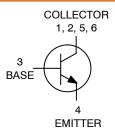


30 V, 3 A, Low V_{CE(sat)} NPN Transistor

NSS30201MR6T1G, SNSS30201MR6T1G

onsemi's e^2 PowerEdge family of low $V_{CE(sat)}$ transistors are miniature surface mount devices featuring ultra low saturation voltage $(V_{CE(sat)})$ and high current gain capability. These are designed for use in low voltage, high speed switching applications where affordable efficient energy control is important.

Typical application are DC-DC converters and power management in portable and battery powered products such as cellular and cordless phones, PDAs, computers, printers, digital cameras and MP3 players. Other applications are low voltage motor controls in mass storage products such as disc drives and tape drives. In the automotive industry they can be used in air bag deployment and in the instrument cluster. The high current gain allows e²PowerEdge devices to be driven directly from PMU's control outputs, and the Linear Gain (Beta) makes them ideal components in analog amplifiers.


Features

- AEC-Q101 Qualified and PPAP Capable
- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements
- These are Pb-Free Devices*

$\begin{array}{c} 30 \text{ VOLTS} \\ 3.0 \text{ AMPS} \\ \text{NPN LOW V}_{\text{CE(sat)}} \text{ TRANSISTOR} \\ \text{EQUIVALENT R}_{\text{DS(on)}} \text{ 100 m} \Omega \end{array}$

TSOP-6 CASE 318G STYLE 6

DEVICE MARKING

VS7 = Specific Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NSS30201MR6T1G	TSOP-6 (Pb-Free)	3,000 / Tape & Reel
SNSS30201MR6T1G	TSOP-6 (Pb-Free)	3,000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

1

^{*}For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

Rating	Symbol	Max	Unit
Collector-Emitter Voltage	V _{CEO}	30	V
Collector-Base Voltage	V _{CBO}	50	V
Emitter-Base Voltage	V _{EBO}	5.0	V
Collector Current – Continuous	I _C	2.0	Α
Collector Current - Peak	I _{CM}	3.0	Α

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation T _A = 25°C Derate above 25°C	P _D (Note 1)	535 4.3	mW mW/°C
Thermal Resistance, Junction-to-Ambient	R _{θJA} (Note 1)	234	°C/W
Total Device Dissipation T _A = 25°C Derate above 25°C	P _D (Note 2)	1.180 9.4	W mW/°C
Thermal Resistance, Junction-to-Ambient	R _{θJA} (Note 2)	106	°C/W
Thermal Resistance, Junction-to-Lead #1	R _{θJL} (Note 1) R _{θJL} (Note 2)	110 50	°C/W
Total Device Dissipation (Single Pulse < 10 s)	P _{Dsingle} (Notes 2 and 3)	1.75	W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. FR-4 with 1 oz and 3.9 mm² of copper area.

2. FR-4 with 1 oz and 645 mm² of copper area.

3. Refer to Figure 8.

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		-			
Collector – Emitter Breakdown Voltage ($I_C = 10 \text{ mA}, I_B = 0$)	V _(BR) CEO	30	_	-	V
Collector- Base Breakdown Voltage (I _C = 0.1 mA, I _E = 0)	V _(BR) CBO	50	-	-	V
Emitter – Base Breakdown Voltage $(I_E = 0.1 \text{ mA}, I_C = 0)$	V _{(BR)EBO}	5.0	_	_	V
Collector Cutoff Current (V _{CB} = 30 V, I _E = 0)	I _{CBO}	_	-	0.1	μΑ
Collector–Emitter Cutoff Current (V _{CES} = 30 V)	I _{CES}	_	_	0.1	μΑ
Emitter Cutoff Current (V _{EB} = 4.0 V)	I _{EBO}	_		0.1	μΑ
ON CHARACTERISTICS					
DC Current Gain (Note 4) ($I_C = 1.0 \text{ mA}, V_{CE} = 5.0 \text{ V}$) ($I_C = 0.5 \text{ A}, V_{CE} = 5.0 \text{ V}$) ($I_C = 1.0 \text{ A}, V_{CE} = 5.0 \text{ V}$)	h _{FE}	300 300 200	- 500 -	- 900 -	
Collector – Emitter Saturation Voltage (Note 4) ($I_C = 1.0 \text{ A}$, $I_B = 100 \text{ mA}$) ($I_C = 0.5 \text{ A}$, $I_B = 50 \text{ mA}$) ($I_C = 0.1 \text{ A}$, $I_B = 1.0 \text{ mA}$)	V _{CE(sat)}	- - -	0.10 0.06 0.05	0.200 0.125 0.075	V
Base – Emitter Saturation Voltage (Note 4) (I _C = 1.0 A, I _B = 0.1 A)	V _{BE(sat)}	_	_	1.1	V
Base – Emitter Turn–on Voltage (Note 4) (I _C = 1.0 A, V _{CE} = 2.0 V)	V _{BE(on)}	-	-	1.1	V
Cutoff Frequency ($I_C = 100 \text{ mA}$, $V_{CE} = 5.0 \text{ V}$, $f = 100 \text{ MHz}$	f _T	200	300	-	MHz
Output Capacitance (f = 1.0 MHz)	C _{obo}	-	-	15	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Pulsed Condition: Pulse Width ≤ 300 µsec, Duty Cycle ≤ 2%.

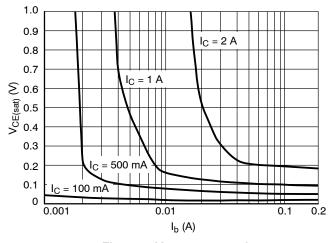


Figure 1. $V_{CE (sat)}$ versus I_b

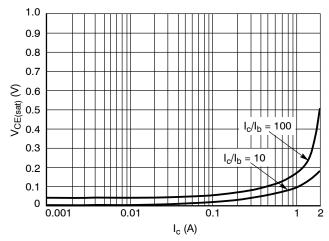


Figure 2. $V_{CE\;(sat)}$ versus I_c

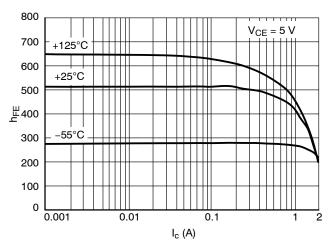


Figure 3. $h_{\rm FE}$ versus $I_{\rm c}$

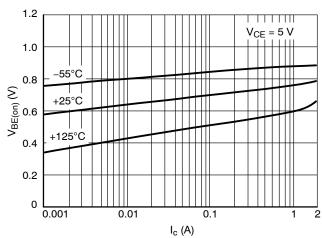


Figure 4. $V_{BE(on)}$ versus I_c

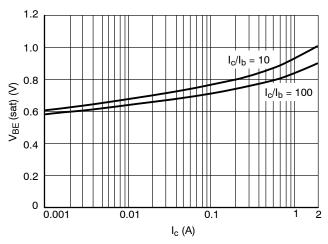


Figure 5. $V_{BE(sat)}$ versus I_c

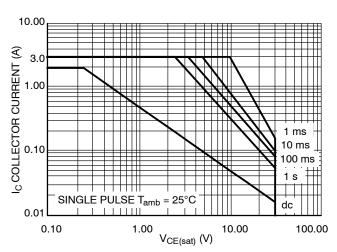


Figure 6. Safe Operating Area

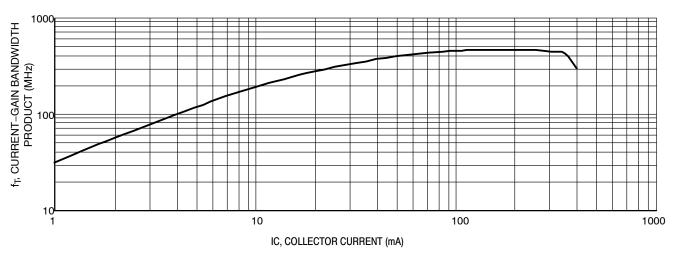


Figure 7. f_T (MHZ) versus I_C (mA) $V_{CE} = 5.0 \text{ V}$

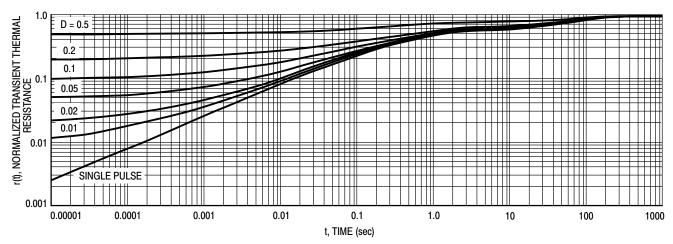
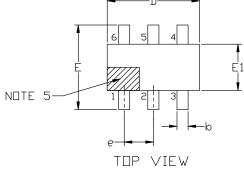
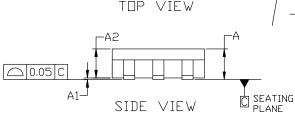
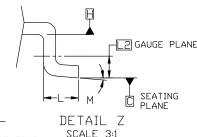
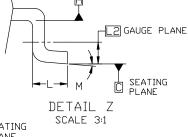


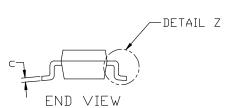
Figure 8. Normalized Thermal Response

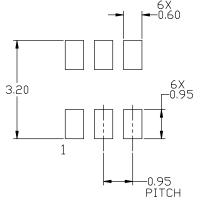





TSOP-6 3.00x1.50x0.90, 0.95P **CASE 318G ISSUE W**


DATE 26 FEB 2024





NOTES

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
- CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM
 LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- 4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D AND E1 ARE DETERMINED AT DATUM H.

 5. PIN 1 INDICATOR MUST BE LOCATED IN THE INDICATED ZONE

MILLIMETERS				
DIM	MIN	NDM	MAX	
А	0.90	1.00	1.10	
A1	0.01	0.06	0.10	
A2	0.80	0.90	1.00	
b	0.25	0.38	0.50	
U	0.10	0.18	0,26	
D	2.90	3.00	3.10	
Ε	2.50	2.75	3.00	
E1	1.30	1.50	1.70	
е	0.85	0.95	1.05	
Ĺ	0.20	0.40	0.60	
L2	0.25 BSC			
М	0°		10°	

RECOMMENDED MOUNTING FOOTPRINT

*For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference manual, SDLDERRM/D.

DOCUMENT NUMBER:	98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSOP-6 3.00x1.50x0.90, 0.	95P	PAGE 1 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

TSOP-6 3.00x1.50x0.90, 0.95P CASE 318G ISSUE W

DATE 26 FEB 2024

GENERIC MARKING DIAGRAM*

XXX M=

0 =

1 | | |

XXX = Specific Device Code XXX = Specific Device Code

A =Assembly Location M = Date Code
Y = Year ■ = Pb-Free Package

W = Work Week
■ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN	STYLE 2: PIN 1. EMITTER 2 2. BASE 1 3. COLLECTOR 1 4. EMITTER 1 5. BASE 2 6. COLLECTOR 2	STYLE 3: PIN 1. ENABLE 2. N/C 3. R BOOST 4. Vz 5. V in 6. V out	STYLE 4: PIN 1. N/C 2. V in 3. NOT USED 4. GROUND 5. ENABLE 6. LOAD	STYLE 5: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 6: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR
STYLE 7: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. N/C 5. COLLECTOR 6. EMITTER	STYLE 8: PIN 1. Vbus 2. D(in) 3. D(in)+ 4. D(out)+ 5. D(out) 6. GND	STYLE 9: PIN 1. LOW VOLTAGE GATE 2. DRAIN 3. SOURCE 4. DRAIN 5. DRAIN 6. HIGH VOLTAGE GATE	STYLE 10: PIN 1. D(OUT)+ 2. GND 3. D(OUT)- 4. D(IN)- 5. VBUS 6. D(IN)+	STYLE 11: PIN 1. SOURCE 1 2. DRAIN 2 3. DRAIN 2 4. SOURCE 2 5. GATE 1 6. DRAIN 1/GATE 2	STYLE 12: PIN 1. I/O 2. GROUND 3. I/O 4. I/O 5. VCC 6. I/O
STYLE 13: PIN 1. GATE 1 2. SOURCE 2 3. GATE 2 4. DRAIN 2 5. SOURCE 1 6. DRAIN 1	STYLE 14: PIN 1. ANODE 2. SOURCE 3. GATE 4. CATHODE/DRAIN 5. CATHODE/DRAIN 6. CATHODE/DRAIN	PIN 1. ANODE PIN 2. SOURCE 3. GATE 4. DRAIN 5. N/C	LE 16: 1. ANODE/CATHODE 2. BASE 3. EMITTER 4. COLLECTOR 5. ANODE 6. CATHODE	STYLE 17: PIN 1. EMITTER 2. BASE 3. ANODE/CATHODE 4. ANODE 5. CATHODE 6. COLLECTOR	

DOCUMENT NUMBER:	98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSOP-6 3.00x1.50x0.90, 0.	TSOP-6 3.00x1.50x0.90, 0.95P	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales