1-Bit Dual-Supply Non-Inverting Level Translator

The NLSV1T244 is a 1-bit configurable dual-supply voltage level translator. The input A_{n} and output B_{n} ports are designed to track two different power supply rails, $\mathrm{V}_{\mathrm{CCA}}$ and $\mathrm{V}_{\mathrm{CCB}}$ respectively. Both supply rails are configurable from 0.9 V to 4.5 V allowing universal low-voltage translation from the input A_{n} to the output B_{n} port.

Features

- Wide $\mathrm{V}_{\mathrm{CCA}}$ and $\mathrm{V}_{\mathrm{CCB}}$ Operating Range: 0.9 V to 4.5 V
- High-Speed w/ Balanced Propagation Delay
- Inputs and Outputs have OVT Protection to 4.5 V
- Non-preferential $\mathrm{V}_{\mathrm{CCA}}$ and $\mathrm{V}_{\mathrm{CCB}}$ Sequencing
- Outputs at 3-State until Active V_{CC} is Reached
- Power-Off Protection
- Outputs Switch to 3-State with $\mathrm{V}_{\mathrm{CCB}}$ at GND
- Ultra-Small Packaging: $1.2 \mathrm{~mm} \times 1.0 \mathrm{~mm}$ UDFN6
- NLVSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Mobile Phones, PDAs, Other Portablê Devices

Important Information

- ESD Protection for All Pins:

HBM (Human Body Model) >3000 V

Figure 1. Logic Diagram

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

UDFN6
MU SUFFIX
CASE 517AA

Q = Specific Device Code M = Date Code

MARKING DIAGRAM

PINASSIGNMENT

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
NLSV1T244MUTBG,	UDFN6	
NLVSV1T244MUTBG	(Pb-Free)	Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

PIN ASSIGNMENT

PIN	FUNCTION
$V_{\text {CCA }}$	Input Port DC Power Supply
$V_{\text {CCB }}$	Output Port DC Power Supply
GND	Ground
A	Input Port
B	Output Port
$\overline{\text { OE }}$	Output Enable

TRUTH TABLE

Inputs		Outputs
OE	A	B
L	L	L
L	H	H
H	X	3-State

MAXIMUM RATINGS

Symbol	Rating	Value	Condition	Unit
$\mathrm{V}_{\text {CCA }}, \mathrm{V}_{\text {CCB }}$	DC Supply Voltage	-0.5 to +5.5		V
V_{1}	DC Input Voltage A	-0.5 to +5.5		V
V_{C}	Control Input $\overline{\mathrm{OE}}$	-0.5 to +5.5		V
V_{O}	DC Output Voltage (Power Down) B	-0.5 to +5.5	$C_{\text {A }}=V_{\text {CCB }}$	V
	(Active Mode) B	-0.5 to +5.5	1	V
	(Tri-State Mode) B	-0.5 to +5.5		V
1 IK	DC Input Diode Current	-20	$\mathrm{V}_{1}<$ GND	mA
lok	DC Output Diode Current	-50	$\mathrm{V}_{0}<$ GND	mA
Io	DC Output Source/Sink Current	± 50	\cdots	mA
$I_{\text {CCA }}, I_{\text {cce }}$	DC Supply Current Per Supply Pin	± 100		mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 100		mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150		${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	- $S^{\text {a }}$ Parameter $<入^{\text {l }}$		Min	Max	Unit
$\mathrm{V}_{\text {CCA }}, \mathrm{V}_{\text {CCB }}$	Positive DC Supply Voltage		0.9	4.5	V
V_{1}	Bus Input Voltage		GND	4.5	V
V_{C}	Control Input	$\overline{\mathrm{OE}}$	GND	4.5	V
V_{10}	Bus Output Voltage (Power Down Mode)	B	GND	4.5	V
	(Active Mode)	B	GND	$\mathrm{V}_{\text {CCB }}$	V
	(Tri-State Mode)	B	GND	4.5	V
$\mathrm{T}_{\text {A }}$	Operating Temperature Range		-40	+85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Transition Rise or Rate $\mathrm{V}_{\text {I }}$, from 30% to 70% of $\mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		0	10	nS

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{CCA}}(\mathrm{V})$	$\mathrm{V}_{\text {CCB }}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
					Min	Max	
V_{IH}	Input HIGH Voltage (A, OE)		3.6-4.5	0.9-4.5	2.2	-	V
			$2.7-3.6$		2.0	-	
			2.3-2.7		1.6	-	
			1.4-2.3		0.65 * $\mathrm{V}_{\text {CCA }}$	-	
			0.9-1.4		0.9 * $\mathrm{V}_{\text {CCA }}$	-	
VIL	Input LOW Voltage (A, OE)		3.6-4.5	0.9-4.5	-	0.8	V
			2.7-3.6		-	0.8	
			2.3-2.7		-	0.7	
			1.4-2.3		-	0.35 * $\mathrm{V}_{\text {CCA }}$	
			0.9-1.4		-	0.1 * $\mathrm{V}_{\text {CCA }}$	
V_{OH}	Output HIGH Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$	0.9-4.5	0.9-4.5	$V_{\text {CCB }}-0.2$	$-\mathrm{N}$	V
		$\mathrm{l}_{\mathrm{OH}}=-0.5 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$	0.9	0.9	0.75 * V CCBB	-	
		$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$	1.4	1.4	1.05	-	
		$\mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$	1.65	1.65	125	-	
			2.3	2.3	2.0	-	
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$	2.3	2.3	+1.8	-	
			2.7	-2.7	2.2	-	
		$\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$	2.3	2.35	1.7	-	
			3.0	23.0	/ 2.4	-	
		$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} ; \mathrm{V}_{1}=\mathrm{V}_{1 \mathrm{H}}$	- 3.0	3.0	2.2	-	
V OL	Output LOW Voltage	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$	0.9-4.5	0.9-4.5	-	0.2	V
		$\mathrm{ILL}=0.5 \mathrm{~mA}, \mathrm{~V}_{1}=\mathrm{V}_{1 L} \mathrm{C}$	12	1.1	-	0.3	
		$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA} ; \mathrm{V}_{1}-\mathrm{V}_{14}$	C14	1.4	-	0.35	
		$\mathrm{T}_{\mathrm{LL}}=6 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }} \mathrm{L}$	1.65	1.65	-	0.3	
		$\begin{aligned} & \mathrm{IOL}^{2}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{F}}=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{IOL}_{\mathrm{OL}}=18 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{IOL}_{\mathrm{OL}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}} \\ & \hline \end{aligned}$	2.3	2.3	-	0.4	
			2.7	2.7	-	0.4	
			2.3	2.3	-	0.6	
			3.0	3.0	-	0.4	
			3.0	3.0	-	0.55	
1	Input Leakage Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CCA }}$ or GND	0.9-4.5	0.9-4.5	-1.0	1.0	$\mu \mathrm{A}$
IOFF	Power-Off Leakage Current	$\overline{O E}=0 \mathrm{~V}$	$\begin{gathered} 0 \\ 0.9-4.5 \end{gathered}$	$\begin{gathered} 0.9-4.5 \\ 0 \end{gathered}$	$\begin{aligned} & \hline-1.0 \\ & -1.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$
ICCA	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CCA}} \text { or } G N D ; \\ & \mathrm{I}_{\mathrm{O}}=0, \mathrm{~V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}} \end{aligned}$	0.9-4.5	0.9-4.5	-	1.0	$\mu \mathrm{A}$
${ }^{\text {ICCB }}$	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CCA}} \text { or GND; } \\ & \mathrm{I}_{\mathrm{O}}=0, \mathrm{~V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}} \end{aligned}$	0.9-4.5	0.9-4.5	-	1.0	$\mu \mathrm{A}$
$I_{\text {CCA }}+I_{\text {cci }}$	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CCA}} \text { or GND; } \\ & \mathrm{I}_{\mathrm{O}}=0, \mathrm{~V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}} \end{aligned}$	0.9-4.5	0.9-4.5	-	2.0	$\mu \mathrm{A}$
$\Delta_{\text {l }}^{\text {CCA }}$	Increase in I CC per Input Voltage, Other Inputs at $\mathrm{V}_{\text {CCA }}$ or GND	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CCA }}-0.6 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CCA }} \text { or } \mathrm{GND} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.6 \end{aligned}$	-	$\begin{aligned} & 10 \\ & 5.0 \end{aligned}$	$\mu \mathrm{A}$
$\Delta_{\text {l }}^{\text {CCB }}$	Increase in I ICC per Input Voltage, Other Inputs at $\mathrm{V}_{\text {CCA }}$ or GND	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CCA }}-0.6 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CCA }} \text { or } \mathrm{GND} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.6 \end{aligned}$	-	$\begin{aligned} & 10 \\ & 5.0 \end{aligned}$	$\mu \mathrm{A}$
l OZ	I/O Tri-State Output Leakage Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \overline{\mathrm{OE}}=0 \mathrm{~V}$	0.9-4.5	0.9-4.5	-1.0	1.0	$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NLSV1T244

TOTAL STATIC POWER CONSUMPTION ($\mathrm{I}_{\mathrm{cca}}+\mathrm{I}_{\mathrm{CcB}}$)

$\mathrm{V}_{\text {cCA }}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$										Unit
	$\mathrm{V}_{\text {CCB }}(\mathrm{V})$										
	4.5		3.3		2.8		1.8		0.9		
	Min	Max									
4.5		2		2		2		2		< 1.5	$\mu \mathrm{A}$
3.3		2		2		2		2		< 1.5	$\mu \mathrm{A}$
2.8		<2		<1		< 1		< 0.5		< 0.5	$\mu \mathrm{A}$
1.8		< 1		< 1		< 0.5		< 0.5		< 0.5	$\mu \mathrm{A}$
0.9		<0.5		< 0.5		< 0.5		< 0.5		< 0.5	$\mu \mathrm{A}$

NOTE: Connect ground before applying supply voltage $\mathrm{V}_{\mathrm{CCA}}$ or $\mathrm{V}_{\mathrm{CCB}}$. This device is designed with the feature that the power-up sequence of $\mathrm{V}_{\text {CCA }}$ and $\mathrm{V}_{\text {CCB }}$ will not damage the IC.
AC ELECTRICAL CHARACTERISTICS

1. Propagation delays defined per Figure 2.

CAPACITANCE

Symbol	Parameter	Test Conditions	Typ (Note 2)	Unit
C_{IN}	Control Pin Input Capacitance	$\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CCA} / \mathrm{B}}$	3.5	pF
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	I / O Pin Input Capacitance	$\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CCA} / \mathrm{B}}$	5.0	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CCA}}, \mathrm{f}=10 \mathrm{MHz}$	pF	

2. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
3. $C_{P D}$ is defined as the value of the IC's equivalent capacitance from which the operating current can be calculated from:
I_{CC} (operating) $\cong \mathrm{C}_{\mathrm{PD}} \times \mathrm{V}_{\mathrm{CC}} \times \mathrm{f}_{\mathrm{IN}}$ where $\mathrm{I}_{\mathrm{CC}}=\mathrm{I}_{\mathrm{CCA}}+\mathrm{I}_{\mathrm{CCB}}$.

Figure 2. AC (Propagation Delay) Test Circuit

Test	Switch
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	OPEN
$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PZL }}$	$\mathrm{V}_{\mathrm{CCO}} \times 2$
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PZH }}$	GND
$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ or equivalent (includes probe and jig capacitance) $R_{\mathrm{L}}=2 \mathrm{k} \Omega$ or equivalent $\mathrm{Z}_{\text {OUT }}$ of pulse generator $=50 \Omega$	

$\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.0 \mathrm{~ns}, 10 \% \mathrm{to} 90 \% ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$

Waveform 2 - Output Enable and Disable Times
$t_{R}=t_{F}=2.0 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$
Figure 3. AC (Propagation Delay) Test Circuit Waveforms

Symbol	$\mathbf{V}_{\mathbf{C C}}$				
	$\mathbf{3 . 0} \mathbf{V - 4 . 5} \mathbf{V}$	$\mathbf{2 . 3} \mathbf{V} \mathbf{- 2 . 7} \mathbf{V}$	$\mathbf{1 . 6 5} \mathbf{V} \mathbf{- 1 . 9 5} \mathbf{V}$	$\mathbf{1 . 4} \mathbf{V} \mathbf{- 1 . 6} \mathbf{V}$	$\mathbf{0 . 9} \mathbf{V - 1 . 3} \mathbf{V}$
	$\mathrm{V}_{\mathrm{CCA}} / 2$	$\mathrm{~V}_{\mathrm{CCA}} / 2$	$\mathrm{~V}_{\mathrm{CCA}} / 2$	$\mathrm{~V}_{\mathrm{CCA}} / 2$	$\mathrm{~V}_{\mathrm{CCA}} / 2$
$\mathrm{~V}_{\mathrm{mB}}$	$\mathrm{V}_{\mathrm{CCB}} / 2$	$\mathrm{~V}_{\mathrm{CCB}} / 2$	$\mathrm{~V}_{\mathrm{CCB}} / 2$	$\mathrm{~V}_{\mathrm{CCB}} / 2$	$\mathrm{~V}_{\mathrm{CCB}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}} \times 0.1$	$\mathrm{~V}_{\mathrm{OL}} \times 0.1$	$\mathrm{~V}_{\mathrm{OL}} \times 0.1$	$\mathrm{~V}_{\mathrm{OL}} \times 0.1$	$\mathrm{~V}_{\mathrm{OL}} \times 0.1$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}} \times 0.9$	$\mathrm{~V}_{\mathrm{OH}} \times 0.9$	$\mathrm{~V}_{\mathrm{OH}} \times 0.9$	$\mathrm{~V}_{\mathrm{OH}} \times 0.9$	$\mathrm{~V}_{\mathrm{OH}} \times 0.9$

UDFN6, 1.2x1.0, 0.4P CASE 517AA
 ISSUE D

DATE 03 SEP 2010

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 mm FROM TERMINAL
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

MILLIMETERS		
DIM	MIN	MAX
A	0.45	0.55
A1	0.00	0.05
A3	0.127	
REF		
b	0.15	0.25
D	1.20	
BSC		
E	1.00 BSC	
e	0.40 BSC	
L	0.30	0.40
L1	0.00	0.15
L2	0.40	0.50

GENERIC
 MARKING DIAGRAM*

X = Specific Device Code
M = Date Code
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

MOUNTING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON22068D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | 6 PIN UDFN, 1.2X1.0, 0.4P | PAGE 1 OF 1 |

[^0] special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:
Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support
For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

[^0]: onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

