Thank you for your interest in **onsemi** products.

Your technical document begins on the following pages.

Your Feedback is Important to Us!

Please take a moment to participate in our short survey. At **onsemi**, we are dedicated to delivering technical content that best meets your needs.

Help Us Improve - Take the Survey

This survey is intended to collect your feedback, capture any issues you may encounter, and to provide improvements you would like to suggest.

We look forward to your feedback.

To learn more about **onsemi**, please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All opreating parameters, including "Typicals" must be validated for each customer application in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and ereasnable attorney fees arising out of, directly or indirectly, any claim of personal injury or death Action Employer. This literature is subject to all applicatione claimed as not for resale in any manner. Other names and brands may be claimed as the property of others.

onsemi

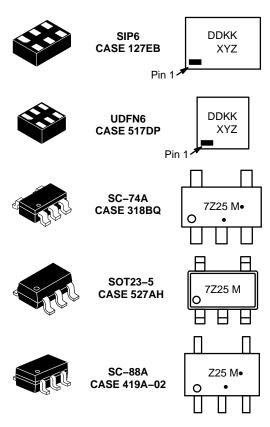
MARKING

DIAGRAMS

TinyLogic UHS Buffer with Three-State Output

NC7SZ125

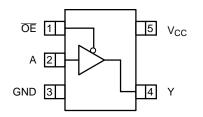
Description

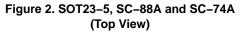

The NC7SZ125 is a single buffer with three-state output from **onsemi**'s Ultra-High Speed (UHS) of TinyLogic. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad V_{CC} operating range. The device is specified to operate over the 1.65 V to 5.5 V range. The inputs and output are high impedance above ground when V_{CC} is 0 V. Inputs tolerate voltages up to 5.5 V independent of V_{CC} operating voltage. The output tolerates voltages above V_{CC} when in the 3–STATE condition.

Features

- Ultra-High Speed: $t_{PD} = 2.6$ ns (Typical) into 50 pF at 5 V V_{CC}
- High Output Drive: ±24 mA at 3 V V_{CC}
- Broad V_{CC} Operating Range: 1.65 V to 5.5 V
- Matches Performance of LCX when Operated at 3.3 V V_{CC}
- Power Down High–Impedance Inputs / Outputs
- Over–Voltage Tolerance Inputs Facilitate 5 V to 3 V Translation
- Proprietary Noise / EMI Reduction Circuitry
- Ultra–Small MicroPakTM Packages
- Space-Saving SOT23-5, SC-74A and SC-88A Packages
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

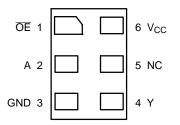
Figure 1. Logic Symbol




KK XY Z M	5 = Specific Device Code = 2-Digit Lot Run Traceability Code = 2-Digit Date Code Format = Assembly Plant Code = Date Code
•	= Date Code = Pb-Free Package (Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 6 of this data sheet. NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 6.


Pin Configurations

PIN DEFINITIONS

Pin # SOT23–5 / SC–88A / SC74A	Pin # MicroPak	Name	Description
1	1	ŌĒ	Input
2	2	А	Input
3	3	GND	Ground
4	4	Y	Output
5	6	V _{CC}	Supply Voltage
	5	NC	No Connect

Figure 3. MicroPak (Top Through View)

FUNCTION TABLE

Inp	Output	
ŌĒ	А	Y
L	L	L
L	Н	Н
Н	Х	Z

H = HIGH Logic Level L = LOW Logic Level X = HIGH or LOW Logic Level Z = HIGH Impedance State

ABSOLUTE MAXIMUM RATINGS

Symbol	pol Parameter		Min	Max	Unit
V _{CC}	Supply Voltage		-0.5	6.5	V
V _{IN}	DC Input Voltage		-0.5	6.5	V
V _{OUT}	DC Output Voltage		-0.5	6.5	V
Ι _{ΙΚ}	DC Input Diode Current	V _{IN} < 0 V	-	-50	mA
I _{OK}	DC Output Diode Current	V _{OUT} < 0 V	-	-50	mA
I _{OUT}	DC Output Current		-	±50	mA
$I_{CC} \text{ or } I_{GND}$	c or I _{GND} DC V _{CC} or Ground Current		-	±50	mA
T _{STG}	Storage Temperature Range		-65	+150	°C
TJ	Junction Temperature Under Bias	-	+150	°C	
ΤL	Junction Lead Temperature (Solo	dering, 10 Seconds)	-	+260	°C
PD	Power Dissipation in Still Air	SC-74A / SOT23-5	-	390	mW
		SC-88A	-	332	
		MicroPak-6	-	812	
		MicroPak2™–6	-	812	
ESD	Human Body Model, JEDEC: JE	SD22-A114	-	4000	V
	Charge Device Model, JEDEC: J	ESD22-C101	-	2000	

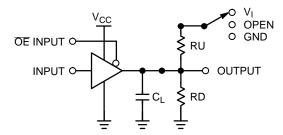
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply Voltage Operating		1.65	5.50	V
	Supply Voltage Data Retention		1.50	5.50	
V _{IN}	Input Voltage		0	5.5	V
V _{OUT}	Output Voltage	Active State	0	V _{CC}	V
		Three-State	0	5.5	
T _A	Operating Temperature		-40	+85	°C
t _r , t _f	Input Rise and Fall Times	V_{CC} at 1.8 V, 2.5 V ± 0.2 V	0	20	ns/V
		V_{CC} at 3.3 V ± 0.3 V	0	10	
		V_{CC} at 5.0 V ± 0.5 V	0	5	
θ_{JA}	Thermal Resistance	SC-74A / SOT23-5	-	320	°C/W
		SC-88A	-	377	
		MicroPak-6	-	154	
		MicroPak2-6	-	154	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 1. Unused inputs must be held HIGH or LOW. They may not float.

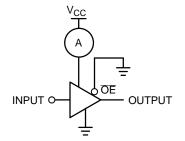
NC7SZ125


DC ELECTRICAL CHARACTERISTICS

				Τ ₄	<mark>م = +25</mark>	°C	T _A = -40	to +85°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Min	Тур	Max	Min	Max	Unit
V _{IH}	HIGH Level Input Voltage	1.65 to 1.95		0.65 V _{CC}	-	-	0.65 V _{CC}	-	V
		2.30 to 5.50		0.70 V _{CC}	-	-	0.70 V _{CC}	-	
VIL	LOW Level Input Voltage	1.65 to 1.95		-	-	0.35 V _{CC}	-	0.35 V _{CC}	V
		2.30 to 5.50		-	-	0.30 V _{CC}	-	0.30 V _{CC}	1
V _{OH}	HIGH Level Output Voltage	1.65	$V_{IN} = V_{IH} \text{ or } V_{IL},$	1.55	1.65	-	1.55	-	V
		1.80	I _{OH} = -100 μA	1.70	1.80	-	1.70	-	
		2.30		2.20	2.30	-	2.20	-	
		3.00		2.90	3.00	-	2.90	-	
		4.50		4.40	4.50	-	4.40	-	
		1.65	I _{OH} = -4 mA	1.29	1.52	-	1.29	-	
		2.30	I _{OH} = -8 mA	1.90	2.15	-	1.90	-	
		3.00	I _{OH} = -16 mA	2.40	2.80	-	2.40	-	
		3.00	I _{OH} = -24 mA	2.30	2.68	-	2.30	-	
		4.50	I _{OH} = -32 mA	3.80	4.20	-	3.80	-	
V _{OL}	LOW Level Output Voltage	1.65	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $I_{OL} = 100 \ \mu\text{A}$	-	0.00	0.10	-	0.00	V
		1.80		-	0.00	0.10	-	0.10	
		2.30		-	0.00	0.10	-	0.10	
		3.00		-	0.00	0.10	-	0.10	
		4.50		-	0.00	0.10	-	0.10	
		1.65	I _{OL} = 4 mA	-	0.80	0.24	-	0.24]
		2.30	I _{OL} = 8 mA	-	0.10	0.30	-	0.30	
		3.00	I _{OL} = 16 mA	-	0.15	0.40	-	0.40	
		3.00	I _{OL} = 24 mA	-	0.22	0.55	-	0.55	
		4.50	I _{OL} = 32 mA	-	0.22	0.55	-	0.55	
I _{IN}	Input Leakage Current	1.65 to 5.5	$0 \geq V_{IN} \geq 5.5~V$	-	-	±1	-	±10	μA
I _{OZ}	3–STATE Output Leakage	0 to 5.5	$\begin{array}{l} V_{IN} = V_{IH} \text{ or } V_{IL} \\ 0 \geq V_O \geq 5.5 \ V \end{array}$	-	_	±1	-	±10	μΑ
I _{OFF}	Power Off Leakage Current	0	V_{IN} or V_{OUT} = 5.5 V	-	-	1	-	10	μA
I _{CC}	Quiescent Supply Current	1.65 to 5.50	V _{IN} = 5.5 V, GND	-	-	2	-	20	μA

AC ELECTRICAL CHARACTERISTICS

				$T_A = +25^{\circ}C$ $T_A = -40 \text{ to } +85^{\circ}C$		to +85°C			
Symbol	Parameter	V _{CC} (V)	Conditions	Min	Тур	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Propagation Delay (Figure 4, 6)	1.65	$C_{L} = 15 \text{ pF},$	_	6.4	13.2	-	13.8	ns
		1.80	$R_D = 1 M\Omega$ S ₁ =OPEN	_	5.3	11.0	-	11.5	
		$2.50\pm\!\!0.20$		-	3.4	7.5	-	8.0	
		3.30 ±0.30		-	2.5	5.2	-	5.5	
		5.00 ±0.50		-	2.1	4.5	-	4.8	
		3.30 ±0.30		-	3.2	5.7	-	6.0	
		5.00 ±0.50	R _D = 500 Ω S ₁ = OPEN	-	2.6	5.0	-	5.3	
t _{PZL} , t _{PZH}	Output Enable Time	1.65	$C_{L} = 50 \text{ pF},$	-	8.4	15.0	-	15.6	ns
	(Figure 4, 6)	1.80	$R_D = 500 \Omega$ $RU = 500 \Omega$ $S_1 = GND \text{ for } t_{PZH}$ $S_1 = V_{IN} \text{ for } t_{PZL}$	-	7.0	12.5	-	13.0	
		2.50 ±0.20		_	4.6	8.5	-	9.0	
		3.30 ±0.30	$V_{IN} = 2 \cdot V_{CC}$	-	3.5	6.2	-	6.5	
		$5.00\pm\!\!0.50$		-	2.8	5.5	-	5.8	
t _{PLZ} , t _{PHZ}	Output Disable Time	1.65	$C_{L} = 50 \text{ pF},$	-	6.5	13.2	-	14.5	
	(Figure 4, 6)	1.80	R _D = 500 Ω RU = 500 Ω	-	5.4	11.0	-	12.0	
		$2.50\pm\!\!0.20$	$S_1 = GND \text{ for } t_{PHZ}$ $S_1 = V_{IN} \text{ for } t_{PLZ}$	-	3.5	8.0	-	8.5	
		$3.30\pm\!\!0.30$	$V_{IN} = 2 \cdot V_{CC}$	-	2.8	5.7	-	6.0	
		$5.00\pm\!\!0.50$		-	2.1	4.7	-	5.0	
C _{IN}	Input Capacitance	0.00		-	4	-	-	-	pF
C _{OUT}	Output Capacitance	0.00		-	8	-	-	-	
C _{PD}	Power Dissipation Capacitance (Note 2) (Figure 5)	3.30		-	17	-	-	-	pF


2. C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. C_{PD} is related to I_{CCD} dynamic operating current by the expression:
I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CC}static).

NOTE:

3. C_L includes load and stray capacitance; Input PRR = 1.0 MHz; t_W = 500 ns

Figure 4. AC Test Circuit

NOTE:

4. Input = AC Waveform; $t_r = t_f = 1.8$ ns; PRR = 10 MHz; Duty Cycle = 50%.

Figure 5. I_{CCD} Test Circuit

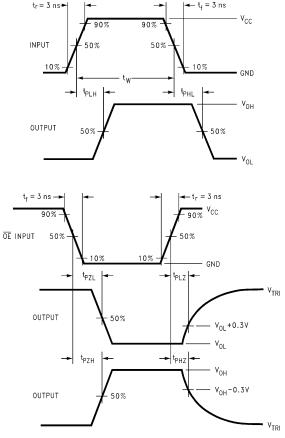


Figure 6. AC Waveforms

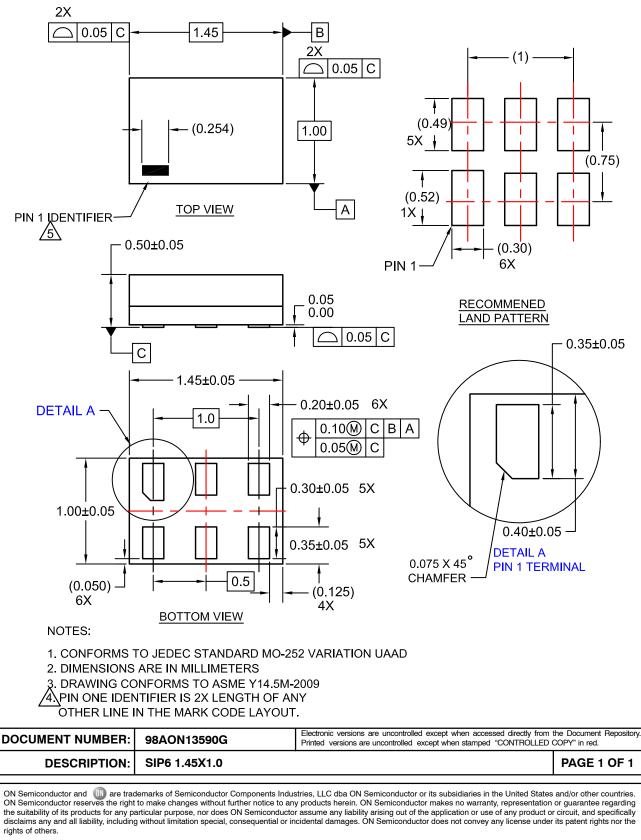
ORDERING INFORMATION

Part Number	Top Mark	Operating Temperature	Packages	Shipping [†]
NC7SZ125M5X	7Z25	–40 to +85°C	SC-74A	3000 / Tape & Reel
NC7SZ125P5X	Z25	−40 to +85°C	SC-88A	3000 / Tape & Reel
NC7SZ125L6X	DD	−40 to +85°C	MicroPak	5000 / Tape & Reel
NC7SZ125FHX	DD	−40 to +85°C	MicroPak2	5000 / Tape & Reel

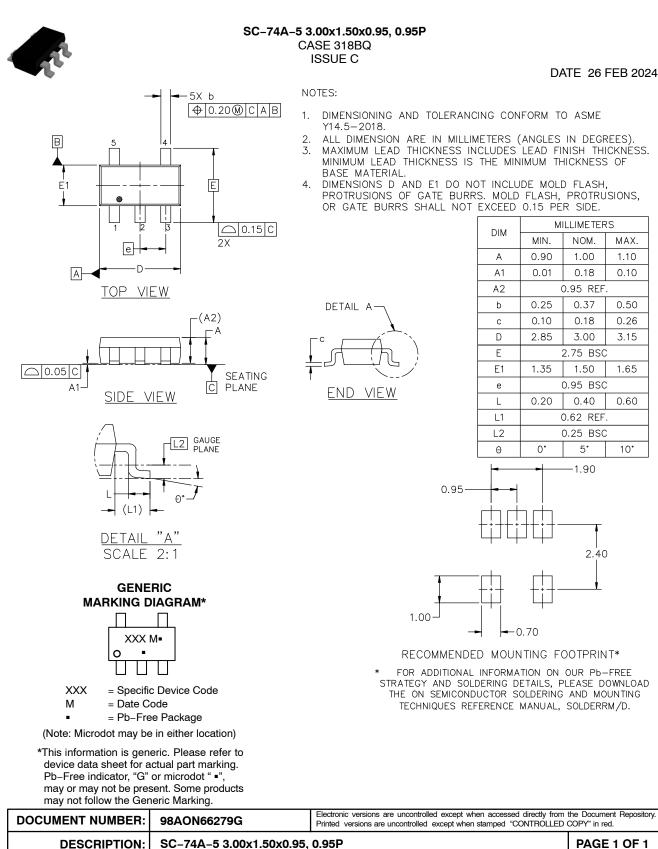
DISCONTINUED (Note 5)

NC7SZ125M5X-L22090	7Z25	−40 to +85°C	SOT23-5	3000 / Tape & Reel
NC7SZ125P5X-F22057	Z25	−40 to +85°C	SC-88A	3000 / Tape & Reel
NC7SZ125L6X-L22175	DD	−40 to +85°C	MicroPak	5000 / Tape & Reel
NC7SZ125FHX-L22175	DD	−40 to +85°C	MicroPak2	5000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


5. **DISCONTINUED:** These devices are not recommended for new design. Please contact your **onsemi** representative for information. The most current information on these devices may be available on <u>www.onsemi.com</u>.

MicroPak and MicroPak2 are trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.



SIP6 1.45X1.0 CASE 127EB ISSUE O

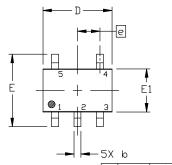
DATE 31 AUG 2016

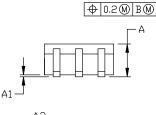
ONSEM¹.

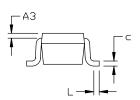
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

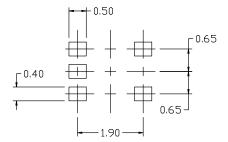
onsemí

SC-88A (SC-70-5/SOT-353) CASE 419A-02 ISSUE M


NDTES: 1. DIM


2.


З.


4.

DATE 11 APR 2023

RECOMMENDED MOUNTING FOOTPRINT

 For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

лтм	MI	MILLIMETERS				
DIM	MIN.	NDM.	MAX.			
Α	0.80	0.95	1.10			
A1			0.10			
A3		0.20 REF				
b	0.10	0.20	0.30			
C	0.10		0.25			
D	1.80	2.00	2.20			
E	2.00	2.10	2.20			
E1	1.15	1.25	1.35			
e		0.65 BS	C			
L	0.10	0.15	0.30			

DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,

PROTRUSIONS, OR GATE BURRS.MOLD FLASH, PROTRUSIONS,

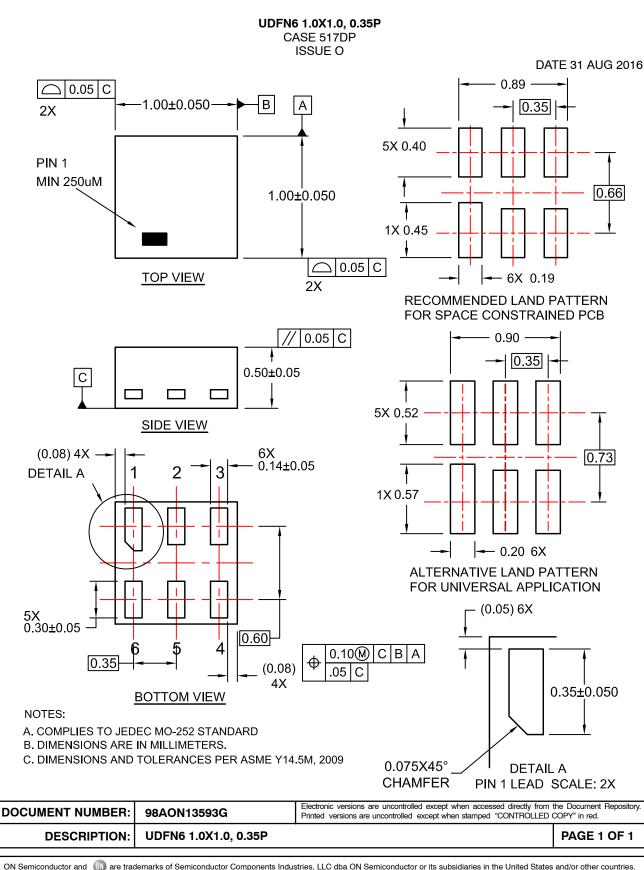
OR GATE BURRS SHALL NOT EXCEED 0.1016MM PER SIDE.

CONTROLLING DIMENSION: MILLIMETERS 419A-01 DBSDLETE, NEW STANDARD 419A-02

GENERIC MARKING

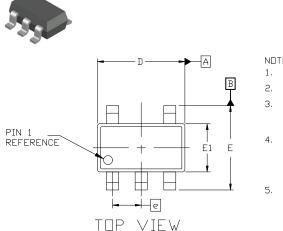
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

(Note: Microdot may be in either location)

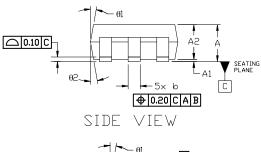

DOCUMENT NUMBER: 98ASB42984B Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. DESCRIPTION: SC-88A (SC-70-5/SOT-353) PAGE 1 OF 1	PIN 1. EMITTER 2 2. BASE 2 3. EMITTER 1 4. COLLECTOR 5. COLLECTOR 2/BASE	PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 1 5. COLLECTOR	PIN 1. CATHODE 2. COLLECTOR 3. N/C 4. BASE 5. EMITTER	PIN 1. ANODE 2. CATHODE 3. ANODE 4. ANODE 5. ANODE	style callout. If style t out in the datasheet r datasheet pinout or p	refer to the device
DESCRIPTION: SC-88A (SC-70-5/SOT-353) PAGE 1 OF 1	DOCUMENT NUMBER:	98ASB42984B				
	DESCRIPTION:	SC-88A (SC-70-	5/SOT–353)			PAGE 1 OF 1

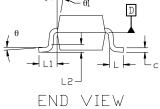
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

XXX = Specific Device Code


M = Date Code = Pb-Free Package

ON Semiconductor and unarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

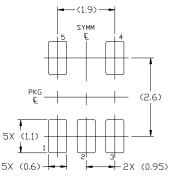



SOT-23, 5 Lead CASE 527AH **ISSUE A**

DATE 09 JUN 2021

NDTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 19894
- CONTROLLING DIMENSION: MILLIMETERS
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL
- DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.25 PER SIDE. D AND E1 DIMENSIONS ARE DETERMINED AT DATUM D.
- DIMENSION 'b' DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08mm TOTAL IN EXCESS OF THE 'b' DIMENSION AT MAXIMUM MATERIAL CONDITION. MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD SHALL NOT BE LESS THAN 0.07mm.


GENERIC **MARKING DIAGRAM***

XXX = Specific Device Code = Date Code М

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

	MILLIMETERS				
DIM	MIN.	NDM.	MAX.		
Α	0.90	_	1.45		
A1	0.00	—	0.15		
A2	0.90	1.15	1.30		
b	0.30	_	0.50		
С	0.08	_	0.22		
D	2				
E	2.80 BSC				
E1	1	.60 BSC			
e	0	.95 BSC			
L	0.30	0.45	0.60		
L1	0				
L2	0.25 REF				
θ	0*	4°	8 °		
01	0*	10°	15°		
02	0°	10°	15°		

RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON34320E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT–23, 5 LEAD		PAGE 1 OF 1

ON Semiconductor and 🔘 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>