ON Semiconductor

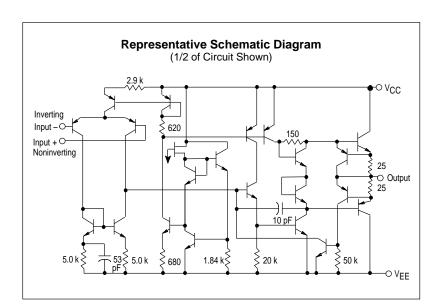
Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Dual Wide Bandwidth Operational Amplifiers

The MC4558AC, C combine all the outstanding features of the MC1458 and, in addition offer three times the unity gain bandwidth of the industry standard.


- 2.5 MHz Unity Gain Bandwidth Guaranteed (MC4558AC)
- 2.0 MHz Unity Gain Bandwidth Guaranteed (MC4558C)
- Internally Compensated
- Short Circuit Protection
- Gain and Phase Match between Amplifiers
- Low Power Consumption

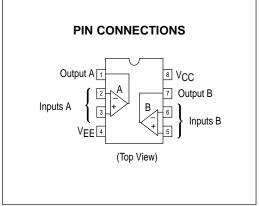
MAXIMUM RATINGS ($T_A = +25^{\circ}C$, unless otherwise noted.)

Rating	Symbol	MC4558AC	MC4558C	Unit
Power Supply Voltage	V _{CC}	+22 +18 -22 -18		Vdc
Input Differential Voltage	V _{ID}	±30		V
Input Common Mode Voltage (Note 1)	VICM	±15		٧
Output Short Circuit Duration (Note 2)	tsc	Continuous		
Ambient Temperature Range	TA	0 to +70		°C
Storage Temperature Range	T _{stg}	-55 to +125		°C
Junction Temperature	TJ	150		ç

NOTES: 1. For supply voltages less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage.

2. Short circuit may be to ground or either supply.

MC4558AC MC4558C


DUAL WIDE BANDWIDTH OPERATIONAL AMPLIFIERS

SEMICONDUCTOR TECHNICAL DATA

D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO-8)

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC4558CD	$T_{\Delta} = 0^{\circ} \text{ to } +70^{\circ}\text{C}$	SO-8
MC4558ACP1,CP1	1A = 0 10 +70 C	Plastic DIP

FREQUENCY CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = -15 V, T_A = 25°C)

2 1		MC4558AC			MC4558C			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Unity Gain Bandwidth	BW	2.5	2.8	-	2.0	2.8	_	MHz
ELECTRICAL CHARACTERISTICS (V _{CC} = 15 V, V _{EE} = -15	V, T _A = 25°C	C, unless	otherwis	se noted.)			
Input Offset Voltage (R _S ≤ 10 kΩ)	VIO	-	1.0	5.0	-	2.0	6.0	mV
Input Offset Current	ΙO	-	20	200	-	20	200	nA
Input Bias Current (Note 1)	l _{IB}	-	80	500	-	80	500	nA
Input Resistance	rį	0.3	2.0	-	0.3	2.0	-	ΜΩ
Input Capacitance	C _i	-	1.4	-	_	1.4	_	pF
Common Mode Input Voltage Range	VICR	±12	±13	-	±12	±13	-	V
Large Signal Voltage Gain ($V_O = \pm 10 \text{ V}, R_L = 2.0 \text{ k}\Omega$)	AVOL	50	200	-	20	200	-	V/mV
Output Resistance	r _o	-	75	-	-	75	_	Ω
Common Mode Rejection (R _S \leq 10 k Ω)	CMR	70	90	-	70	90	_	dB
Supply Voltage Rejection Ratio (R _S \leq 10 k Ω)	PSRR	-	30	150	-	30	150	μV/V
Output Voltage Swing	٧o							V
$ \begin{array}{l} (R_L \geq 10 \; k\Omega) \\ (R_L \geq 2.0 \; k\Omega) \end{array} $		±12 ±10	±14 ±13	_	±12 ±10	±14 ±13	- -	
Output Short Circuit Current	I _{SC}	10	20	40	10	20	40	mA
Supply Currents (Both Amplifiers)	ID	_	2.3	5.0	_	2.3	5.6	mA
Power Consumption (Both Amplifiers)	PC	_	70	150	_	70	170	mW
Transient Response (Unity Gain)			'0	100		- 70	170	11100
$(V_{\parallel} = 20 \text{ mV}, R_{\perp} \ge 2.0 \text{ k}\Omega, C_{\perp} \le 100 \text{ pF})$ Rise Time	tTLH	_	0.3	_	_	0.3	_	μs
$(V_I = 20 \text{ mV}, R_L \ge 2.0 \text{ k}\Omega, C_L \le 100 \text{ pF}) \text{ Overshoot}$	os	-	15	_	-	15	-	%
$(V_I = 10 \text{ V}, R_L \ge 2.0 \text{ k}\Omega, C_L \le 100 \text{ pF})$ Slew Rate	SR	1.5	1.6	_	1.0	1.6	_	V/μs
ELECTRICAL CHARACTERISTICS (V _{CC} = +15 V, V _{EE} = -15		Ĭ						., 1
Input Offset Voltage (R _S ≤ 10 kΩ)	VIO	_	1.0	6.0	_	-	7.5	mV
Input Offset Current (TA = Thigh)	IO	_	7.0	200	_	_	_	nA
$(T_A - T_{low})$		_	85	500	_	_	_	
$(T_A = 0^{\circ} \text{ to } +70^{\circ}\text{C})$		-	_	-	-	-	300	
Input Bias Current	lв							nA
(TA = Thigh)		_	30 300	500 1500	_	_	_	
$(I_A = I_{IOW})$ $(T_A = 0^{\circ} \text{ to } +70^{\circ}\text{C})$		_	_	-	_	_	800	
Common Mode Input Voltage Range	VICR	±12	±13	-	-	-	_	V
Large Signal Voltage Gain ($V_O = \pm 10 \text{ V}$, $R_L = 2.0 \text{ k}\Omega$)	AVOL	25	_	-	15	-	_	V/mV
Common Mode Rejection (R _S ≤ 10 kΩ)	CMR	70	90	-	-	-	_	dB
Supply Voltage Rejection Ratio (R _S \leq 10 k Ω)	PSRR	_	30	150	_	_	_	μV/V
Output Voltage Swing	٧o							V
$(R_L \ge 10 \text{ k}\Omega)$		±12	±14	-	±12	±14	_	
$(R_L \ge 2.0 \text{ k}\Omega)$		±10	±13	-	±10	±13	_	
Supply Currents (Both Amplifiers) (TA = Thigh)	ΙD	_	_	4.5	_	_	5.0	mA
$(T_A - T_{IOW})$		-	_	6.0	-	-	6.7	
Power Consumption (Both Amplifiers)	PC							mW
$(T_A = T_{high})$		_	_	135	-	_	150	
$(T_A = T_{IOW})$		_	_	180	-	-	200	

NOTES: 1. I_{IB} is out of the amplifier due to PNP input transistors. 2. T_{high} = +70°C, T_{low} = 0°C.

Figure 1. Burst Noise versus Source Resistance

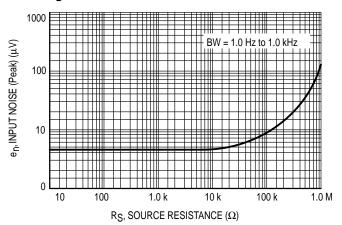


Figure 2. RMS Noise versus Source Resistance

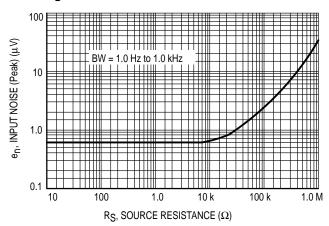
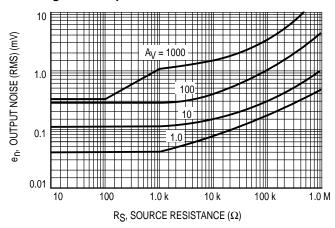



Figure 3. Output Noise versus Source Resistance

Figure 4. Spectral Noise Density

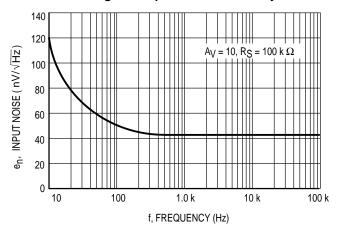
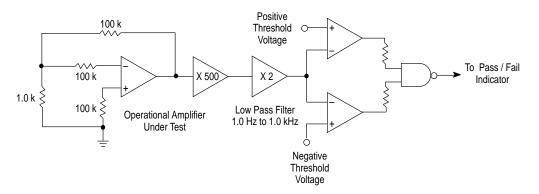



Figure 5. Burst Noise Test Circuit

Unlike conventional peak reading or RMS meters, this system was especially designed to provide the quick response time essential to burst (popcorn) noise testing.

The test time employed is 10 sec and the 20 μ V peak limit refers to the operational amplifier input thus eliminating errors in the closed loop gain factor of the operational amplifier.

Figure 6. Open Loop Frequency Response

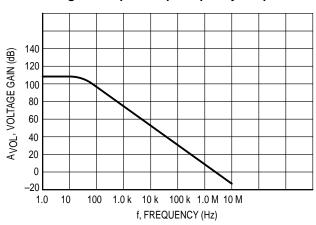


Figure 7. Phase Margin versus Frequency

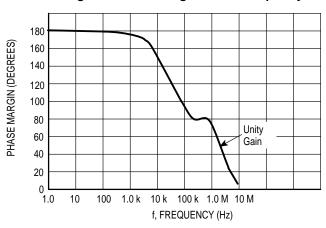


Figure 8. Positive Output Voltage Swing versus Load Resistance

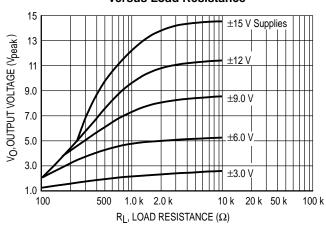


Figure 9. Negative Output Voltage Swing versus Load Resistance

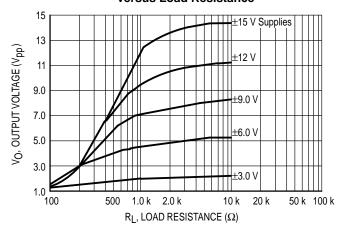
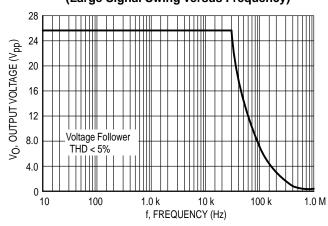
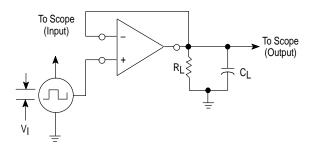




Figure 10. Power Bandwidth (Large Signal Swing versus Frequency)

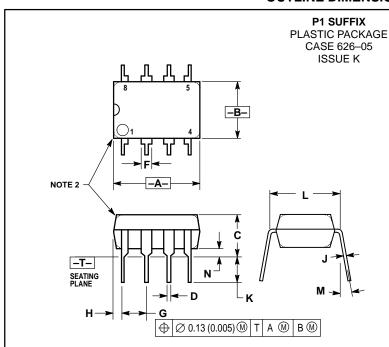
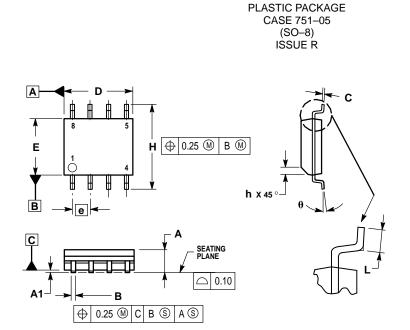


Figure 11. Transient Response Test Circuit

OUTLINE DIMENSIONS

D SUFFIX


NOTES:

- DIMENSION L TO CENTER OF LEAD WHEN
- FORMED PARALLEL.

 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).

 3. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.

	MILLIMETERS		INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.40	10.16	0.370	0.400	
В	6.10	6.60	0.240	0.260	
C	3.94	4.45	0.155	0.175	
D	0.38	0.51	0.015	0.020	
F	1.02	1.78	0.040	0.070	
G	2.54 BSC		0.100 BSC		
Н	0.76	1.27	0.030	0.050	
J	0.20	0.30	0.008	0.012	
K	2.92	3.43	0.115	0.135	
L	7.62 BSC		0.300 BSC		
M		10°		10°	
N	0.76	1.01	0.030	0.040	

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME
- Y14.5M, 1994.
 2. DIMENSIONS ARE IN MILLIMETERS.
- DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 5. DIMENSION B DOES NOT INCLUDE MOLD
- PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS
 OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS			
DIM	MIN	MAX		
Α	1.35	1.75		
A1	0.10	0.25		
В	0.35	0.49		
С	0.18	0.25		
D	4.80	5.00		
Ε	3.80	4.00		
е	1.27	1.27 BSC		
Н	5.80	6.20		
h	0.25	0.50		
L	0.40	1.25		
A	n٥	7 º		

MC4558AC MC4558C NOTES

MC4558AC MC4558C NOTES

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and manufacture of the part. Motor

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

