|
|     | Туре          | CRC                                   | Default   | 00100010b (22h) |
|     | Trigger       |                                       |           |                 |
| Bit | Name          | De                                    | scription |                 |
| 7   | empty         |                                       |           |                 |
| 6   | empty         |                                       |           |                 |
| 5   | SLOTPDS_DCDC3 | DCDC3 Power Down Sequence SLOT assig  | nment     |                 |
| 4   |               |                                       |           |                 |
| 3   | empty         |                                       |           |                 |
| 2   | empty         |                                       |           |                 |
| 1   | SLOTPUS_DCDC3 | DCDC3 Power up Sequence SLOT assignme | ent       |                 |
| 0   |               |                                       |           |                 |

### Table 62. SEQUENCER ASSIGNMENT LDO1 REGISTER

| F   | Register Name | SEQUENCER_ASSIGNMENT_LDO1           | Address     | 31              |
|-----|---------------|-------------------------------------|-------------|-----------------|
|     | Туре          | CRC                                 | Default     | 00110011b (33h) |
|     | Trigger       |                                     |             |                 |
| Bit | Name          |                                     | Description |                 |
| 7   | empty         |                                     |             |                 |
| 6   | empty         |                                     |             |                 |
| 5   | SLOTPDS_LDO   | LDO1 Power Down Sequence SLOT assig | gnment      |                 |
| 4   |               |                                     |             |                 |
| 3   | empty         |                                     |             |                 |
| 2   | empty         |                                     |             |                 |
| 1   | SLOTPUS_LDO   | LDO1 Power up Sequence SLOT assignm | nent        |                 |
| 0   |               |                                     |             |                 |

## Table 63. SEQUENCER CONFIGURATION REGISTER 1

|     | Register Name  | SEQUENCER_CONFIGURATION_1                                                                    | Address                                                | 32             |  |
|-----|----------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------|--|
|     | Туре           | CRC                                                                                          | Default                                                | 00001101b (Dh) |  |
|     | Trigger        |                                                                                              |                                                        | •              |  |
| Bit | Name           | D                                                                                            | escription                                             |                |  |
| 7   | empty          |                                                                                              |                                                        |                |  |
| 6   | PUS_Init_Delay | Power Up Sequence Init Delay at the begin<br>00: 0 μs 01: 128 μs                             | Power Up Sequence Init Delay at the beginiing of SLOTx |                |  |
| 5   |                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                         |                                                        |                |  |
| 4   | PUS_DELAY      | PUS_Init_Delay assignment:<br>0: only SLOT 0<br>1: All SLOT                                  |                                                        |                |  |
| 3   | PUSTO          | Time period of empty slot, power up sequence fault for assigned slot<br>00: 2 ms<br>01: 4 ms |                                                        |                |  |
| 2   |                | 10: 8 ms<br>11: 16 ms                                                                        |                                                        |                |  |
| 1   | RST_DLY        | Power up Sequence Reset Delay (/RST pin)<br>00: 2 ms 01: 8 ms                                |                                                        |                |  |
| 0   | ]              | 10: 16 ms 11: 32 ms                                                                          |                                                        |                |  |

#### Table 64. SEQUENCER CONFIGURATION REGISTER 2

|     | Register Name  | SEQUENCER_CONFIGURATION_2                                                                                    | Address                 | 33                          |  |
|-----|----------------|--------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------|--|
|     | Туре           | CRC Default 01101011b (6B                                                                                    |                         |                             |  |
|     | Trigger        |                                                                                                              |                         |                             |  |
| Bit | Name           | D                                                                                                            | Description             |                             |  |
| 7   | empty          |                                                                                                              |                         |                             |  |
| 6   | PDS_Init_Delay | Power Down Sequence Init Delay<br>00: 128 μs 01: 512 μs                                                      |                         |                             |  |
| 5   | 7              | 10: 2048 μs 11: 8192 μs                                                                                      |                         |                             |  |
| 4   | empty          |                                                                                                              |                         |                             |  |
| 3   | PDSTO          | Time period of empty slot, no power down s<br>slot once delay is reached)<br>00: 4 ms                        | equence fault for assig | ned slot (continues to next |  |
| 2   |                | 01: 8 ms<br>10: 16 ms<br>11: 32 ms                                                                           |                         |                             |  |
| 1   | PWR_SEQ_EN     | Bit to enable / disable the internal sequence<br>0: disabled (internal regulator controlled by<br>1: enabled |                         |                             |  |
| 0   | PS             | 0: start the power down sequence<br>1: start the power up sequence                                           |                         |                             |  |

#### APPLICATION INFORMATION

#### **Output Filter Design Considerations**

The output filter introduces a double pole in the system at a frequency of

$$f_{LC} = \frac{1}{2 \times \pi \times \sqrt{L \times C}}$$
 (eq. 7)

The internal compensation network design of the NCV92310 is optimized for the typical output filter.

#### Inductor Selection

The inductance of the inductor is determined by given peak-to-peak ripple current  $I_{L_PP}$  of approximately 20% to 50% of the maximum output current  $I_{OUT_MAX}$  for a trade-off between transient response and output ripple. The inductance corresponding to the given current ripple is

$$L = \frac{\left(V_{IN} - V_{OUT}\right) \times V_{OUT}}{V_{IN} \times f_{SW} \times I_{L_{PP}}}$$
(eq. 8)

The selected inductor must have high enough saturation current rating to be higher than the maximum peak current that is

$$I_{L\_MAX} = I_{OUT\_MAX} = \frac{I_{L\_PP}}{2}$$
 (eq. 9)

The inductor also needs to have high enough current rating based on temperature rise concern. Low DCR is good for efficiency improvement and temperature rise reduction. Table 65 shows some recommended inductors for high power applications and Table 65 shows some recommended inductors for low power applications.

| Manufacturer | Part #               | Case Size<br>(mm) | L (μΗ) | Rdc (Ω)<br>Typ / Max | Rac (Ω) | Rated Current (mA)<br>(Inductance Drop) |
|--------------|----------------------|-------------------|--------|----------------------|---------|-----------------------------------------|
| MURATA       | DFE2HCAH2R2MJ0       | 2520              | 2.2    | 84 / 101             | 0.85    | 3100                                    |
| TDK          | TFM252012ALMA2R2MTAA | 2520              | 2.2    | 75 / 84              | 1.14    | 3300                                    |
| MURATA       | DFE2MCAH1R0MJ0       | 2016              | 1.0    | 57 / 68              | 0.48    | 3100                                    |
| TDK          | TFM201610ALMA1R0MTAA | 2016              | 1.0    | 50 / 60              | 0.54    | 3700                                    |
| TDK          | TFM201612BLEA1R0MTCA | 2016              | 1.0    | 34 / 42              | -       | 4300                                    |
| TDK          | TFM201612BLEA2R2MTCA | 2016              | 2.2    | 80 / 105             | -       | 2800                                    |

#### Table 65. LIST OF RECOMMENDED INDUCTORS

#### **Output Capacitor Selection**

The output capacitor selection is determined by output voltage ripple and load transient response requirement. For a given peak-to-peak ripple current IL\_PP in the inductor of the output filter, the output voltage ripple across the output capacitor is the sum of three ripple components as below

$$V_{OUT\_PP} \approx V_{OUT\_PP(C)} + V_{OUT\_PP(ESR)} + V_{OUT\_PP(ESL)}$$
(eq. 10)

Where  $V_{OUT\_PP(C)}$  is a ripple component by an equivalent total capacitance of the output capacitors,  $V_{OUT\_PP(ESR)}$  is a ripple component by an equivalent ESR of the output capacitors, and  $V_{OUT\_PP(ESL)}$  is a ripple component by an equivalent ESL of the output capacitors. In PWM operation mode, the three ripple components can be obtained by

$$V_{OUT\_PP(C)} = \frac{I_{L\_PP}}{8 \times C \times f_{SW}}$$
 (eq. 11)

$$V_{OUT_{PP(ESR)}} = I_{L_{PP}} \times ESR$$
 (eq. 12)

$$V_{OUT\_PP(ESL)} = \frac{ESL}{ESL + L} \times V_{IN}$$
 (eq. 13)

And the peak-to-peak ripple current is

$$I_{L_{-}PP} = \frac{\left(V_{IN} - V_{OUT}\right) \times V_{OUT}}{V_{IN} \times f_{SW} \times L}$$
(eq. 14)

In applications with all ceramic output capacitors, the main ripple component of the output ripple is  $V_{OUT\_PP(C)}$ . So that the minimum output capacitance  $C_{OUT\_MIN}$  can be calculated regarding to a given output ripple requirement  $V_{OUT\_PP}$  in PWM operation mode.

$$C_{OUT\_MIN} = \frac{I_{L\_PP}}{8 \times V_{OUT\_PP} \times f_{SW}}$$
(eq. 15)

#### **Input Capacitor Selection**

One of the input capacitor selection guides is the input voltage ripple requirement. To minimize the input voltage ripple and get better decoupling in the input power supply rail, ceramic capacitor is recommended due to low ESR and ESL. The minimum input capacitance  $C_{IN\_MIN}$  regarding to the input ripple voltage  $V_{IN\_PP}$  is

$$C_{IN\_MIN} = \frac{I_{OUT\_MAX} \times (D - D^2)}{V_{IN\_PP} \times f_{SW}}$$
(eq. 16)

Where

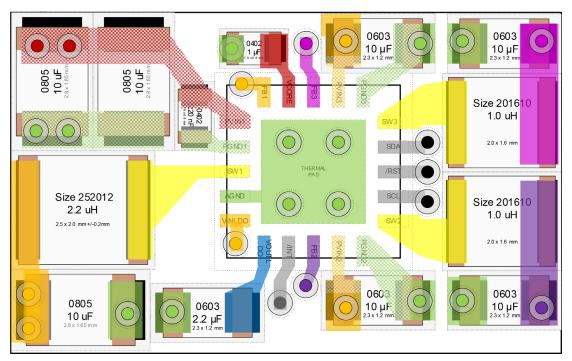
$$D = \frac{V_{OUT}}{V_{IN}}$$
 (eq. 17)

In addition, the input capacitor needs to be able to absorb the input current, which has an RMS value of

$$I_{\text{IN}_{\text{RMS}}} = I_{\text{OUT}_{\text{MAX}}} \times \sqrt{D - D^2}$$
 (eq. 18)

The input capacitor also needs to be sufficient to protect the device from over voltage spike, and normally at least a  $4.7~\mu F$  capacitor is required. The input capacitor should be located as close as possible to the IC on PCB.

| Table 66. LIST OF RECOMMENDED INPUT AND OUTPUT CAPACITORS |
|-----------------------------------------------------------|
|-----------------------------------------------------------|


| Manufacturer | Part #               | Case Size (mm) | Technology | C (μF) | Rated Voltage (V) |
|--------------|----------------------|----------------|------------|--------|-------------------|
| TDK          | CGA5L1X7R1E106K160AC | 1206           | X7R        | 10     | 25                |
| Murata       | GCM31CC71E106KA03L   | 1206           | X7S        | 10     | 25                |
| TDK          | CGA4J1X7S1E106K125AC | 0805           | X7S        | 10     | 25                |
| TDK          | CGA4J1X7R0J106K125AC | 0805           | X7R        | 10     | 6.3               |
| Murata       | GCM21BR71A106KE22L   | 0805           | X7R        | 10     | 10                |
| TDK          | CGA3E1X7T0J106M080AC | 0603           | X7T        | 10     | 6.3               |
| TDK          | CGA3E1X7R0J225K080AC | 0603           | X7R        | 2.2    | 6.3               |
| TDK          | CGA2B3X7R1E224K050BB | 0402           | X7R        | 0.22   | 50                |
| TDK          | CGA2B3X7R1E104K050BB | 0402           | X7R        | 0.1    | 25                |
| TDK          | CGA2B3X7R1E474K050BB | 0402           | X7S        | 0.47   | 10                |
| MURATA       | GCM155C71A105K       | 0402           | X7S        | 1      | 10                |

## PCB LAYOUT CONSIDERATIONS

#### **Electrical Layout Considerations**

Good electrical layout is a key to make sure proper operation, high efficiency, and noise reduction. Electrical layout guidelines are:

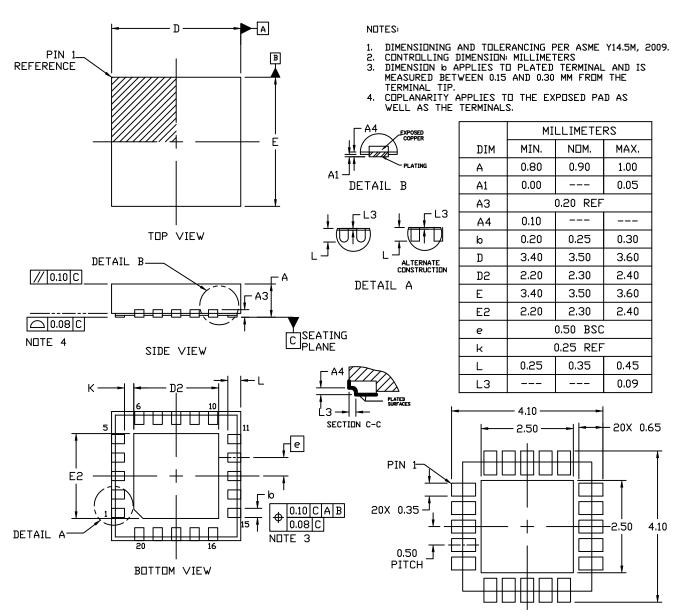
- Use wide and short traces for power paths (such as P<sub>VIN</sub>, V<sub>OUT</sub>, SW, and PGND) to reduce parasitic inductance and high-frequency loop area. It is also good for efficiency improvement.
- The device should be well decoupled by input capacitor and input loop area should be as small as possible to reduce parasitic inductance, input voltage spike, and noise emission.
- SW node should be a large copper pour, but compact because it is also a noise source.
- It would be good to have separated local ground planes for PGND and AGND. Directly connect AGND pin to the exposed pad and then connect to AGND ground plane through vias. Try best to avoid overlap of input ground loop and output ground loop to prevent noise impact on output regulation.
- Arrange a "quiet" path for output voltage sense, and make it surrounded by a ground plane.



To be updated

Figure 25. Recommended PCB Layout

#### ORDERING INFORMATION


| Device           | Package | Shipping <sup>†</sup> |  |
|------------------|---------|-----------------------|--|
| NCV92310ABMTWTXG | QFNW20  | 3000 / Tape & Reel    |  |
| TBD              | TBD     | TBD / Tape & Reel     |  |
| ТВО              | TBD     | TBD / Tape & Reel     |  |

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

 $\boldsymbol{onsemi}$  is licensed by the Philips Corporation to carry the I^2C bus protocol.

#### PACKAGE DIMENSIONS

QFNW20 3.5x3.5, 0.5P CASE 484AV ISSUE A



RECOMMENDED MOUNTING FOOTPRINT\* For additional information on our Pb-Free strategy and soldering details, please download the DN Seniconductor Soldering and Mounting Techniques Reference Manual, SOLDERRYD.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters, including "Typicals" must be validated for each customer applications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any licese under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** pr

#### ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS: Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales