Enabling Energy Efficient Solutions

www.onsemi.com

ON Semiconductor®

An Improved 2-Switch Forward Converter Application

Agenda

- 1. Generalities on forward converters
- 2. Core reset: tertiary winding, RCD clamp, 2-switch forward
- 3. Specs review of the NCP1252's demo board
- 4. Power components calculation
- 5. NCP1252 components calculation
- 6. Closed-loop feedback: simulations and compensation
- 7. Demo board schematics & picture.
- 8. Board performance review
- 9. Conclusions

Agenda

1. Generalities on forward converters

- 2. Core reset: tertiary winding, RCD clamp, 2-switch forward
- 3. Specs review of the NCP1252's demo board
- 4. Power components calculation
- 5. NCP1252 components calculation
- 6. Closed-loop feedback: simulations and compensation
- 7. Demo board schematics & picture.
- 8. Board performance review
- 9. Conclusions

Generalities About the 1-Switch Forward Converter

PROs

- \Box It is a transformer-isolated buck-derived topology
- \Box It requires a single transistor, ground referenced
- \Box Non-pulsating output current reduces rms content in the caps

CONs

- $\frac{1}{2}$ Smaller power capability than a full or half-bridge topology
- $\frac{1}{2}$ Limited in duty-cycle (duty ratio) excursion because of core reset
- $\frac{1}{2}$ The drain voltage swings to twice the input voltage or more

Agenda

- 1. Generalities on forward converters
- 2. Core reset: tertiary winding, RCD clamp, 2-switch forward
- 3. Specs review of the NCP1252's demo board
- 4. Power components calculation
- 5. NCP1252 components calculation
- 6. Closed-loop feedback: simulations and compensation
- 7. Demo board schematics & picture.
- 8. Board performance review
- 9. Conclusions

Transformer Core Reset: Why?

Without transformer core reset:

QN Semiconductor

Transformer Core Reset: Why?

With transformer core reset:

Core Reset Techniques: How ?

 \square Energy is stored in the magnetizing inductor

 \square This energy does not participate to the power transfer

 \triangleright It needs to be released to avoid flux walk away

□ 3 common standard techniques for the core reset:

- \checkmark Tertiary winding
- \checkmark RCD clamp
- \checkmark 2-switch forward

Core Reset Techniques: Tertiary Winding

- \bullet Reset with the 3rd winding
	- \odot Duty ratio can be > 50%

But

- / *Q*1 peak voltage can be > 2 *Vin*
- ³ 3rd winding for the transformer

Core Reset Techniques: RCD Clamp

- \bullet Reset with RCD clamp
	- \odot Duty ratio can be > 50%

But

- \odot Writing equation and simulation are required for checking the correct reset
- \odot Lower cost than 3rd winding technique

Core Reset Techniques: 2-switch Forward

•Reset with a 2-switch forward

- \odot Easy to implement
- \odot \odot $\,$ Q₁ peak voltage is equal to $\,$ V_{in}

But

- \odot Additional power MOSFET (Q_2) + high side driver
- \odot \odot 2 High voltage, low power diodes (*D*₃ & *D*₄)

2-Switch Forward: How Does It Works?

Note : Primary controller status

- "on time" : Step1
- "off time": Step 2 + Step 3

ON

Agenda

- 1. Generalities on forward converters
- 2. Core reset: tertiary winding, RCD clamp, 2-switch forward
- 3. Specs review of the NCP1252's demo board
- 4. Power components calculation
- 5. NCP1252 components calculation
- 6. Closed-loop feedback: simulations and compensation
- 7. Demo board schematics & picture.
- 8. Board performance review
- 9. Conclusions

NCP1252 – Fixed Frequency Controller Featuring Skip Cycle and Latch OCP

Value Proposition

The NCP1252 offers everything needed to build a cost-effective and reliable ac-dc switching power supply.

Unique Features Benefits

startup

 Adjustable switching freq. • Delayed operation upon

• Latched Short circuit protection timer based.

- Design flexibility
- **•** independent of the aux. winding
- Allow temporary over load and latch permanent fault
	- Achieve real no load operation

Others Features

• skip cycle mode

- Adjustable soft start duration
- Internal ramp compensation
- Auto-recovery brown-out detection
- Vcc up to 28 V with auto-recovery UVLO
- Frequency jittering $\pm 5\%$ of the switching frequency
- Duty cycle 50% with A Version, 80% with B version

Market & Applications

- ATX Power supply
- AC adapters

Ordering & Package Information

- NCP1252ADR2G: 50% Duty Cycle SOIC8
- NCP1252BDR2G: 80% Duty Cycle SOIC8

UC3843/5 Application Exemple

■ UC384X does not include brown-out, soft-start and overload detection

- \triangleright the external implementation cost of these functions is \$0.07
- NCP1252 includes them all, reducing cost and improving reliability

Spec Review: NCP1252's Demo Board

- •Input voltage range: 340-410 V dc
- •Output voltage: 12 V dc, \pm 5%
- •Nominal output power: 96 W (8 A)
- \bullet Maximal output power: 120 W (5 seconds per minute)
- \bullet Minimal output power: real no load (no dummy load!)
- \bullet Output ripple : 50 mV peak to peak
- \bullet Maximum transient load step: 50% of the max load
- \bullet Maximum output drop voltage: 250 mV (from lout = 50% to Full load (5 A \rightarrow 10 A) in 5 µs)

Agenda

- 1. Generalities on forward converters
- 2. Core reset: tertiary winding, RCD clamp, 2-switch forward
- 3. Specs review of the NCP1252's demo board
- 4. Power components calculation
- 5. NCP1252 components calculation
- 6. Closed-loop feedback: simulations and compensation
- 7. Demo board schematics & picture.
- 8. Board performance review
- 9. Conclusions

Power Components Calculation: Transformer (1/3)

•Step 1: Turns ratio calculation in CCM:

> 12 $0.9\!\times\!350\!\times\!0.45$ $N = 0.085$ $V_{\mathit{out}} = \eta \cdot V_{\mathit{bulk\ min}} \cdot DC_{\mathit{max}} \cdot N$ *out bulk min max* $N = \frac{V_{_{out}}}{\eta \cdot V_{_{bulk\,min}} \cdot DC}$ *N . .* \Leftrightarrow $N=$ \cdot $\bf{v}_{\textit{b}}$ $\bf{v}_{\textit{b}}$ \cdot $=\frac{}{0.9\times350\times}$

Where:

- \bullet $\left. V_{out} \right.$ is the output voltage
- η *is* the targeted efficiency
- \bullet $\emph{V}_{\textit{bulkmin}}$ is the min. input voltage
- *DC_{max}* is the max duty cycle of the NCP1252
- *N* is the transformer turn ratio

Power Components Calculation: Transformer (2/3)

• Step 2: Verification: Maximum duty cycle at high input line *DCmin* (Based on the previous equation)

$$
V_{out} = \eta \cdot V_{bulk \, max} \cdot DC_{min} \cdot N
$$

\n
$$
\Leftrightarrow DC_{min} = \frac{V_{out}}{\eta \cdot V_{bulk \, max} \cdot N}
$$

\n
$$
DC_{min} = \frac{12}{0.9 \times 410 \times 0.085}
$$

\n
$$
DC_{min} = 38.2\%
$$

Where:

- \bullet $\left. V_{out} \right.$ is the output voltage
- η *is* the targeted efficiency
- \bullet $\emph{V}_{\textit{bulkmax}}$ is the max. input voltage
- *N* is the transformer turn ratio

Power Components Calculation: Transformer (3/3)

- \bullet Step 3: Magnetizing inductor value.
	- For resetting properly the core, a minimal magnetizing current is needed to reverse the voltage across the winding.
		- (Enough energy must be stored so to charge the capacitance)
	- Rule of thumb: Magnetizing current = 10% primary peak current

$$
(\bigotimes l_{Lmag_pk} = 10\% l_{p_pk})
$$

Power Components Calculation: LC Output Filter (1/4)

- •Step 1: Crossover frequency (f_c) selection
	- –arbitrarily selected to 10 kHz.
	- *fc* > 10 kHz requires noiseless layout due to switching noise (difficult). Crossover at higher frequency is not recommended
- Step 2: C_{out} & R_{ESR} estimation
	- $-$ If we consider a ΔV_{out} = 250 mV dictated by f_c , C_{out} & ΔI_{out} , we can write the following equation:

$$
C_{out} \ge \frac{\Delta I_{out}}{2\pi f_c \Delta V_{out}} \ge \frac{5}{2\pi \times 10k \times 0.25} \Rightarrow C_{out} \ge 318 \mu F
$$

$$
R_{ESR} \le \frac{1}{2\pi f_c C_{out}} \le \frac{1}{2\pi \times 10k \times 318 \mu} \Rightarrow R_{ESR} \le 50 m\Omega
$$

Where:

- \bullet f_c crossover frequency
- \bullet $\varDelta I_{out}$ is the max. step load current
- \bullet $\varDelta V_{out}$ is the max. drop voltage $@$ $\varDelta I_{out}$

Power Components Calculation: LC Output Filter (2/4)

- • Step 3: Capacitor selection dictated by ESR rather than capacitor value:
	- Selection of 2x1000 µF, FM capacitor type @ 16 V from Panasonic.
	- Extracted from the capacitor spec:
		- \bullet l_{c,rms} = 5.36 A (2*2.38 A) @ T_A = +105 °C
		- $\bullet~~{\sf R}_{\sf ESR,low}$ = 8.5 m Ω (19 m Ω /2) @ T $_{\sf A}$ = +20 $^{\circ}{\sf C}$
		- $\bullet~~{\sf R}_{\sf ESR, high}$ = 28.5 m Ω (57 m Ω /2) @ T $_{\sf A}$ = -10 $^{\circ}{\sf C}$

$$
- ΔVout calculation @ ΔIout = 5 A
$$

\n• ΔV_{out} = ΔI_{out}R_{ESR,max} = 5 × 28.5m = 142 mV
\nTips: Rule of thumb: R_{ESR, high} □
$$
ESR(\text{step 2})
$$
Is acceptable given a
\nspecification at 250 mV

Power Components Calculation: LC Output Filter (3/4)

 \bullet Step 4: Maximum peak to peak output current

> 50 $\frac{22m}{22m} \leq 2.27 \text{ A}$ *ripple* $L = R$ _{ESR, max} $I_L \leq \frac{V_{\text{ripple}}}{R_{\text{resp. max}}} \leq \frac{50m}{22m} \leq 2.$ ΔI , \leq $\frac{m_{\text{PPE}}}{m} \leq$ $\frac{m_{\text{PPE}}}{m} \leq$ $\mathsf{R}_{\mathsf{ESR},\mathsf{max}}$ = 22 m Ω @ 0 $^\circ$ $^{\circ}$ C

•Step 5: Inductor value calculation

$$
\Delta I_L \ge \frac{V_{out}}{L} \left(1 - DC_{min}\right) T_{sw}
$$
\n
$$
\Leftrightarrow L \ge \frac{V_{out}}{\Delta I_L} \left(1 - DC_{min}\right) T_{sw} = \frac{12}{2.27} \left(1 - 0.38\right) \frac{1}{125k}
$$
\n
$$
L \ge 26 \,\mu\text{H}
$$

$$
\frac{1}{D C_{min} T_{sw}} \cdot \frac{1}{(1 - DC_{min}) T_{sw}}
$$

Δ*I*

Let select a standardized value of 27 µH

Power Components Calculation: LC Output Filter (4/4)

 \bullet Step 6: rms current in the output capacitor

$$
I_{C_{out},rms} = I_{out} \frac{1 - DC_{min}}{\sqrt{12\tau_L}} = 10 \times \frac{1 - 0.38}{\sqrt{12 \times 2.813}} = 1.06 \text{ A}
$$

where $\tau_L = \frac{L_{out}}{\frac{V_{out}}{I_{out}} \frac{1}{F_{sw}}} = \frac{27\mu}{12 \frac{1}{10} \frac{1}{125k}} = 2.813$ Note: τ_L is the normalized inductor time constant

I_{Cout,rms} (1.06 A) < *I_{C,rms}* (5.36 A) \rightarrow No need to adjust or change the output capacitors

Power Components Calculation: Transformer Current

• RMS current on primary and secondary side

Note: $I_{p,rms}$ has been calculated by taking into account the magnetizing current (10% of I_{ppk}).

Power Components Calculation: MOSFET (1/3)

- With a 2-switch forward converter \rightarrow max voltage on power MOSFET is limited to the input voltage
- Usually a derating factor is applied on drain to source breakdown voltage (BV_{DSS}) equal to 15%.
- If we select a 500-V power MOSFET type, the derated max voltage should be 425 V (500 V x 0.85).
- FDP16N50 has been selected:
	- Package TO220
	- *BV_{DSS}* = 500 V
	- *R_{DS(on)}* = 0.434 Ω @ *T_j* = 110 ° $^{\circ}C$
	- Total Gate charge: *Q G* = 45 nC
	- Gate drain charge: Q_{GD} = 14 nC

Power Components Calculation: MOSFET (2/3)

- • Losses calculation:
	- Conduction losses:

$$
P_{\text{cond}} = I_{\text{p,rms,10\%}}^2 R_{DS(\text{on})} \text{ @ } T_j = 110 \text{°C} = 0.632^2 \times 0.434 = 173 \text{ mW}
$$

Power Components Calculation: MOSFET (3/3)

Switch OFF losses: based on the same equation of switch ON

Power Components Calculation: Diode (1/2)

- •Secondary diodes: D_1 and D_2 sustain same Peak Inverse Voltage (PIV):
	- Where $k_{\scriptscriptstyle D}$ is derating factor of the diodes (40%)

Power Components Calculation: Diode (2/2)

- •Diode selection: MBRB30H60CT (30 A, 60 V in TO-220)
- •Losses calculation:

Agenda

- 1. Generalities on forward converters
- 2. Core reset: tertiary winding, RCD clamp, 2-switch forward
- 3. Specs review of the NCP1252's demo board
- 4. Power components calculation
- 5. NCP1252 components calculation
- 6. Closed-loop Feedback: simulations and compensation
- 7. Demo board schematics & Picture.
- 8. Board performance review
- 9. Conclusions

NCP1252 Components Calculation: *R t*

 \bullet Switching frequency selection: a simple resistor allows to select the switching frequency from 50 to 500 kHz:

$$
R_t = \frac{1.95 \times 10^9 V_{R_t}}{F_{sw}}
$$

If we assume *Fsw* = 125 kHz

$$
R_t = \frac{1.95 \times 10^9 \times 2.2}{125k} = 34.3 k\Omega
$$

Where:

 \bullet $\mathsf{V}_{\mathsf{R} t}$ is the internal voltage reference (2.2 V) present on $R_{\scriptscriptstyle t}$ pin

Figure 10. Switching Frequency Selection

NCP1252 Components Calculation: Sense Resistor

- \bullet NCP1252 features a max peak current sensing voltage to 1 V.
- \bullet The sense resistor is computed with 20% margin of the primary peak current (*Ip,rms,20%*): 10% for the magnetizing current + 10% for overall tolerances.

$$
R_{\text{sense}} = \frac{F_{\text{CS}}}{I_{p_pk} + 20\%} = \frac{1}{0.946 \times 1.2} = 884 \text{ m}\Omega
$$

$$
P_{R_{\text{sense}}} = R_{\text{sense}} I_{p,\text{rms}+20\%}^2 = 0.884 \times 0.695^2 = 427 \text{ mW}
$$

If we select 1206 SMD type of resistor, we need to place 2 resistors in parallel to sustain the power: 2 x 1.5 $\Omega.$

Where:

- • $I_{p\not p k}$ is the primary peak current
- •*I_{p,rms,20%}* is the primary rms current with a 20% margin on the peak current

NCP1252 Components Calculation: Ramp Compensation (1/5)

- \bullet Ramp compensation prevents sub-harmonic oscillation at half of the switching frequency, when the converter works in CCM and duty ratio close or above 50%.
- With a forward it is important to take into account the natural compensation due to magnetizing inductor.
- \bullet Based on the requested ramp compensation (usually 50% to 100%), only the difference between the ramp compensation and the natural ramp could be added externally
	- Otherwise the system will be over compensated and the current mode of operation can be lost, the converter will work more like ^a voltage mode than current mode of operation.

NCP1252 Components Calculation: Ramp Compensation (2/5)

•How to build it?

Where:

- *Vramp* = 3.5 V, Internal ramp level.
- *Rramp* = 26.5 kΩ, Internal pull-up resistance

ON Semiconductor®

NCP1252 Components Calculation: Ramp Compensation (3/5)

•Calculation: Targeted ramp compensation level: 100%

- Internal Ramp:
\n
$$
S_{\text{int}} = \frac{V_{ramp}}{DC_{\text{max}}} F_{\text{sw}} = \frac{3.5}{0.50} 125k = 875 \text{ mV/µs}
$$

Natural primary ramp

$$
S_{natural} = \frac{V_{bulk}}{L_{mag}} R_{sense} = \frac{350}{13 \cdot 10^{-3}} 0.75 = 20.19 \text{ mV/}\mu\text{s}
$$

Secondary down slope

$$
S_{sense} = \frac{(V_{out} + V_f)}{L_{out}} \frac{N_s}{N_p} R_{sense} = \frac{(12 + 0.5)}{27 \cdot 10^{-6}} 0.087 \times 0.75 = 30.21 \text{ mV/µs}
$$

Natural ramp compensation

$$
\delta_{natural_comp} = \frac{S_{natural}}{S_{sense}} = \frac{20.19}{30.21} = 66.8\%
$$

Where:

- *Vout* = 12 V
- *Lout* = 27 µH
- *V_f* = 0.5 V (Diode drop)
- $R_{\textit{sense}}$: 0.75 Ω
- *Fsw* : 125 kHz
- *Vbulk,min* = 350 V

$$
\bullet \quad DC_{\text{max}} = 50\%
$$

- *Lmag* = 13 mH
- \bullet $N = 0.087$

NCP1252 Components Calculation: Ramp Compensation (4/5)

• As the natural ramp comp. (67%) is lower than the targeted 100% ramp compensation, we need to calculate a compensation of 33% (100-67).

NCP1252 Components Calculation: Ramp Compensation (5/5)

 \bullet Illustration of correct filtering on CS pin

Figure 15. Comparison of the Voltage on the Current Sense **Resistor and After the RC Filter**

ON Semiconductor®

NCP1252 Components Calculation: Brown-Out

 \bullet Dedicated pin for monitoring the bulk voltage to protects the converter against low input voltage.

ON Semiconductor®

NCP1252 Components Calculation: Brown-Out

 \bullet From the previous schematic, we can extract the brown-out resistors

$$
R_{Bolo} = \frac{V_{BO}}{I_{BO}} \left(\frac{V_{bulkon} - V_{BO}}{V_{bulkoff} - V_{BO}} - 1 \right) = \frac{1}{10\mu} \left(\frac{370 - 1}{350 - 1} - 1 \right) = 5731 \,\Omega
$$

\n
$$
R_{Bolo} = 5.1 \,\text{k}\Omega + 680 \,\Omega
$$

\n
$$
R_{Boup} = \frac{V_{bulkon} - V_{bulkoff}}{I_{BO}}
$$

\n
$$
R_{Boup} = 2 \times 1 \,\text{M}\Omega
$$

Where :

- *Vbulkon* = 370 V, starting point level
- *Vbulkoff* = 350 V, stopping point level
- $\bullet\quad$ V_{BO} = 1 V (fixed internal voltage reference)
- *I_{BO}* = 10 µA (fixed internal current source)

Agenda

- 1. Generalities on forward converters
- 2. Core reset: tertiary winding, RCD clamp, 2-switch forward
- 3. Specs review of the NCP1252's demo board
- 4. Power components calculation
- 5. NCP1252 components calculation
- 6. Closed-loop feedback: simulations and compensation
- 7. Demo board schematics & picture.
- 8. Board performance review
- 9. Conclusions

Small Signal Analysis: Model

 \bullet NCP1252's small signal model is available for running and validating the closed loop regulation, as well as the step load response of the power supply with very fast simulation time.

ON Semiconductor®

Small Signal Analysis: Power Stage

ON Semiconductor®

Small Signal Analysis: Open Loop

After applying the K factor method $@$ F_{c} = 6 kHz and phase margin = 70 $^{\circ}$, with the help of an automated Orcad simulation, we obtain:

Cpopto = 3nF

 $Vin = 390V$

 $CTR = 0.7$

 V out = 12 V $L1 = 27u$

 $Fc = 6k$ $PM = 70$ $GFc = -25$ $PFC = -66$

Step Load Stability

Validation of the closed loop stability with a step load test

Figure 26. Step Load Response from 5 A to 10 A

Agenda

- 1. Generalities on forward converters
- 2. Core reset: tertiary winding, RCD clamp, 2-switch forward
- 3. Specs review of the NCP1252's demo board
- 4. Power components calculation
- 5. NCP1252 components calculation
- 6. Closed-loop feedback: simulations and compensation
- 7. Demo board schematics & picture.
- 8. Board performance review
- 9. Conclusions

0N

NCP1252 Demo Board Schematic (2/2)

0N

NCP1252 Demo Board: Pictures

Top view **Bottom** view **Bottom** view

Link to demoboard web page: http://www.onsemi.com/PowerSolutions/evalBoard.do?id=NCP1252TSFWDGEVB

Or from the page of the NCP1252:

http://www.onsemi.com/PowerSolutions/product.do?id=NCP1252

ON Semiconductor®

Agenda

- 1. Generalities on forward converters
- 2. Core reset: tertiary winding, RCD clamp, 2-switch forward
- 3. Specs review of the NCP1252's demo board
- 4. Power components calculation
- 5. NCP1252 components calculation
- 6. Closed-loop feedback: simulations and compensation
- 7. Demo board schematics & picture.
- 8. Board performance review
- 9. Conclusions

NCP1252 Demo Board: Efficiency

Figure 28. Efficiency Measurement at Room Temperature and Nominal Input Voltage (390 V dc) versus Output Load Variation

0N

Figure 25. No Load Regulation (Real No Load to the Output) Vout = 12.096 V

• Thanks to the skip cycle feature implemented on the NCP1252, it is possible to achieve a real no load regulation without triggering any overvoltage protection. The demonstration board does not have any dummy load and ensure a correct no load regulation. This regulation is achieved by skipping some driving cycles and by forcing the NCP1252 in burst mode of operation.

NCP1252 Demo Board: Soft Start

One dedicated pin allows to adjust the soft start duration and control the peak current during the startup

Figure 23. Soft Start at Full Load (10 A)

NCP1252 Demo Board: Performance Improvements

•Synchronous rectification on the secondary side of the

converter \rightarrow will save few percent of the efficiency from

middle to high load.

 \bullet Stand-by power: The NCP1252 can be shut down by

grounding the BO pin \rightarrow less than 100 µA is sunk on V_{cc} rail

when NCP1252 is shutdown.

Agenda

- 1. Generalities on forward converters
- 2. Core reset: tertiary winding, RCD clamp, 2-switch forward
- 3. Specs review of the NCP1252's demo board
- 4. Power components calculation
- 5. NCP1252 components calculation
- 6. Closed-loop feedback: simulations and compensation
- 7. Demo board schematics & picture.
- 8. Board performance review
- 9. Conclusions

Conclusion

- \bullet NCP1252 features high-end characteristics in a small 8-pin package
- •Added or improved functions make it powerful & easy to use
- •Low part-count
- \bullet Ideal candidate for forward applications, particularly adapters, ATX power supplies and any others applications where a low standby power is requested.

References

- \bullet Datasheet: NCP1252/D *"Current Mode PWM Controller for Forward and Flyback Applications"*
- Application note: AND8373/D *"2 Switch-Forward Current Mode Converter"* Detailed all the calculations presented in this document.
- C. Basso, Director application engineer at ON Semiconductor. *"Switch Mode Power Supplies: SPICE Simulations and Practical Designs"*, McGraw-Hill, 2008.
- • Note : Datasheet and application note are available on www.onsemi.com.

For More Information

- \bullet View the extensive portfolio of power management products from ON Semiconductor at www.onsemi.com
- \bullet View reference designs, design notes, and other material supporting the design of highly efficient power supplies at www.onsemi.com/powersupplies

