MOSFET – P-Channel, Logic Level, POWERTRENCH[®]

FDS4435A

General Description

This P-Channel Logic Level MOSFET is produced using ON Semiconductor's advanced POWERTRENCH process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge superior switching performance.

These devices are well suited for notebook computer applications: load switching and power management, battery charging circuits, and DC/DC conversion.

Features

- -9 A, -30 V. $R_{DS(ON)} = 0.017 \Omega$ @ $V_{GS} = -10 V$ $R_{DS(ON)} = 0.025 \Omega$ @ $V_{GS} = -4.5 V$
- Low Gate Charge (21 nC Typical).
- High Performance Trench Technology for Extremely Low R_{DS(ON)}
- High Power and Current Handling Capability
- This Device is Pb-Free and RoHS Compliant

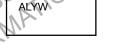
ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Ratings	Unit
V _{DS}	Drain-Source Voltage	-30	V
V _{GSS}	Gate-Source Voltage	±20	V
I _D	Drain Current - Continuous (Note 1a) - Pulsed	-9 -50	A
PD	Power Dissipation (Note 1a) for Single Operation (Note 1b) (Note 1c)	2.5 1.2	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

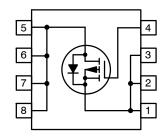
THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Note 1a)	50	°C/W
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case (Note 1)	25	°C/W


ON Semiconductor®

www.onsemi.com

MARKING DIAGRAM


FDS4435A

- FDS4435A = Specific Device Code
 - = Assembly Site
 - = Wafer Lot Number
 - = Assembly Start Week

ELECTRICAL CONNECTION

V\//

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

FDS4435A

ELECTRICAL CHARACTERISTICS (T_A = $25^{\circ}C$ unless otherwise noted)

Symbol	Parameter Test Condition		Min	Тур	Max	Unit			
OFF CHARACTERISTICS									
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} = 0 V, I_D = -250 μ A	-30	_	-	V			
$\frac{\Delta \text{BV}_{\text{DSS}}}{\Delta \text{T}_{\text{J}}}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, Referenced to 25° C	-	-26	-	mV/°C			
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -24$ V, $V_{GS} = 0$ V	-	-	-1	μΑ			
		$T_{J} = 125^{\circ}C$	-	-	-10				
I _{GSSF}	Gate-Body Leakage Current, Forward	V_{GS} = -20 V, V_{DS} = 0 V	-	_	-100	nA			
I _{GSSR}	Gate-Body Leakage Current, Reverse	V_{GS} = 20 V, V_{DS} = 0 V	-	-	100	nA			

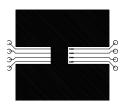
ON CHARACTERISTICS

V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = -250 \ \mu A$	-1	-1.7	-2	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu A$, Referenced to 25°C	-	4.2	1	mV/°C
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = -10 \text{ V}, \text{ I}_{D} = -9 \text{ A}$		0.015	0.017	Ω
		$T_{\rm J} = 125^{\circ}{\rm C}$	N.	0.021	0.030	
		$V_{GS} = -4.5 \text{ V}, I_D = -7 \text{ A}$	-	0.023	0.025	
9 _{FS}	Forward Transconductance	V _{DS} = -10 V, I _D = -9 A		25	-	S
DYNAMIC CHARACTERISTICS						

DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance $V_{DS} = -15 V, V_{GS} = 0 V$ f = 1.0 MHz		2010	-	pF			
C _{oss}	Output Capacitance	-	590	-	pF			
C _{rss}	Reverse Transfer Capacitance	-	260	-	pF			
SWITCHING	SWITCHING CHARACTERISTICS							

SWITCHING CHARACTERISTICS


t _{d(on)}	Turn-On Delay Time	V_{DD} = -15 V, I_D = -1 A V_{GS} = -10 V, R_{GEN} = 6 Ω	-	12	22	ns
t _r	Turn-On Rise Time	$V_{GS} = -10$ V, $R_{GEN} = 0.52$	-	15	27	ns
t _{d(off)}	Turn-Off Delay Time	THE	-	100	140	ns
t _f	Turn-Off Fall Time		-	55	80	ns
Qg	Total Gate Charge	V _{DS} = –15 V, I _D = –9 A V _{GS} = –5 V	-	21	30	nC
Q _{gs}	Gate-Source Charge	$v_{GS} = -5 v$	-	6	-	nC
Q _{gd}	Gate-Drain Charge		-	8	-	nC

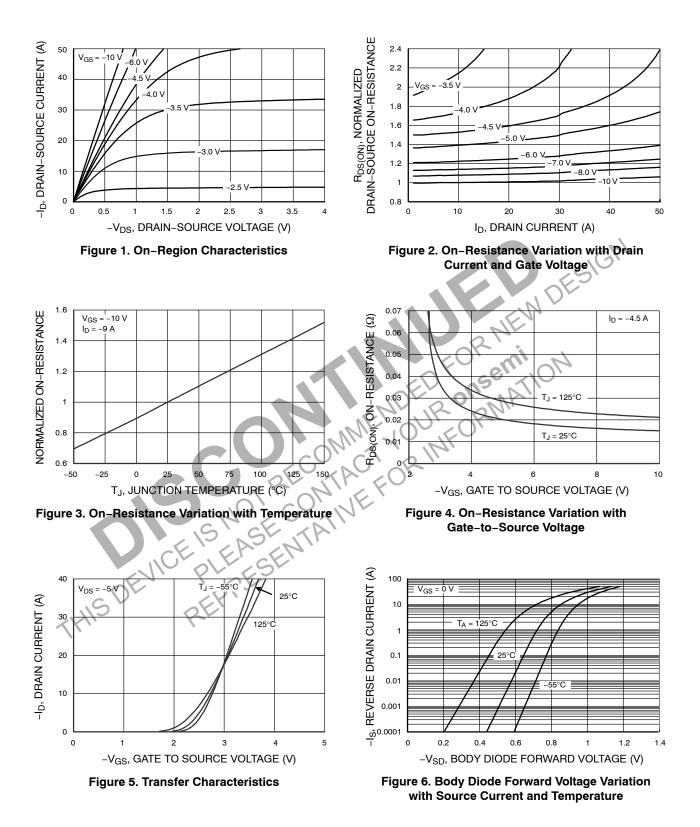
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS

I _S	Maximum Continuous Drain-Source Diode Forward Current			_	-2.1	А
V _{SD}	Drain–Source Diode Forward Voltage $V_{GS} = 0 V$, $I_S = -2.1 A$ (Note 2)		-	-0.75	-1.2	V
t _{rr}	Source-Drain Reverse Recovery Time	$I_F = -10 \text{ A}, dI_F/dt = 100 A/\mu S$	-	36	80	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

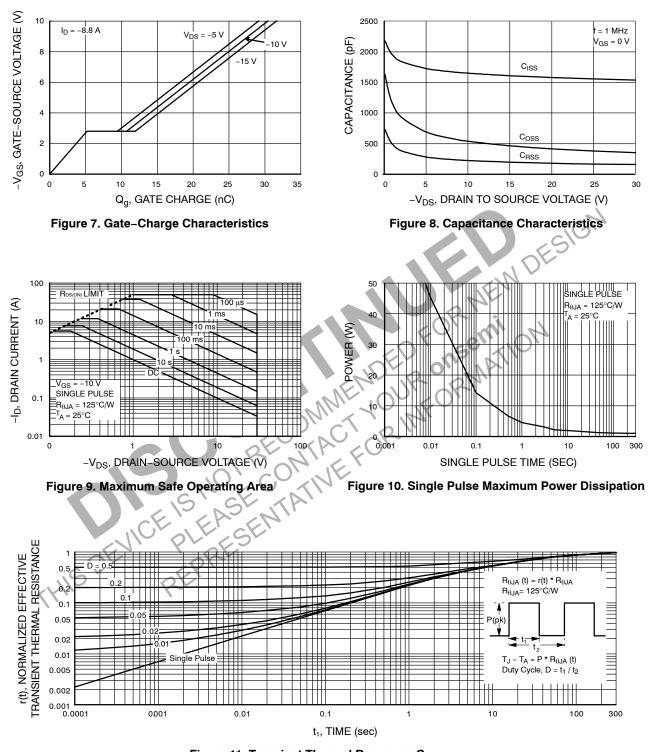
1. R_{0,JA} is the sum of the junction-to-case and case-to-ambient resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

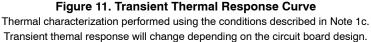
a) 50°C/W when
mounted on a 1 in²
pad of 2 oz. Copper.



b) 105°C/W when mounted on a 0.04 in² pad of 2 oz. copper.

2. Pulse Test Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%


FDS4435A

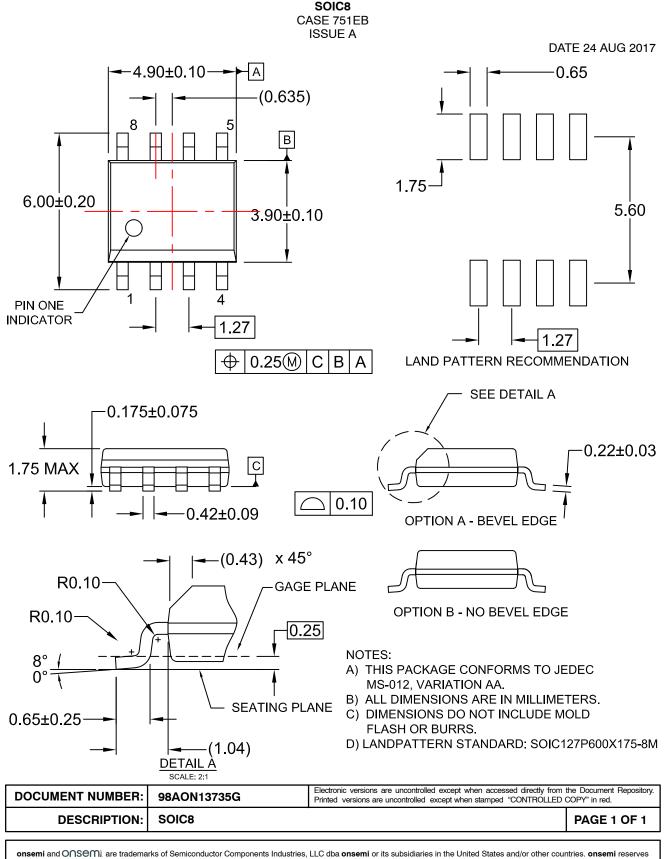

TYPICAL CHARACTERISTICS

FDS4435A

TYPICAL CHARACTERISTICS (continued)

ORDERING INFORMATION

Device Marking	Device	Package Type	Reel Size	Tape Width	Shipping [†]
FDS4435A	FDS4435A	SOIC8 (Pb-Free)	13"	12 mm	2500 / Tape & Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THIS DEVICE PLEASENTAINE FOR INFORMATION REPRESENTATIVE FOR INFORMATION REPRESENTATIVE FOR INFORMATION

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

onsemi and OI ISCIT II are trademarks or Semiconductor Components industries, LLC doa onsemi or its subsidiaries in the United States and/or other countries. Onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>