

Sensitive Gate Silicon Controlled Rectifiers

Reverse Blocking Thyristors

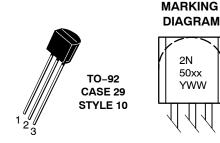
2N5060 Series

Annular PNPN devices designed for high volume consumer applications such as relay and lamp drivers, small motor controls, gate drivers for larger thyristors, and sensing and detection circuits. Supplied in an inexpensive plastic TO-92/TO-226AA package which is readily adaptable for use in automatic insertion equipment.

Features

- Sensitive Gate Trigger Current 200 μA Maximum
- Low Reverse and Forward Blocking Current 50 μA Maximum, T_C = 110°C
- Low Holding Current 5 mA Maximum
- Passivated Surface for Reliability and Uniformity
- These are Pb-Free Devices

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)


Rating	Symbol	Value	Unit
$\begin{tabular}{lll} \hline Peak Repetitive Off-State Voltage (Note 1) \\ (T_J = -40 to 110 ^{\circ}C, Sine Wave, \\ 50 to 60 Hz, R_{GK} = 1 k\Omega) & 2N5060 \\ & 2N5061 \\ & 2N5062 \\ & 2N5064 \\ \hline \end{tabular}$	V _{DRM} , V _{RRM}	30 60 100 200	V
On-State Current RMS (180° Conduction Angles; T _C = 80°C)	I _{T(RMS)}	0.8	Α
*Average On-State Current (180° Conduction Angles) (T _C = 67°C) (T _C = 102°C)	I _{T(AV)}	0.51 0.255	Α
*Peak Non-repetitive Surge Current, T _A = 25°C (1/2 cycle, Sine Wave, 60 Hz)	I _{TSM}	10	Α
Circuit Fusing Considerations (t = 8.3 ms)	l ² t	0.4	A ² s
*Average On-State Current (180° Conduction Angles) $(T_C = 67^{\circ}C)$ $(T_C = 102^{\circ}C)$	I _{T(AV)}	0.51 0.255	Α
*Forward Peak Gate Power (Pulse Width ≤ 1.0 μsec; T _A = 25°C)	P _{GM}	0.1	W
*Forward Average Gate Power (T _A = 25°C, t = 8.3 ms)	P _{G(AV)}	0.01	W
*Forward Peak Gate Current (Pulse Width \leq 1.0 μ sec; T_A = 25°C)	I _{GM}	1.0	Α
*Reverse Peak Gate Voltage (Pulse Width \leq 1.0 μ sec; T_A = 25°C)	V _{RGM}	5.0	V
*Operating Junction Temperature Range	TJ	-40 to +110	°C
*Storage Temperature Range	T _{stg}	-40 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1

SILICON CONTROLLED RECTIFIERS 0.8 A RMS, 30 – 200 V

50xx Specific Device Code

Y = Year WW = Work Week

PIN ASSIGNMENT					
1 Cathode					
2	Gate				
3	Anode				

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

^{*}Indicates JEDEC Registered Data.

THERMAL CHARACTERISTICS

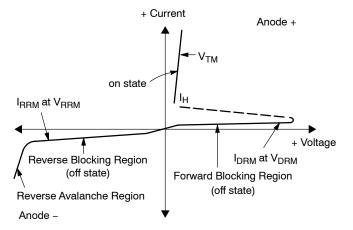
Characteristic	Symbol	Max	Unit
*Thermal Resistance, Junction-to-Case (Note 2)	$R_{ heta JC}$	75	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{ heta JA}$	200	°C/W

^{2.} This measurement is made with the case mounted "flat side down" on a heatsink and held in position by means of a metal clamp over the curved surface.
*Indicates JEDEC Registered Data.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS		•				
*Peak Repetitive Forward or Reverse Blocking Cu $(V_{AK} = Rated V_{DRM})$ or V_{RRM})	rrent (Note 3) T _C = 25°C T _C = 110°C	I _{DRM} , I _{RRM}	- -	_ _	10 50	μ Α μ Α
ON CHARACTERISTICS						
*Peak Forward On-State Voltage (Note 4) (I _{TM} = 1.2 A peak @ T _A = 25°C)		V _{TM}	-	-	1.7	V
Gate Trigger Current (Continuous DC) (Note 5) *(V_{AK} = 7.0 Vdc, R_L = 100 Ω)	$T_{C} = 25^{\circ}C$ $T_{C} = -40^{\circ}C$	l _{GT}	- -	- -	200 350	μΑ
Gate Trigger Voltage (Continuous DC) (Note 5) $*(V_{AK} = 7.0 \text{ Vdc}, R_L = 100 \Omega)$	$T_C = 25^{\circ}C$ $T_C = -40^{\circ}C$	V _{GT}	-	-	0.8 1.2	٧
*Gate Non–Trigger Voltage (V_{AK} = Rated V_{DRM} , R_L = 100 Ω) T_C = 110°C		V_{GD}	0.1	-	-	٧
Holding Current (Note 3) *(V _{AK} = 7.0 Vdc, initiating current = 20 mA)	$T_C = 25^{\circ}C$ $T_C = -40^{\circ}C$	lн	-	-	5.0 10	mA
Turn-On Time Delay Time Rise Time $(I_{GT} = 1.0 \text{ mA}, V_D = \text{Rated } V_{DRM},$ Forward Current = 1.0 A, di/dt = 6.0 A/ μ s		t _d t _r	-	3.0 0.2	- -	μs
, , , , , ,), 2N5061 2, 2N5064	tq	-	10 30	-	μs
	., 2110004			00		<u> </u>
Critical Rate of Rise of Off–State Voltage (Rated V_{DRM} , Exponential, $R_{GK} = 1 \text{ k}\Omega$)	· · · · · · · · · · · · · · · · · · ·				_	V/μs

^{*}Indicates JEDEC Registered Data.


3. $R_{GK} = 1000 \,\Omega$ is included in measurement.

4. Forward current applied for 1 ms maximum duration, duty cycle \leq 1%.

5. R_{GK} current is not included in measurement.

Voltage Current Characteristic of SCR

Symbol	Parameter
V_{DRM}	Peak Repetitive Off State Forward Voltage
I _{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Off State Reverse Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Peak on State Voltage
Ι _Η	Holding Current

CURRENT DERATING

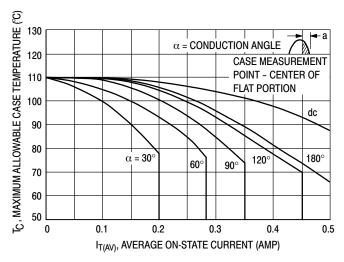


Figure 1. Maximum Case Temperature

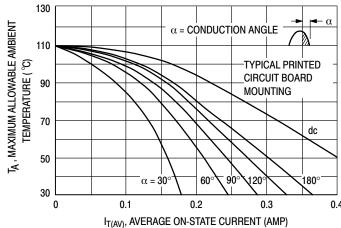


Figure 2. Maximum Ambient Temperature

CURRENT DERATING

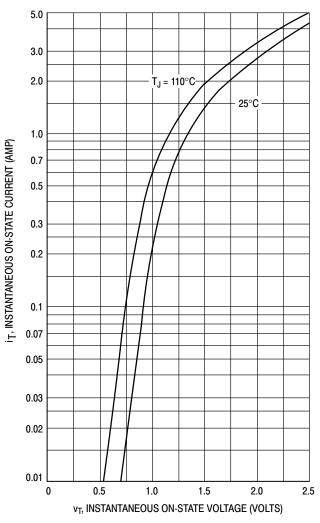


Figure 3. Typical Forward Voltage

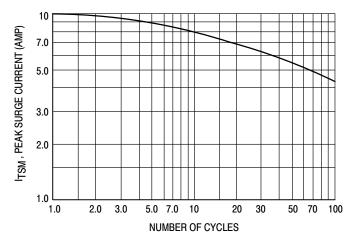


Figure 4. Maximum Non-Repetitive Surge Current

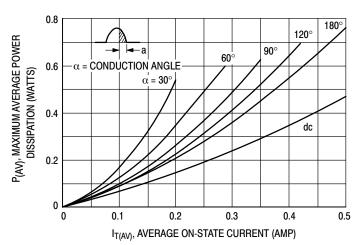
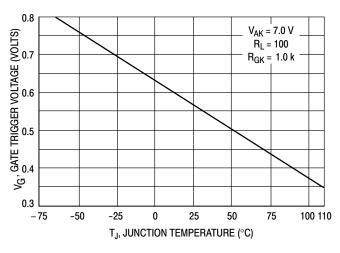



Figure 5. Power Dissipation

Figure 6. Thermal Response

TYPICAL CHARACTERISTICS

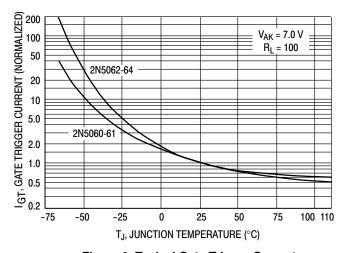
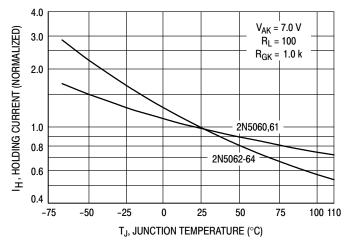
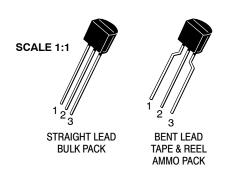


Figure 7. Typical Gate Trigger Voltage

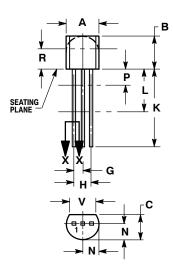
Figure 8. Typical Gate Trigger Current




Figure 9. Typical Holding Current

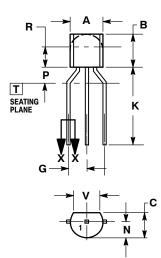
ORDERING INFORMATION

Device	Package	Shipping [†]
2N5060G	TO-92 (Pb-Free)	5000 Units / Box
2N5060RLRA	TO-92	2000 / Tape & Reel
2N5060RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
2N5060RLRMG	TO-92 (Pb-Free)	2000 / Ammo Pack
2N5061G	TO-92 (Pb-Free)	5000 Units / Box
2N5061RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
2N5062G	TO-92 (Pb-Free)	5000 Units / Box
2N5062RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
2N5064RLRMG	TO-92 (Pb-Free)	2000 / Ammo Pack
2N5064RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
2N5064G	TO-92 (Pb-Free)	5000 Units / Box


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TO-92 (TO-226) CASE 29-11 **ISSUE AM**

DATE 09 MAR 2007



STRAIGHT LEAD **BULK PACK**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 CONTOUR OF PACKAGE BEYOND DIMENSION R
 IS UNCONTROLLED.
- LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
Р		0.100		2.54
R	0.115		2.93	
٧	0.135		3.43	

BENT LEAD TAPE & REEL AMMO PACK

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER

- AND BEYOND DIMENSION K MINIMUM.

	MILLIMETERS					
DIM	MIN	MAX				
Α	4.45	5.20				
В	4.32	5.33				
С	3.18	4.19				
D	0.40	0.54				
G	2.40	2.80				
J	0.39	0.50				
K	12.70					
N	2.04	2.66				
P	1.50	4.00				
R	2.93					
٧	3.43					

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42022B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-92 (TO-226)		PAGE 1 OF 2		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves onsem and of 15GTI in are trademarks of Semiconductor Components industries, LLC due onsem or its substitutines in the Office States and/or other countries. Onsem reserves the right to make changes without further notice to any products herein. onsem makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

TO-92 (TO-226) CASE 29-11 ISSUE AM

DATE 09 MAR 2007

STYLE 1: PIN 1. 2. 3.	EMITTER BASE COLLECTOR	STYLE 2: PIN 1. 2. 3.	BASE EMITTER COLLECTOR	STYLE 3: PIN 1. 2. 3.	ANODE ANODE CATHODE	STYLE 4: PIN 1. 2. 3.	CATHODE CATHODE ANODE	STYLE 5: PIN 1. 2. 3.	
PIN 1. 2.	GATE	PIN 1.	SOURCE	PIN 1.	DRAIN	PIN 1.	BASE 1	2.	CATHODE
2.	ANODE CATHODE & ANODE	2.	GATE	2.	ANODE 1 GATE CATHODE 2	2.	EMITTER COLLECTOR BASE	2.	ANODE 1 CATHODE ANODE 2
2.	ANODE GATE	PIN 1. 2.	COLLECTOR	PIN 1.	ANODE CATHODE NOT CONNECTED	PIN 1.	GATE	PIN 1. 2.	NOT CONNECTED CATHODE ANODE
PIN 1. 2.	COLLECTOR EMITTER	PIN 1.	SOURCE GATE	PIN 1. 2.		PIN 1. 2.	EMITTER COLLECTOR/ANODE CATHODE	PIN 1. 2.	MT 1
	Vcc	PIN 1.	MT SUBSTRATE		CATHODE ANODE	PIN 1. 2.	NOT CONNECTED ANODE CATHODE	PIN 1. 2.	DRAIN
PIN 1. 2.	GATE	PIN 1. 2.	BASE COLLECTOR EMITTER	PIN 1. 2.	RETURN INPUT OUTPUT	PIN 1. 2.	INPUT		

DOCUMENT NUMBER:	98ASB42022B Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-92 (TO-226)		PAGE 2 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales