onsemi

Surge and Over-Voltage Protection Switch for VBUS

FPF2188UCX

Description

The FPF2188 features a surge and over voltage protection switch for power path in USB type C/PD applications.

The FPF2188 has Single Input Single Output (SISO) power path. Power path (V_{BUS} to V_{OUT}) is an active–low, 28 V / 5.5 A rated, power MOSFET switch with an internal clamp supporting surge protection, selectable OVP at 13.7 V or 21.9 V by GPIO.

BUS_DET is paired with always ON LDO to power downstream devices when VBUS is greater than 3.1 V, regardless of OVLO and ENB State. This provides system power supply without battery.

The FPF2188 features OTG_DET pin to supply the device when OTG device is inserted. It will support to turn on the power MOSFET even when VBUS voltage is low.

The FPF2188 has active discharge path at VBUS which can meet USB type C w/ PD compliance.

The FPF2188 is available in a 20-bump, 1.77 mm x 2.03 mm Wafer-Level Chip-Scale Package (WL-CSP) with 0.4 mm pitch.

Features

- SISO (Single Input Single Output) Surge and Over–Voltage Protection Switch
- ± 200 V Surge Protection at V_{BUS} under IEC 61000-4-5
- VBUS Voltage Range: 2.7 V ~ 21.0 V
- Max Continuous Current Capability: 5.5 A
- Low ON–Resistance: typical 22 m Ω at 5 V / 25°C
- Selectable OVP Trip Level by GPIO
- Ultra-fast OV Response Time : typ 50 ns
- Always ON LDO Output, BUS_DET
- OTG_DET for OTG Start-up Power Supply
- Active Discharge Path at V_{BUS}
- Open Drain OVP FLAGB
- Over-Temperature Protection (OTP)


Typical Applications

• Mobile Handsets and Tablets

WLCSP20 2.03x1.77x0.585 CASE 567ZF

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 10 of this data sheet.

Application Diagram

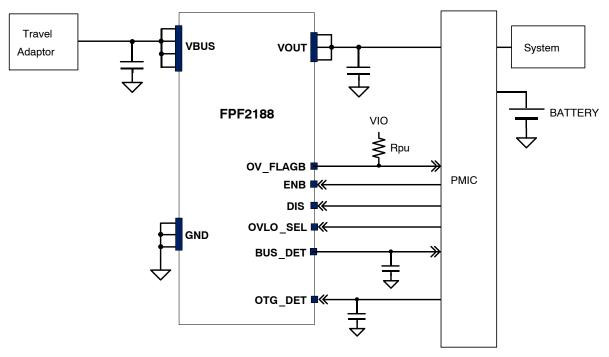
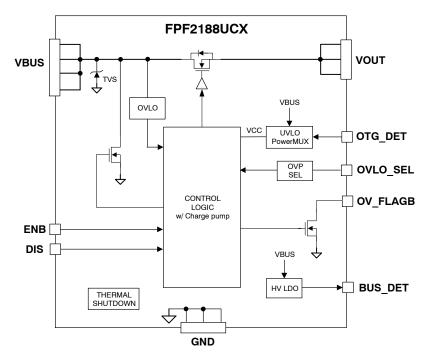
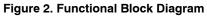




Figure 1. Typical Application Schematic

Block Diagram

Pin Configuration

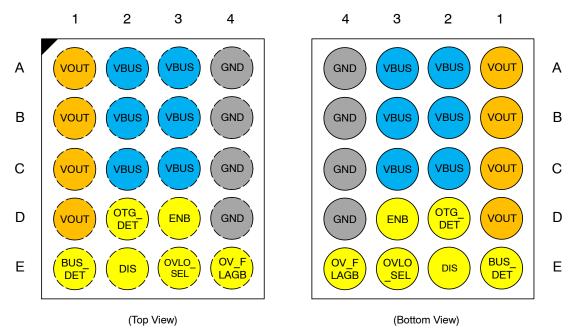


Figure 3. Pin Configuration

Table 1. PIN DEFINITIONS

Name	Bump	Туре	Description
VBUS	A2, A3, B2, B3, C2, C3	Input/Supply	Switch Input/Output and Power Paths Block Power Supply
VOUT	A1, B1, C1, D1	Output/Supply	Switch Output/Input to Load
OTG_DET	D2	Input	VBUS charge pump power supply for OTG start-up.
BUS_DET	E1	Output	Regulated output according to VBUS
ENB	D3	Input	Active LOW for Power Path. Internal pull-down resistor of 1 M Ω is included.
DIS	E2	Input	Active HIGH for discharge path at VBUS node. Internal pull-down resistor of 1 M Ω is included.
OVLO_SEL	E3	Input	Over–Voltage Lockout Selection for VOUT path. Internal pull–down resistor of 1 M Ω is included. When OVLO_SEL = LOW then OVLO is set typ 13.7 V. When OVLO_SEL = HIGH then OVLO is set typ 21.9 V.
OV_FLAGB	E4	Output	Open drain output for OV state. External pull–up resistor with bias voltage are required. If not used, leaves the pin floating.
GND	A4, B4, C4, D4	GND	Ground

Table 2. ABSOLUTE MAXIMUM RATINGS

Symbol	Parameters		Min.	Max.	Unit	
VBUS	VBUS to GND & VBUS to	VBUS to GND & VBUS to VOUT = GND or Float		28	V	
VOUT	VOUT to GND		-0.3	26	V	
BUS_DET	BUS_DET to GND		-0.3	6	V	
VENB_OTG_DET_DIS_OV_FLAGB	ENB, OTG_DET, DIS, O	/LO_SEL or OV_FLAGB to GND	-0.3	6	V	
I _{IN_VBUS_VOUT}	Continuous VBUS to VO	UT Current	-	5.5	А	
	Peak VBUS to VOUT Cu	rrent (5 ms)	-	11	А	
IN_BUS_DET	Continuous BUS_DET Co	urrent	-	10	mA	
t _{PD}	Total Power Dissipation a	at $T_A = 25^{\circ}C$	-	1.66	W	
T _{STG}	Storage Junction Temper	ature	-65	+150	°C	
TJ	Operating Junction Temp	erature	-	+150	°C	
TL	Lead Temperature (Solde	ering, 10 Seconds)	-	+260	°C	
Θ_{JA}	Thermal Resistance, Jun	ction-to-Ambient (1in. ² pad of 2 oz. copper)	-	63.3 (Note 1)	°C/W	
ESD	Electrostatic Discharge	Human Body Model, ANSI/ESDA/JEDEC JS-001	2	-	kV	
	Capability	Charged Device Model, JESD22-C101	1	-		
	IEC61000-4-2 System	Air Discharge at VBUS	15	-		
	Level	Contact Discharge at VBUS	8	-		
Surge	IEC61000-4-5	V _{BUS}	-200	+200	V	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Measured using 2S2P JEDEC std. PCB

Table 3. RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
V _{BUS}	VBUS Operating Voltage	2.7	21.0	V
V _{OTG_DET}	OTG_DET Operating Voltage	3.1	4.85	V
Vout_otg	VOUT Operating Voltage in OTG operation	5.0	5.4	V
C _{IN} (Note 2)	Input Capacitance for VBUS. Minimum rating 50 V (Note 3)	1	-	μF
C _{OUT} (Note 2)	Output Capacitance for VOUT. Minimum rating 25 V (Note 3)	1	-	μF
C _{OTG_DET} (Note 2)	Capacitance for OTG_DET. Minimum rating 10 V (Note 3)	1	-	μF
C _{BUS_DET} (Note 2)	Capacitance for BUS_DET. Minimum rating 10 V (Note 3)	1	-	μF
T _A	Ambient Operating Temperature, T _A	-40	85	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Bypass capacitor should be placed to the device as close as possible in order to reduce the parasitic inductance.
Each capacitor's DC rating is depending on Samsung's internal guidance.

Table 4. ELECTRICAL CHARACTERISTICS

Unless otherwise noted, VBUS = 2.7 to 21.0 V, T_{A} = -40 to 85 °C; Typical values are at VBUS= 5 V, $I_{IN} \le$ 1 A, ENB = DIS = LOW, OVLO_SEL = GND, BUS_DET = Floating, C_{IN} = 1 μ F and T_A = 25 °C.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
asic Operatio	on					
I _{Q_PWR}	Power Input Quiescent Current enable	VBUS = 5 V, ENB = LOW	-	150	220	μA
	Power Input Quiescent Current disable	VBUS = 5 V, ENB = HIGH	-	130	200	
I _{IN_OVLO}	OVLO Supply Current	VBUS = 15 V, VOUT = 0 V, ENB = LOW, OVLO_SEL = GND	-	190	250	μA
		VBUS = 23 V, VOUT = 0 V, ENB = LOW, OVLO_SEL = HIGH	-	190	250]
V _{UVLO}	Under-Voltage Trip Level	VBUS Rising, T _A = -40 to 85 °C	2.35	2.5	2.65	V
		VBUS Falling, T _A = -40 to 85 °C	2.2	2.35	2.5	V
R _{PD}	VBUS Discharge Resistance	VBUS = 5 V, DIS = 1.8 V	-	550	-	Ω
^t DIS_ON	VBUS Discharge ON Delay Time	VOUT = 5 V, Time from DIS = HIGH to Discharge path ON	-	0.5	-	μs
tDIS_OFF	VBUS Discharge OFF Delay Time	VOUT = 5 V, Time from DIS = LOW to Discharge path OFF	-	1	-	μs
t _{DIS}	VBUS Discharge Time	$\begin{array}{l} \text{VOUT} = 5 \text{ V}, \text{ V}_{OTG \ DET} = 0 \text{ V}, C_{BUS} = 1 \ \mu\text{F}, \\ \text{C}_{OUT} = 1 \ \mu\text{F}, \text{ DIS} = \text{ENB} = \text{LOW to HIGH}, \\ \text{VOUT supply disabled at the same time}, \\ \text{Time from 5 V to 0.5 V at VBUS} \end{array}$	-	21	_	ms
		VOUT = 5 V, V_{OTG_DET} = 0 V, C_{BUS} = 1 μ F, C_{OUT} = 10 μ F, DIS = ENB = LOW to HIGH, VOUT supply disabled at the same time, Time from 5 V to 0.5 V at VBUS	-	90	-	
T _{SDN}	Thermal Shutdown (Note 4)		-	145	-	°C
T _{SDN_HYS}	Thermal Shutdown Hysteresis (Note 4)		-	20	-	°C

Integrated Bi-directional TVS

V _{RW_P}	Positive Reverse Working Voltage		-	-	28	V
V _{BR_P}	Positive Breakdown Voltage	I _{IN} = 1 mA	-	35	38	V
V _{CL_P}	Positive Clamping Voltage (Note 5)	+200 V Surge (IEC61000–4–5), T _A = –40 °C to 85 °C	-	39	42	V
I _{IN_PK_P}	Positive Peak Current During Surge test	+200 V Surge (IEC61000-4-5), T _A = -40 °C to 85 °C	-	-	100	A
V _{RW_N}	Negative Reverse Working Voltage		-0.2	-	-	V
V _{F_TVS}	Forward Voltage of TVS	$I_{IN} = -10 \text{ mA}$	-0.2	-0.6	-0.8	V
V _{CL_N}	Negative Clamping Voltage	-200 V Surge (IEC61000-4-5)	-3	-	-	V
I _{IN_PK_N}	Negative Peak Current During Surge test	–200 V Surge (IEC61000–4–5), T _A = –40 °C to 85 °C	-103	-	-	A

VBUS to VOUT Switch

V _{OVLO}	Over-Voltage Trip Level	VBUS Rising, OVLO_SEL = GND T_A = -40 to 85 °C	13.4	13.7	14.0	V
		VBUS Falling, OVLO_SEL = GND T _A = -40 to 85 °C	-	13.4	-	V
		VBUS Rising, OVLO_SEL = HIGH T _A = -40 to 85 °C	21.5	21.9	22.3	V
		VBUS Falling, OVLO_SEL = HIGH T _A = -40 to 85 °C	-	21.5	-	V

Table 4. ELECTRICAL CHARACTERISTICS (continued)

Unless otherwise noted, VBUS = 2.7 to 21.0 V, T_{A} = -40 to 85 °C; Typical values are at VBUS= 5 V, $I_{IN} \le$ 1 A, ENB = DIS = LOW, OVLO_SEL = GND, BUS_DET = Floating, C_{IN} = 1 μ F and T_A = 25 °C.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
VBUS to VOUT	Switch					
R _{ON_VOUT}	On-Resistance (Note 5)	VBUS = 5 V, I_{OUT} = 200 mA, T_A = 25 °C	-	21	25	mΩ
		VBUS = 5 V, I_{OUT} = 200 mA, T _A = -40 °C to 85 °C	-	-	30	
		VBUS = 12 V, I_{OUT} = 200 mA, T_A = 25 °C	-	21	25	
		VBUS = 12 V, I_{OUT} = 200 mA, T _A = -40 °C to 85 °C	-	-	30	
		VBUS = 21 V, I_{OUT} = 200 mA, T_A = 25 °C	-	21	25	
		VBUS = 21 V, I_{OUT} = 200 mA, T _A = -40 °C to 85 °C	-	-	30	
t _{DEB_VOUT}	Debounce Time	Time from V _{UVLO} < VBUS < V _{OVLO} to VOUT = 0.1 \times VBUS	-	28	-	ms
t _{ON_VOUT}	Switch Turn-On Time	R_L = 100 $\Omega,$ C_L = 1 $\mu\text{F},$ VOUT from 0.1 \times VBUS to 0.9 \times VBUS,	-	200	-	μs
toff_ovp	Switch Turn-Off Time (Note 5)	$\begin{array}{l} R_{L} = 100 \ \Omega, \ \text{no} \ C_{OUT} \ , \\ VBUS > V_{OVLO} \ \text{to} \ V_{OUT} \ \text{stop rising}, \\ OVLO_SET = HIGH \ \text{or} \ LOW, \\ Measured under IEC61000-4-5 \ standard \end{array}$	-	50	90	ns
toff_enb	Switch Turn-Off Time by control	R_L = 100 Ω, C_{OUT} = 1 μF, V _{ENB} > V _{IH} to V _{OUT} = 0.9 × VBUS	-	12	18	μs

VOUT to VBUS Switch (OTG Mode)

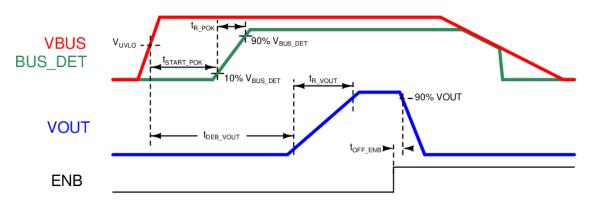
	. ,					
R _{ON_OTG}	On-Resistance	VOUT = 5 V, I _{BUS} = 200 mA, T _A = 25 $^{\circ}$ C	-	21	25	mΩ
V _{UVLO_OTG}	OTG_DET Under-Voltage	OTG_DET Rising, T_{A} = -40 to 85 °C	2.80	2.95	3.10	V
	Lockout Level	OTG_DET Falling, T _A = -40 to 85 °C	2.65	2.80	2.95	V
^t DON_OTG	OTG Start-up Delay Time (Note 5)	Time from OTG_DET > UVLO_OTG to VBUS FET Fully ON	-	0.6	1	ms
IOTG_DET	Current at OTG_DET	OTG_DET < V_{POR} , VOUT = 0 V, ENB = LOW, VBUS open, T _A = -40 °C to 85 °C	-	-	2	μΑ
		$V_{POR} < OTG_DET < 2.8 V, VOUT = 0 V,$ ENB = LOW, VBUS open, T _A = -40 °C to 85 °C	-	-	60	
		OTG_DET = 5 V, VOUT = 0V, ENB = LOW, VBUS open, $T_A = -40 \text{ °C}$ to 85 °C	-	80	120	
		OTG_DET = 4.85 V, VOUT = 5 V, ENB = LOW, VBUS open, $T_A = -40 \text{ °C}$ to 85 °C	-	-	1	

Always ON LDO, BUS_DET

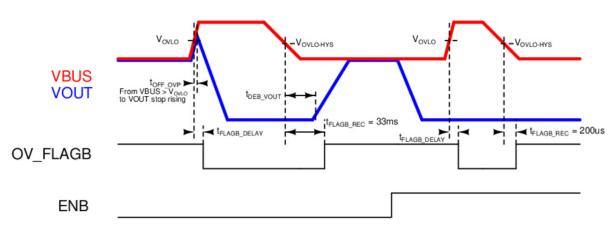
V _{BUS_DET}	BUS_DET Output Voltage	VBUS = 5 V, $I_{BUS_{DET}}$ = 0 mA, T_A = 25 °C	3.8	4.0	4.2	V
		VBUS = 21 V, $I_{BUS_{DET}}$ = 0 mA, T_A = 25 °C	3.8	4.0	4.2	
		VBUS = 5 V, $I_{BUS_{DET}}$ = 10 mA, T_A = 25 °C	3.8	4.0	4.2	
		VBUS = 21 V, $I_{BUS_{DET}}$ = 10 mA, T_A = 25 °C	3.8	4.0	4.2	
^t START_BUS_DET	BUS_DET Output Startup de-bounce time	Time from VBUS > V_{UVLO} to BUS_DET = 0.1 × V_{BUS_DET}	-	5.0	-	ms
^t R_BUS_DET	BUS_DET Output Rising time	Time from BUS_DET = 0.1 \times V_{BUS_DET} to BUS_DET = 0.9 \times V_{BUS_DET}, C_{BUS_DET} = 1 μ F, R _L = 10 kΩ	-	0.1	-	ms

Digital Signals

V _{FLAGB_OL}	OV_FLAGB Output LOW Voltage	I _{OV_FLAGB} = 1mA	_	_	0.36	V
^t FLAGB_DELAY	OV_FLAGB Assertion delay Time	Time from VBUS = V _{OVLO} to OV_FLAGB assertion, ENB = HIGH or LOW	-	-	3	μs
^t FLAGB_REC_EN	OV_FLAGB Recovery de-bounce Time when enabled	Time from VBUS < V _{OVLO} to OV_FLAGB de-assertion, ENB = LOW	-	33	-	ms


Table 4. ELECTRICAL CHARACTERISTICS (continued)

Unless otherwise noted, VBUS = 2.7 to 21.0 V, T_{A} = -40 to 85 °C; Typical values are at VBUS = 5 V, $I_{IN} \le 1$ A, ENB = DIS = LOW, OVLO_SEL = GND, BUS_DET = Floating, $C_{IN} = 1 \ \mu$ F and $T_{A} = 25 \ ^{\circ}C$.


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Digital Signals						
^t FLAGB_REC_OT	OV_FLAGB Recovery de-bounce Time when the device in thermal shutdown status	Time from VBUS < V _{OVLO} to OV_FLAGB de-assertion, device in thermal shutdown mode	-	3	-	ms
t _{FLAGB_REC_DIS}	OV_FLAGB Recovery de-bounce Time when disabled	Time from VBUS = V _{OVLO} to OV_FLAGB de-assertion, ENB = HIGH	-	200	-	μs
R _{PD_ENB_DIS_} OVSEL	Internal Pull-Down Resistor at ENB, DIS and OVLO_SEL pin		-	1	-	MΩ
V _{IH_ENB_DIS_} OVSEL	Logic Enable HIGH Voltage	VBUS operating range	1.2	-	-	V
VIL_ENB_DIS_ OVSEL	Logic Enable LOW Voltage	VBUS operating range	-	-	0.5	V
IBUS_DET_LEAK	BUS_DET Leakage Current	$V_{BUS_{DET}} = 5 V, VBUS = 0 V$	-	-	1	μA

Self-heating is not included
Guaranteed by characterization and design.

Timing Diagrams

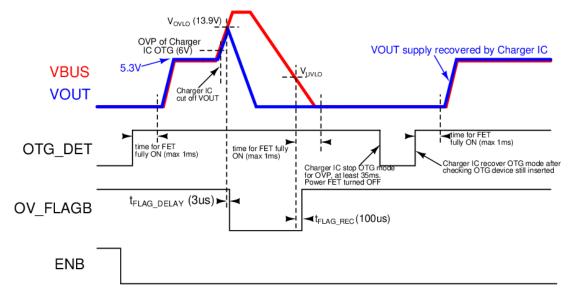
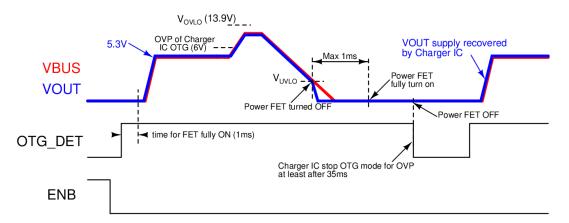



Figure 6. OVP in OTG Mode Operation (with Charger IC Internal OVP 6 V)

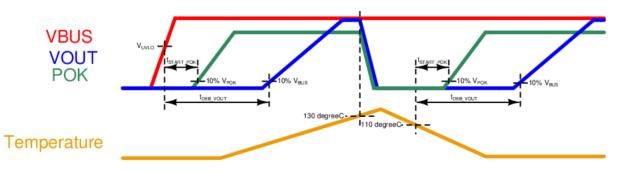
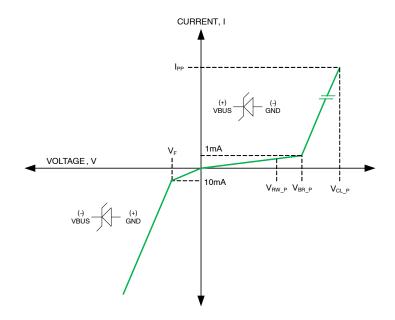
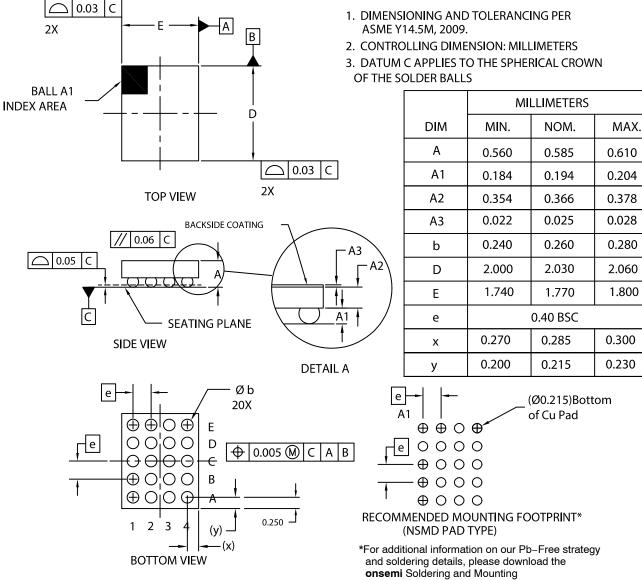



Figure 8. Thermal Shutdown Operation

ORDERING INFORMATION


Part Number	Top Marking	Operating Temperature Range	Package	Shipping [†]
FPF2188UCX	3Y	−40°C to +85°C	WLCSP20 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

WLCSP20 2.03x1.77x0.585 CASE 567ZF ISSUE A

NOTES:

Techniques Reference Manual, SOLDERRM/D.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

FPF2188UCX