

Surface Mount Schottky Power Rectifier

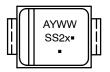
SMB Power Surface Mount Package

SS22T3G, SS24T3G, NRVBSS24T3G, **NRVBSS24NT3G**

These devices employ the Schottky Barrier principle in a metal-to-silicon power rectifier. Features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency switching power supplies; free wheeling diodes and polarity protection diodes.

Features

- Compact Package with J-Bend Leads Ideal for Automated Handling
- Highly Stable Oxide Passivated Junction
- Guardring for Over-Voltage Protection
- Low Forward Voltage Drop
- NRVB Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable*
- These Devices are Pb-Free and are RoHS Compliant


Mechanical Characteristics

- Case: Molded Epoxy
- Epoxy Meets UL 94 V-0 @ 0.125 in
- Weight: 95 mg (approximately)
- Cathode Polarity Band
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Available in 12 mm Tape, 2500 Units per 13 in Reel, Add "T3" Suffix to Part Number
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- ESD Ratings: Machine Model = C Human Body Model = 3B

SCHOTTKY BARRIER RECTIFIER 2 AMPERES 20, 40 VOLTS

MARKING DIAGRAM

SS2x = Specific Device Code

= 2 ro 4Х

Α = Assembly Location**

= Year WW = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

**The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.

ORDERING INFORMATION

Device	Package	Shipping [†]
SS24T3G	SMB (Pb-Free)	2500 / Tape & Reel
NRVBSS24NT3G*	SMB (Pb-Free)	2500 / Tape & Reel

DISCONTINUED (Note 1)

1

SS22T3G	SMB (Pb-Free)	2500 / Tape & Reel	
NRVBSS24T3G*	SMB (Pb-Free)	2500 / Tape & Reel	

- †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
- 1. **DISCONTINUED:** These devices are not recommended for new design. Please contact your onsemi representative for information. The most current information on these devices may be available on www.onsemi.com.

SS22T3G, SS24T3G, NRVBSS24T3G, NRVBSS24NT3G

MAXIMUM RATINGS

Symbol	Rating	Value	Unit
V _{RRM} V _{RWM}	Peak Repetitive Reverse Voltage Working Peak Reverse Voltage		V
V _R	DC Blocking Voltage SS22 SS24	20 40	
lo	Average Rectified Forward Current (At Rated V_R , $T_L = 132$ °C)	2.0	А
I _{FRM}	Peak Repetitive Forward Current (At Rated V_R , Square Wave, 100 kHz, $T_C = 127^{\circ}C$)	3.0	А
I _{FSM}	Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	75	А
T _{stg} , T _C	Storage/Operating Case Temperature	−55 to +150	°C
T_J	Operating Junction Temperature (Note 1)	-55 to +150	°C
dv/dt	Voltage Rate of Change (Rated V _R , T _J = 25°C)	10,000	V/μs

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Characteristic	Value	Unit
	Thermal Resistance,		°C/W
$R_{ hetaJL}$	Junction-to-Lead (Note 2)	24	
	Thermal Resistance,		
$R_{ hetaJA}$	Junction-to-Ambient (Note 3)	80	

ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Value		Unit	
٧F	Maximum Instantaneous Forward Voltage (Note 4)		T _J = 25°C	T _J = 125°C	V
	see Figure 2	$(i_F = 2.0 A)$	0.50	0.46	
I _R	Maximum Instantaneous Reverse Current (Note 4)		T _J = 25°C	T _J = 100°C	mA
	see Figure 4	$(V_R = 40 V)$	0.4	5.7	

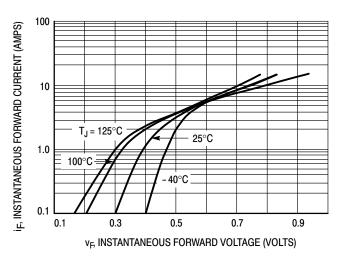
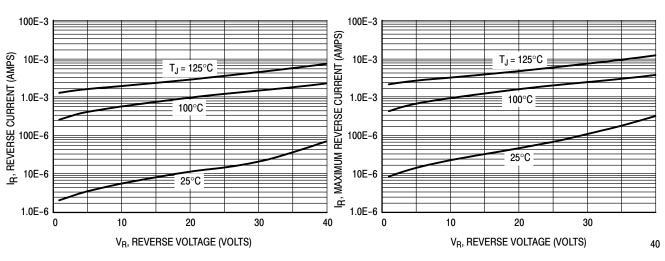
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 2. Mounted with minimum recommended pad size, PC Board FR4.
- 3. 1 inch square pad size (1 x 0.5 inch for each lead) on FR4 board.
- 4. Pulse Test: Pulse Width \leq 250 $\mu s,$ Duty Cycle \leq 2.0%.

^{1.} The heat generated must be less than the thermal conductivity from Junction-to-Ambient: $dP_D/dT_J < 1/R_{\theta JA}$.

SS22T3G, SS24T3G, NRVBSS24T3G, NRVBSS24NT3G

TYPICAL CHARACTERISTICS

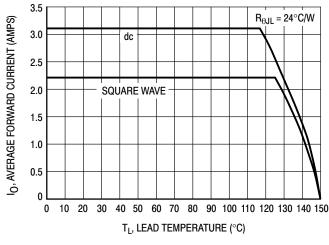

Figure 1. Typical Forward Voltage

Figure 2. Maximum Forward Voltage

Figure 3. Typical Reverse Current

Figure 4. Maximum Reverse Current

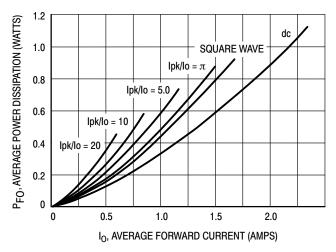
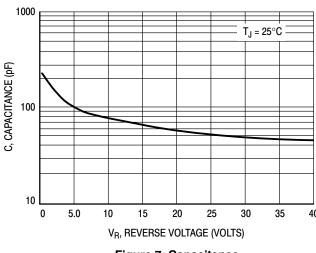



Figure 5. Current Derating

Figure 6. Forward Power Dissipation

2.5

SS22T3G, SS24T3G, NRVBSS24T3G, NRVBSS24NT3G

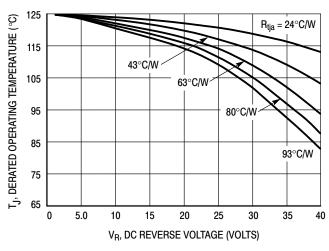


Figure 7. Capacitance

Figure 8. Typical Operating Temperature Derating*

* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_J therefore must include forward and reverse power effects. The allowable operating T_J may be calculated from the equation: $T_J = T_{Jmax} - r(t)(Pf + Pr)$ where

 $r(t) = r_{\text{Jmax}} - r(t)(Pt + Pt)$ where r(t) = thermal impedance under given conditions,

T(t) = thermal impedance under given condition

Pf = forward power dissipation, and

Pr = reverse power dissipation

This graph displays the derated allowable T_J due to reverse bias under DC conditions only and is calculated as $T_J = T_{Jmax} - r(t)Pr$, where r(t) = Rthja. For other power applications further calculations must be performed.

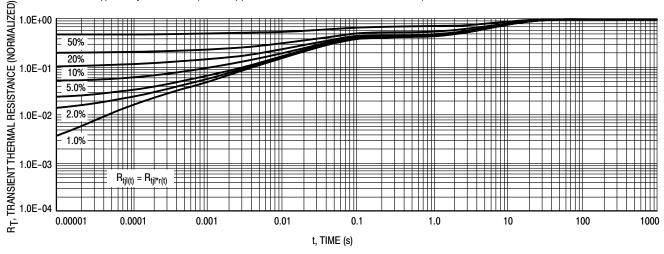


Figure 9. Thermal Response — Junction to Case

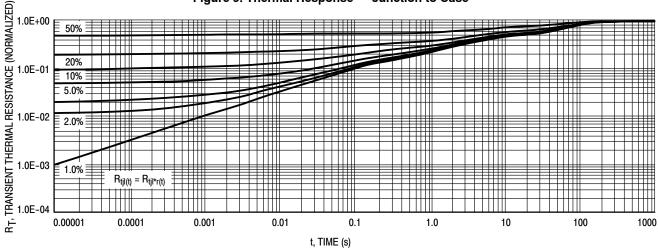
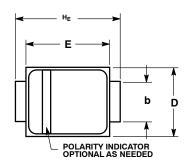
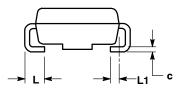
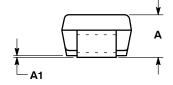


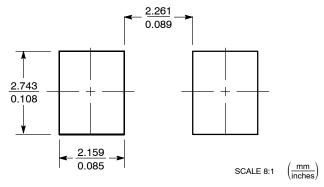
Figure 10. Thermal Response — Junction to Ambient



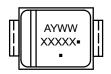

SMB CASE 403A-03 **ISSUE J**


DATE 19 JUL 2012

Polarity Band


SCALE 1:1 Non-Polarity Band

SOLDERING FOOTPRINT*


*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCL.
- CONTROLLING DIMENSION: INCH.
 DIMENSION b SHALL BE MEASURED WITHIN DIMENSION L1.

	MILLIMETERS				INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.95	2.30	2.47	0.077	0.091	0.097
A1	0.05	0.10	0.20	0.002	0.004	0.008
b	1.96	2.03	2.20	0.077	0.080	0.087
С	0.15	0.23	0.31	0.006	0.009	0.012
D	3.30	3.56	3.95	0.130	0.140	0.156
E	4.06	4.32	4.60	0.160	0.170	0.181
HE	5.21	5.44	5.60	0.205	0.214	0.220
L	0.76	1.02	1.60	0.030	0.040	0.063
L1		0.51 REF			0.020 REF	

GENERIC MARKING DIAGRAM*

Polarity Band

Non-Polarity Band

XXXXX = Specific Device Code = Assembly Location

= Year WW = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42669B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SMB		PAGE 1 OF 1		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the v special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales