NLSX3012

2-Bit $100 \mathrm{Mb} / \mathrm{s}$ Configurable Dual-Supply Level Translator

The NLSX3012 is a 2 -bit configurable dual-supply bidirectional level translator without a direction control pin. The I/O $\mathrm{V}_{\mathrm{CC}}-$ and I / O V_{L}-ports are designed to track two different power supply rails, V_{CC} and V_{L} respectively. The V_{CC} supply rail is configurable from 1.3 V to 4.5 V while the V_{L} supply rail is configurable from 0.9 V to $\left(\mathrm{V}_{\mathrm{CC}}\right.$ $-0.4) \mathrm{V}$. This allows lower voltage logic signals on the V_{L} side to be translated into higher voltage logic signals on the V_{CC} side, and vice-versa. Both I/O ports are auto-sensing; thus, no direction pin is required.

The Output Enable (EN) input, when Low, disables both I/O ports by putting them in 3 -state. This significantly reduces the supply currents from both V_{CC} and V_{L}. The EN signal is designed to track V_{L}.

Features

- Wide High-Side V_{CC} Operating Range: 1.3 V to 4.5 V

Wide Low-Side V_{L} Operating Range: 0.9 V to $\left(\mathrm{V}_{\mathrm{CC}}-0.4\right) \mathrm{V}$

- High-Speed with $140 \mathrm{Mb} / \mathrm{s}$ Guaranteed Date Rate for $\mathrm{V}_{\mathrm{L}}>1.8 \mathrm{~V}$
- Low Bit-to-Bit Skew
- Overvoltage Tolerant Enable and I/O Pins
- Non-preferential Powerup Sequencing
- Small packaging: UDFN8, SO-8, Micro8
- These are Pb -Free Devices

Typical Applications

- Mobile Phones, PDAs, Other Portable Devices
- PC and Laptops

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping †
NLSX3012MUTAG	UDFN8 $($ Pb-Free $)$	3000/Tape \& Reel
NLSX3012DR2G	SO-8 (Pb-Free)	2500/Tape \& Reel
NLSX3012DMR2G	Micro8 (Pb-Free)	4000/Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NLSX3012

LOGIC DIAGRAM

PIN ASSIGNMENTS

PIN ASSIGNMENT

Pins	Description
V_{CC}	V_{CC} Input Voltage
V_{L}	V_{L} Input Voltage
GND	Ground
EN	Output Enable
$\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{CC}} \mathrm{n}$	I / O Port, Referenced to V_{CC}
$\mathrm{I} / \mathrm{O} \mathrm{V} \mathrm{Ln}$	I / O Port, Referenced to V_{L}

MAXIMUM RATINGS

Symbol	Parameter	Value	Condition	Unit
V_{CC}	$V_{\text {CC }}$ Supply Voltage	-0.5 to +5.5		V
V_{L}	V Supply Voltage	-0.5 to +5.5		V
$\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\text {CC }}$-Referenced DC Input/Output Voltage	-0.5 to ($\left.\mathrm{V}_{\mathrm{CC}}+0.3\right)$		V
$\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{L}}$	V ${ }_{\text {L }}$ Referenced DC Input/Output Voltage	-0.5 to ($\left.\mathrm{V}_{\mathrm{L}}+0.3\right)$		V
V_{EN}	Enable Control Pin DC Input Voltage	-0.5 to +5.5		V
I_{IK}	Input Diode Clamp Current	-50	$\mathrm{V}_{1}<$ GND	mA
IOK	Output Diode Clamp Current	-50	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	mA
I_{CC}	DC Supply Current Through V_{CC}	± 100		mA
I_{L}	DC Supply Current Through V_{L}	± 100		mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current Through Ground Pin	± 100		mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	-	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	$\mathrm{V}_{\text {CC }}$ Supply Voltage	<1.3	4.5	V
V_{L}	V_{L} Supply Voltage	0.9	$\mathrm{V}_{\mathrm{CC}}-0.4$	V
$\mathrm{V}_{\text {EN }}$	Enable Control Pin Voltage	2 GND	4.5	V
V_{10}	Bus Input/Output Voltage		$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	V
T_{A}	Operating Temperature Range	-40	+85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{l} / \Delta \mathrm{V}$	Input Transition Rise or Rate $V_{1}, V_{1 O}$ from 30% to 70% of $V_{C C}, V_{C C}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	0	10	ns

Figure 1. Typical Application Circuit

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions (Note 1)	$\mathbf{V C c}(\mathbf{V})$(Note 2)	$\begin{aligned} & \mathbf{V}_{\mathbf{L}}(\mathbf{V}) \\ & (\text { Note 3) } \end{aligned}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	$\begin{array}{c\|} \hline \text { Typ } \\ \text { (Note 4) } \end{array}$	Max	
$\mathrm{V}_{\mathrm{IHC}}$	I/O VCC Input HIGH Voltage		1.3 to 4.5	0.9 to (VCC -0.4)	$\begin{aligned} & 0.8^{*} \\ & \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	-	-	V
$\mathrm{V}_{\text {ILC }}$	I/O VCC Input LOW Voltage		1.3 to 4.5	0.9 to (VCC -0.4)	-	-	$\begin{aligned} & 0.2^{*} \\ & V_{C C} \end{aligned}$	V
$\mathrm{V}_{\mathrm{IHL}}$	I/O V ${ }_{\text {L }}$ Input HIGH Voltage		1.3 to 4.5	0.9 to (VCC -0.4)	0.8 * V_{L}	-	-	V
$\mathrm{V}_{\mathrm{ILL}}$	I/O V Input LOW Voltage		1.3 to 4.5	0.9 to ($\left.\mathrm{V}_{\mathrm{CC}}-0.4\right)$	-	-	0.2 * V_{L}	V
V_{IH}	Control Pin Input HIGH Voltage	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	1.3 to 4.5	0.9 to (VCC -0.4)	$0.8 * \mathrm{~V}_{\mathrm{L}}$	-	-	V
$\mathrm{V}_{\text {IL }}$	Control Pin Input LOW Voltage	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	1.3 to 4.5	0.9 to (VCC -0.4)		-	$0.2 * V_{\mathrm{L}}$	V
$\mathrm{V}_{\mathrm{OHC}}$	I/O V ${ }_{C C}$ Output HIGH Voltage	$\begin{aligned} & \mathrm{I} / \mathrm{O} \mathrm{~V}_{\mathrm{CC}} \text { Source Current = } \\ & 20 \mu \mathrm{~A} \end{aligned}$	1.3 to 4.5	0.9 to (V $\left.\mathrm{V}_{\mathrm{Cc}}-0.4\right)$	$\begin{array}{\|l\|} \hline 0.8^{\star} \\ V_{C C} \end{array}$	$\div 5$	-	V
V ${ }_{\text {OLC }}$	$\begin{aligned} & \text { I/O } \mathrm{V}_{\mathrm{CC}} \text { Output LOW } \\ & \text { Voltage } \end{aligned}$	$\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{CC}}$ Sink Current $=20 \mu \mathrm{~A}$	$1.3 \text { to } 4.5$	0.9 to (VCC -0.4$)$	N	-	$\begin{aligned} & 0.2^{*} \\ & \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	V
$\mathrm{V}_{\mathrm{OHL}}$	I/O VL Output HIGH Voltage	$\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{L}}$ Source Current $=20 \mu \mathrm{~A}$	$1.3 \text { to } 4.5$	$0.9 \text { to }\left(V_{C C}-0.4\right)$	$0.8 * V_{\mathrm{L}}$	${ }^{-}$	-	V
$\mathrm{V}_{\text {OLL }}$	I/O VL Output LOW Voltage	$\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{L}}$ Sink Current $=20 \mu \mathrm{~A}$	$1.3 \text { to } 4.5$	$0.9 \mathrm{tg}\left(V_{C C}-0.4\right)$	1	11	0.2 * V_{L}	V

1. Normal test conditions are $\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{IOVCC}}=15 \mathrm{pF}$ and $\mathrm{C}_{\mathrm{IOVL}}=15 \mathrm{pF}$, unless otherwise specified.
2. V_{CC} is the supply voltage associated with the high voltage port, and V_{CC} ranges from $+1,3 \mathrm{~V}$ to 4.5 V under normal operating conditions.
3. V_{L} is the supply voltage associated with the low voltage port. V_{L} must be less than or equal to ($\mathrm{V}_{\mathrm{C}}-0.4$) V during normal operation. However, during startup and shutdown conditions, V_{L} can be greater than $\left(\mathrm{V}_{\mathrm{CO}}-0.4\right) \mathrm{V}$.
4. Typical values are for $\mathrm{V}_{\mathrm{CC}}=+2.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. All units are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design.

POWER CONSUMPTION

Symbol	Parameter	Test Conditions (Note 5)	V_{cc} (V) (Note 6)	$V_{L}(V)$ (Note 7)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
$\mathrm{I}_{\mathrm{Q}-\mathrm{VCC}}$	Supply Current from $V_{C C}$	$\mathrm{EN}=\mathrm{V}_{\mathrm{L} ;} \mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{CCn}}=0 \mathrm{~V}, \mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{Ln}}=0 \mathrm{~V}$, $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{CCn}}=\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{Ln}}=\mathrm{V}_{\mathrm{L}}$ and $\mathrm{I}_{\mathrm{O}}=0$	1.3 to 3.6	0.9 to ($\mathrm{V}_{\mathrm{CC}}-0.4$)	-	-	1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{Q}-\mathrm{VL}}$	Supply Current from V_{L}	$\begin{gathered} \mathrm{EN}=\mathrm{V}_{\mathrm{L},} \mathrm{I} / \mathrm{O} \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{I} / \mathrm{O} \mathrm{~V}_{\mathrm{Ln}}=0 \mathrm{~V}, \\ \mathrm{I} / \mathrm{O} \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{I} / \mathrm{O} \mathrm{~V}_{\mathrm{Ln}}=\mathrm{V}_{\mathrm{L}} \text { and } \mathrm{I}_{\mathrm{O}}=0 \end{gathered}$	1.3 to 3.6	0.9 to ($\left.\mathrm{V}_{\mathrm{CC}}-0.4\right)$	-	-	1.0	$\mu \mathrm{A}$
		$\begin{gathered} \mathrm{EN}=\mathrm{V}_{\mathrm{L}} \mathrm{I} / \mathrm{O} \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{I} / \mathrm{O} \mathrm{~V}_{\mathrm{Ln}}=0 \mathrm{~V}, \\ \mathrm{I} / \mathrm{O} \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{I} / \mathrm{O} \mathrm{~V}_{\mathrm{Ln}}=\left(\mathrm{V}_{\mathrm{CC}}-\right. \\ 0.2 \mathrm{~V}) \text { and } \mathrm{I}_{\mathrm{O}}=0 \end{gathered}$		$<\left(\mathrm{V}_{\mathrm{CC}}-0.2\right)$	-	-	2.0	
ITS-vCC	V_{CC} Tristate Output Mode Supply Current	$\mathrm{EN}=0 \mathrm{~V}$	1.3 to 3.6	0.9 to ($\mathrm{V}_{\mathrm{CC}}-0.4$)	-	-	1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {TS-VL }}$	V_{L} Tristate Output Mode Supply Current	$\mathrm{EN}=0 \mathrm{~V}$	1.3 to 3.6	0.9 to ($\mathrm{V}_{\mathrm{CC}}-0.4$)	-	-	0.2	$\mu \mathrm{A}$
		$\mathrm{EN}=0 \mathrm{~V}$		$\mathrm{V}_{C C}-0.2$	-	-	2.0	
$\mathrm{I}_{\text {OZ }}$	I/O Tristate Output Mode Leakage Current	$\mathrm{EN}=0 \mathrm{~V}$	1.3 to 3.6	0.9 to ($\left.\mathrm{V}_{\mathrm{CC}}-0.4\right)$			0.15	$\mu \mathrm{A}$
		$\mathrm{EN}=0 \mathrm{~V}$		$\mathrm{V}_{\text {cc }}-0.2$,	2.0	
I_{EN}	Output Enable Pin Input Current	-	1.3 to 3.6	0.9 to ($\left.\mathrm{V}_{\mathrm{CC}}-0.4\right)$		-	1.0	$\mu \mathrm{A}$

5. Normal test conditions are $\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{IOVCC}}=15 \mathrm{pF}$ and $\mathrm{C}_{\mathrm{IOVL}}=15 \mathrm{pF}$, unless otherwise specified
6. V_{CC} is the supply voltage associated with the high voltage port, and V_{CC} ranges from +1.3 V to 4.5 V under normal operating conditions.
7. V_{L} is the supply voltage associated with the low voltage port. V_{L} must be less than or equal to ($V_{C C}-0.4$) V during normal operation. However, during startup and shutdown conditions, V_{L} can be greater than $\left(\mathrm{V}_{\mathrm{CC}}-0.4\right) \mathrm{V}$.
8. Typical values are for $\mathrm{V}_{\mathrm{CC}}=+2.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. All units are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design.

TIMING CHARACTERISTICS

Symbol	Parameter	Test Conditions (Note 9)	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}(\mathrm{~V}) \\ & \text { (Note 10) } \end{aligned}$	$\begin{aligned} & \mathbf{V}_{\mathrm{L}}(\mathbf{V}) \\ & \text { (Note 11) } \end{aligned}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	$\begin{gathered} \text { Typ } \\ \text { (Note 12) } \end{gathered}$	Max	
$\mathrm{t}_{\mathrm{R}-\mathrm{vcc}}$	I/O $V_{\text {CC }}$ Rise Time (Output = $I / O_{-} V_{C C}$)	$\mathrm{C}_{\text {IOVCC }}=15 \mathrm{pF}$	1.3 to 4.5	0.9 to (VCC - 0.4)		0.7	2.4	ns
$\mathrm{t}_{\text {F-VCC }}$	I/O V CC Falltime (Output $\left.=1 / \mathrm{O}_{-} \mathrm{V}_{\mathrm{CC}}\right)$	$\mathrm{ClovCc}^{\text {I }}$ = 15 pF	1.3 to 4.5	0.9 to (VCC -0.4)		0.5	1.0	ns
$\mathrm{t}_{\mathrm{R}-\mathrm{VL}}$	I/O V L Risetime (Output = I/O_VL)	$\mathrm{ClOVL}_{\text {I }}=15 \mathrm{pF}$	1.3 to 4.5	0.9 to (VCC -0.4)		1.0	3.8	ns
$\mathrm{t}_{\mathrm{F}-\mathrm{VL}}$	I/O V Falltime (Output = I/O_V	$\mathrm{ClOVL}_{\text {I }}=15 \mathrm{pF}$	1.3 to 4.5	0.9 to (V $\left.\mathrm{VCC}^{-0.4}\right)$		0.6	1.2	ns
$\mathrm{Z}_{\mathrm{O}-\mathrm{vcc}}$	I/O V CC One-Shot Output Impedance		1.3 to 4.5	0.9 to (VCC -0.4)		30		Ω
$\mathrm{Z}_{\mathrm{O}-\mathrm{VL}}$	I/O V Output Impedance		1.3 to 4.5	0.9 to (VCC -0.4)		30	1	Ω
tPD_VL-VCC	Propagation Delay (Output = I/O_V ${ }_{\text {Cc }}$, $\mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\mathrm{PLH}}$)	$\mathrm{C}_{\text {IOVCC }}=15 \mathrm{pF}$	1.3 to 4.5	$0.9 \text { to }\left(V_{C C}-0.4\right)$			12	ns
${ }_{\text {tPD_VCC-VL }}$	$\begin{aligned} & \text { Propagation Delay } \\ & \text { (Output = I/O_V } \\ & \left.t_{\text {PHL }}, t_{\text {PLH }}\right) \end{aligned}$	$\mathrm{ClOVL}_{\text {I }}=15 \mathrm{pF}$	$1.3 \text { to } 4.5$	$0.9 \text { to }\left(\mathrm{V}_{\mathrm{CC}}-0.4\right)$		3.0	7.2	ns
tsk VL-vCC	Channel-to-Channel Skew (Output = I/O_VCC)	$\mathrm{C}_{\text {IOVCC }}=15 \mathrm{pF}$	$1.3 \text { to } 4.5$	$0.9 \text { to }\left(V_{c e}-0.4\right)$		0.2	0.3	nS
tsk_vcc-vL	Channel-to-Channel Skew (Output = I/O_VL)	$\mathrm{C}_{\text {IOVCC }}=15 \mathrm{pF}$	$1.3 \text { to } 4.5$	$0.9 \text { to }\left(\mathrm{V}_{\mathrm{CC}}-0.4\right)$		0.2	0.3	nS
MDR	Maximum Data Rate	$\begin{gathered} \text { (Output }=1 / \mathrm{O}_{\mathrm{VCC}} \mathrm{~V}_{\mathrm{C}}, \\ \left.\mathrm{C}_{\text {IOVCC }}=15 \mathrm{pF}\right) \\ \left(\mathrm{Output}^{=1 / 0 \mathrm{VL},}\right. \\ \left.\mathrm{C}_{\text {IOVL }}=15 \mathrm{pF}\right) \end{gathered}$	$\frac{1.3 \text { to } 4.5}{>2.2}$	$\frac{0.9 \text { to }\left(V_{C C}-0.4\right)}{>1.8}$	110			Mb/s

9. Normal test conditions are $\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{IOVCC}}=15 \mathrm{pF}$ and $\mathrm{C}_{\mathrm{OVL}}=15 \mathrm{pF}$, unless otherwise specified.
10. V_{CC} is the supply voltage associated with the high voltage port, and V_{CC} ranges from +1.3 V to 4.5 V under normal operating conditions.
11. V_{L} is the supply voltage associated with the low voltage port. V_{L} must be less than or equal to ($\mathrm{V}_{\mathrm{CC}}-0.4$) V during normal operation. However, during startup and shutdown conditions, V_{k} can be greater than $\left(\mathrm{V}_{\mathrm{CC}}-0.4\right) \mathrm{V}$.
12. Typical values are for $\mathrm{V}_{\mathrm{CC}}=+2.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. All units are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design.

ENABLE / DISABLE TIME MEASUREMENTS

Symbol	Parameter	Test Conditions (Note 13)	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$ (Note 14)	$\begin{aligned} & \mathbf{V}_{\mathrm{L}}(\mathbf{V}) \\ & \text { (Note 15) } \end{aligned}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ (Note 16)	Max	
$\mathrm{t}_{\text {EN-VCC }}$	Turn-On Enable Time (Output = $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{Cc}}, \mathrm{t}_{\mathrm{pzH}}$)	$\mathrm{C}_{\text {IOVCC }}=15 \mathrm{pF}$	1.3 to 4.5	0.9 to (VCC -0.4)		150	200	ns
	Turn-On Enable Time (Output = $\mathrm{I} / \mathrm{O}_{\mathrm{C}} \mathrm{V}_{\mathrm{Cc}}, \mathrm{t}_{\mathrm{pzL}}$)	$\mathrm{ClOVL}_{\text {I }}=15 \mathrm{pF}$	1.3 to 4.5	0.9 to (V $\mathrm{V}_{\mathrm{Cc}}-0.4$)		130	180	ns
$\mathrm{t}_{\text {EN-VL }}$	Turn-On Enable Time (Output = I/O_V ${ }_{\mathrm{L}}, \mathrm{t}_{\mathrm{pzH}}$)	$\mathrm{C}_{\text {IOVCC }}=15 \mathrm{pF}$	1.3 to 4.5	0.9 to (V $\mathrm{V}_{\mathrm{Cc}}-0.4$)		95	225	ns
	Turn-On Enable Time (Output = I/O_V ${ }_{\mathrm{L}}, \mathrm{t}_{\mathrm{pzL}}$)	$\mathrm{C}_{\text {IOVL }}=15 \mathrm{pF}$	1.3 to 4.5	0.9 to (V $\mathrm{V}_{\mathrm{Cc}}-0.4$)		75	100	ns
toIS-VCC	Turn-Off Disable Time (Output = $\mathrm{I} / \mathrm{O}_{-} \mathrm{V}_{\mathrm{CC}}, \mathrm{t}_{\mathrm{pHz}}$)	$\mathrm{C}_{\text {IOVCC }}=15 \mathrm{pF}$	1.3 to 4.5	0.9 to (V $\mathrm{V}_{\mathrm{Cc}}-0.4$)		175	250	ns
	Propagation Delay (Output = I/O_VCC, tpLZ)	$\mathrm{ClOVL}_{\text {I }}=15 \mathrm{pF}$	1.3 to 4.5	0.9 to ($\left.\mathrm{V}_{\mathrm{CC}}-0.4\right)$		140	160	ns
$t_{\text {DIS-VL }}$	Turn-Off Disable Time (Output = I/O_V $\mathrm{V}_{\mathrm{L}}, \mathrm{t}_{\mathrm{pHz}}$)	$\mathrm{C}_{\text {IOVCC }}=15 \mathrm{pF}$	1.3 to 4.5	0.9 to (Vcc-0.4)		180	275	ns
	Propagation Delay (Output $=\mathrm{I} / \mathrm{O}_{\mathrm{Z}} \mathrm{V}_{\mathrm{L}}$, tplz)	$\mathrm{ClOVL}^{\text {a }}$ = 15 pF	$1.3 \text { to } 4.5$	$0.9 \text { to }\left(\mathrm{V}_{\mathrm{CC}}-0.4\right)$	N	160	220	ns

13. Normal test conditions are $\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{IOVCC}}=15 \mathrm{pF}$ and $\mathrm{C}_{\mathrm{IOVL}}=15 \mathrm{pF}$, unless otherwise specified.
14. V_{CC} is the supply voltage associated with the high voltage port, and $\mathrm{V}_{C C}$ ranges from +1.3 V to 4.5 V under normal operating conditions.
15. V_{L} is the supply voltage associated with the low voltage port. V_{L} must be less than or equal to ($\mathrm{V}_{\mathrm{CC}}-0.4$) V during normal operation. However, during startup and shutdown conditions, V_{L} can be greater than $\left(\mathrm{V}_{\mathrm{CC}}-0.4\right) \mathrm{V}$.
16. Typical values are for $\mathrm{V}_{\mathrm{CC}}=+2.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. All units are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design.

Figure 3. Driving I/O V V_{L} Test Circuit and Timing

Figure 4. Driving I/O VCc Test Circuit and Timing

NLSX3012

Test	Switch
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PHZ }}$	Open
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$	$2 \times \mathrm{V}_{\mathrm{CC}}$

$C_{L}=15 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=R_{1}=50 \mathrm{k} \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\text {OUT }}$ of pulse generator (typically 50Ω)

Figure 5. Test Circuit for Enable/Disable Time Measurement

Figure 6. Timing Definitions for Propagation Delays and Enable/Disable Measurement

IMPORTANT APPLICATIONS INFORMATION

Level Translator Architecture

The NLSX3012 auto sense translator provides bi-directional voltage level shifting to transfer data in multiple supply voltage systems. This device has two supply voltages, V_{L} and V_{CC}, which set the logic levels on the input and output sides of the translator. When used to transfer data from the V_{L} to the V_{CC} ports, input signals referenced to the V_{L} supply are translated to output signals with a logic level matched to V_{CC}. In a similar manner, the V_{CC} to V_{L} translation shifts input signals with a logic level compatible to V_{CC} to an output signal matched to V_{L}.

The NLSX3012 consists of four bi-directional channels that independently determine the direction of the data flow without requiring a directional pin. The one-shot circuits are used to detect the rising or falling input signals. In addition, the one shots decrease the rise and fall time of the output signal for high-to-low and low-to-high transitions.

Input Driver Requirements

Auto sense translators such as the NLSX3012 have a wide bandwidth, but a relatively small DC output current rating. The high bandwidth of the bi-directional I/O circuit is used to quickly transform from an input to an output driver and vice versa. The I/O ports have a modest DC current output specification so that the output driver can be over driven when data is sent to in the opposite direction.

For proper operation, the input driver to the auto sense translator should be capable of driving 2 mA of peak output current with an output impedance less than 25Ω. The bi-directional configuration of the translator results in both input stages being active for a very short time period. Although the peak current from the input signal circuit is relatively large, the average current is small and consistent with a standard CMOS input stage.

Output Load Requirements

The NLSX3012 is designed to drive CMOS inputs. Resistive pullup or pulldown loads of less than $50 \mathrm{k} \Omega$ should not be used with this device. The NLSX3373 or NLSX3378 open-drain auto sense translators are alternate
translator options for an application such as the $\mathrm{I}^{2} \mathrm{C}$ bus that requires pullup resistors.

Enable Input (EN)

The NLSX3012 has an Enable pin (EN) that provides tri-state operation at the I/O pins. Driving the Enable pin to a low logic level minimizes the power consumption of the device and drives the $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{CC}}$ and $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{L}}$ pins to a high impedance state. Normal translation operation occurs when the EN pin is equal to a logic high signal. The EN pin is referenced to the V_{L} supply and has Over-Voltage Tolerant (OVT) protection.

Uni-Directional versus Bi-Directional Translation

The NLSX3012 can function as a non-inverting uni-directional translator. One advantage of using the translator as a uni-directional device is that each I/O pin can be configured as either an input or output. The configurable input or output feature is especially useful in applications such as SPI that use multiple uni-directional I/O lines to send data to and from a device. The flexible I/O port of the auto sense translator simplifies the trace connections on the PCB.

Power Supply Guidelines

It is recommended that the V_{L} supply should be less than or equal to the yalue of the V_{CC} minus 0.4 V . The sequencing of the power supplies will not damage the device during the power up operation; however, the current consumption of the device will increase if V_{L} exceeds V_{CC} minus 0.4 V . In addition, the $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{CC}}$ and $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{L}}$ pins are in the high impedance state if either supply voltage is equal to 0 V .
For optimal performance, 0.01 to $0.1 \mu \mathrm{~F}$ decoupling capacitors should be used on the V_{L} and V_{CC} power supply pins. Ceramic capacitors are a good design choice to filter and bypass any noise signals on the power supply voltage lines to the ground plane of the PCB. The noise immunity will be maximized by placing the capacitors as close as possible to the supply and ground pins, along with minimizing the PCB connection traces.

UDFN8 1.8x1.2, 0.4P CASE 517AJ-01

ISSUE O
DATE 08 NOV 2006
SCALE 4:1

MOUNTING FOOTPRINT

SOLDERMASK DEFINED

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM TERMINAL TIP.
4. MOLD FLASH ALOWED ON TERMINAL
5. ALONG EDGE OF PACKAGE. FLASH MAY ALONG EDCED O.O3 ONTO BOTTOM NOT EXCEED 0.03 ONTO B
6. DETAIL A SHOWS OPTIONAL CONSTRUCTION FOR TERMINALS.

	MILLIMETERS	
DIM	MIN	MAX
A	0.45	0.55
A1	0.00	0.05
A3	0.127	REF
b	0.15	
	0.25	
b2	0.30 REF	
D	1.80 BSC	
E	1.20 BSC	
e	0.40 BSC	
L	0.45	0.55
L1	0.00	0.03
L2	0.40 REF	

GENERIC MARKING DIAGRAM*

XXM						

$$
\begin{array}{ll}
\text { XX } & =\text { Specific Device Code } \\
\text { M } & =\text { Date Code } \\
\text { - } & =\text { Pb-Free Package }
\end{array}
$$

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

| DOCUMENT NUMBER: | 98AON23417D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | UDFN8 1.8X1.2, 0.4P | PAGE 1 OF 1 |

ON Semiconductor and (ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
. CONTROLLING DIMENSION: MILLIMETER.
2. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
3. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
4. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
5. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	\circ	8°	0
	\circ	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

GENERIC
MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L Wafer Lot
= Year
= Work Week
= Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^0] special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
2. V2OUT

V1OUT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29:

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
7. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR, DIE,
2. COLLECTOR, \#1
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT
4. GROUND

GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14:
PIN 1. N-SOURCE
2. N-GATE
. P-SOURCE
P-GATE
5-DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT
5. SOURCE

SOURCE
7. SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
2. DRAIN, DIE
2. DRAIN, \#1
2. DRAIN, \#
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DA $\bar{S} I C \bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBUULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	PAGE 2 OF 2

onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

Micro8
CASE 846A-02
ISSUE K
DATE 16 JUL 2020
SCALE 2:1

NDTES:

1. DIMENSIDNING AND TZLERANCING PER ASME Y14.5M, 2009.
2. CONTRZLLING DIMENSIDN: MILLIMETERS
3. DIMENSIUN b DUES NDT INCLUDE DAMBAR PRDTRUSIDN ALLIWABLE PRITRUSIDN SHALL BE 0.10 mm IN EXCESS DF MAXIMUM MATERIAL CINDITIDN
4. DIMENSIUNS D AND E DD NDT INCLUDE MLLD FLASH, PRDTRUSIDr GR GATE BURRS, MDLD FLASH, PRDTRUSIUNS, $\square R ~ G A T E ~ B U R R S ~$ SHALL NUT EXCEED 0.15 mm PER SIDE. DIMENSIDN E DDES NDT INCLUDE INTERLEAD FLASH $\square R$ PRITRUSIDN. INTERLEAD FLASH IR PRITRUSIDN SHALL NDT EXCEED 0.25 mm PER SIDE DIMENSIINS D AND E ARE DETERMINED AT DATUM F.
5. DATUMS A AND B ARE TV BE DETERMINED AT DATUM F
6. A1 IS DEFINED AS THE VERTICAL DISTANCE FRDM THE SEATING PLANE Tロ THE LUWEST PGINT UN THE PACKAGE BGDY.
GENERIC MARKING DIAGRAM*

XXXX	$=$ Specific Device Code
A	$=$ Assembly Location
Y	$=$ Year
W	$=$ Work Week
-	$=$ Pb-Free Package

END VIEW
0.65

PITCH
RECDMMENDED MDUNTING FEDTPRINT

DIM	MILLIMETERS		
	MIN.	NDM.	MAX.
A	---	---	1.10
A1	0.05	0.08	0.15
b	0.25	0.33	0.40
c	0.13	0.18	0.23
D	2.90	3.00	3.10
E	2.90	3.00	3.10
e	0.65 BSC		
H_{E}	4.75	4.90	5.05
L	0.40	0.55	0.70

$$
\begin{aligned}
& \text { Solderng an } \\
& \text { SLIDERRT/D. }
\end{aligned}
$$

STYLE 3:

STYLE 1:	STYLE 2:
PIN 1. SOURCE	PIN 1. SOURCE 1
2. SOURCE	2. GATE 1
3. SOURCE	3. SOURCE 2
4. GATE	4. GATE 2
5. DRAIN	5. DRAIN 2
6. DRAIN	6. DRAIN 2
7. DRAIN	7. DRAIN 1
8. DRAIN	8. DRAIN 1

PIN 1. N-SOURCE 2. N-GATE . P-SOURCE
4. P-GATE
5. P-GATE
5. P-DRAIN
5. P-DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot "r", may or may not be present. Some products may not follow the Generic Marking

| DOCUMENT NUMBER: | 98ASB14087C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | MICRO8 | PAGE 1 OF 1 |

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:
Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support
For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

[^0]: onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

