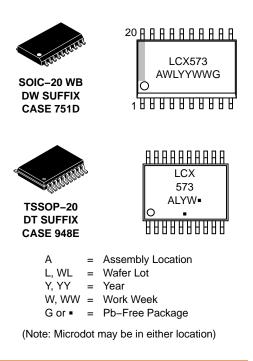
onsemi

With 5 V–Tolerant Inputs and Outputs (3–State, Non–Inverting)

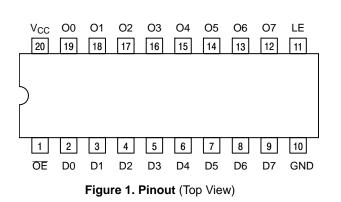

MC74LCX573

The MC74LCX573 is a high performance, non–inverting octal transparent latch operating from a 2.3 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_I specification of 5.5 V allows MC74LCX573 inputs to be safely driven from 5.0 V devices.

The MC74LCX573 contains 8 D-type latches with 3-state standard outputs. When the Latch Enable (LE) input is HIGH, data on the Dn inputs enters the latches. In this condition, the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-state standard outputs are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the standard outputs are in the high impedance state, but this does not interfere with new data entering into the latches. The LCX573 flow through design facilitates easy PC board layout.

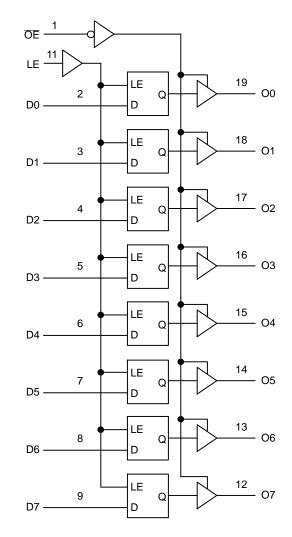
Features

- Designed for 2.3 to 3.6 V V_{CC} Operation
- 5.0 V Tolerant Interface Capability With 5.0 V TTL Logic
- Supports Live Insertion and Withdrawal
- I_{OFF} Specification Guarantees High Impedance When $V_{CC} = 0$ V
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (10 μA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance:
 - Human Body Model >2000 V
 - Machine Model >200 V
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant



ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.


NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 3.

MC74LCX573

PIN NAMES

Pins	Function	
ŌĒ	Output Enable Input	
LE	Latch Enable Input	
D0-D7	Data Inputs	
00–07	3-State Latch Outputs	

TRUTH TABLE					
	Inputs Outputs		Outputs		
ŌĒ	LE	Dn	On	Operating Mode	
L	H H	HL	HL	Transparent (Latch Disabled); Read Latch	
L	L	h I	H L	Latched (Latch Enabled) Read Latch	
L	L	Х	NC	Hold; Read Latch	
Н	L	Х	Z	Hold; Disabled Outputs	
H H	H H	H L	Z Z	Transparent (Latch Disabled); Disabled Outputs	
H H	L	h I	Z Z	Latched (Latch Enabled); Disabled Outputs	

H = High Voltage Level;

h = High Voltage Level One Setup Time Prior to the Latch Enable High-to-Low Transition

L = Low Voltage Level

I = Low Voltage Level One Setup Time Prior to the Latch Enable High-to-Low Transition

NC = No Change, State Prior to the Latch Enable High-to-Low Transition

X = High or Low Voltage Level or Transitions are Acceptable

Z = High Impedance State

For ICC Reasons DO NOT FLOAT Inputs

MAXIMUM RATINGS

Symbol	Parameter	Value	Condition	Units
V _{CC}	DC Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	$-0.5 \le V_{I} \le +7.0$		V
Vo	DC Output Voltage	$-0.5 \le V_{O} \le +7.0$	Output in 3-State	V
		$-0.5 \le V_{O} \le V_{CC} + 0.5$	Output in HIGH or LOW State (Note 1)	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	$V_{O} > V_{CC}$	mA
Ι _Ο	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current Per Supply Pin	±100		mA
I _{GND}	DC Ground Current Per Ground Pin	±100		mA
T _{STG}	Storage Temperature Range	-65 to +150		°C
MSL	Moisture Sensitivity		Level 1	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. I_O absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Тур	Max	Units
V _{CC}	Supply Voltage Operating Data Retention Only	2.0 1.5	2.5, 3.3 2.5, 3.3	3.6 3.6	V
VI	Input Voltage	0		5.5	V
V _O	Output Voltage (HIGH or LOW State) (3–State)	0 0		V _{CC} 5.5	V
I _{OH}				24 12 8	mA
I _{OL}	LOW Level Output Current $V_{CC} = 3.0 V - 3.6 V$ $V_{CC} = 2.7 V - 3.0 V$ $V_{CC} = 2.3 V - 2.7 V$			+24 +12 +8	mA
T _A	Operating Free–Air Temperature	-55		+125	°C
$\Delta t / \Delta V$	Input Transition Rise or Fall Rate, V _{IN} from 0.8 V to 2.0 V, V _{CC} = 3.0 V	0		10	ns/V

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74LCX573DWG	SOIC-20 (Pb-Free)	38 Units / Rail
MC74LCX573DWR2G	SOIC-20 (Pb-Free)	1000 Tape & Reel
MC74LCX573DTG	TSSOP-20 (Pb-Free)	75 Units / Rail
MC74LCX573DTR2G	TSSOP-20 (Pb-Free)	2500 Tape & Reel

DISCONTINUED (Note 2)

NLV74LCX573DTR2G*	TSSOP-20 (Pb-Free)	2500 Tape & Reel
-------------------	-----------------------	------------------

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.

2. DISCONTINUED: This device is not recommended for new design. Please contact your **onsemi** representative for information. The most current information on this device may be available on <u>www.onsemi.com</u>.

DC ELECTRICAL CHARACTERISTICS

			T _A = −40°C	to +85°C	T _A = −55°C	to +125°C	
Symbol	Characteristic	Condition	Min	Max	Min	Max	Units
V _{IH}	HIGH Level Input	$2.3 \text{ V} \leq \text{V}_{CC} \leq 2.7 \text{ V}$	1.7		1.7		V
	Voltage (Note 3)	$2.7~\textrm{V} \leq \textrm{V}_{\textrm{CC}} \leq 3.6~\textrm{V}$	2.0		2.0		1
VIL	LOW Level Input	$2.3~\textrm{V} \leq \textrm{V}_{\textrm{CC}} \leq 2.7~\textrm{V}$		0.7		0.7	V
	Voltage (Note 3)	$2.7~\textrm{V} \leq \textrm{V}_{\textrm{CC}} \leq 3.6~\textrm{V}$		0.8		0.8	
V _{OH}	HIGH Level Out-	2.3 V \leq V_{CC} \leq 3.6 V; I_{OL} = 100 μA	V _{CC} – 0.2		V _{CC} – 0.2		V
	put Voltage	$V_{CC} = 2.3 \text{ V}; \text{ I}_{OH} = -8 \text{ mA}$	1.8		1.8		
		$V_{CC} = 2.7 \text{ V}; I_{OH} = -12 \text{ mA}$	2.2		2.2		
		$V_{CC} = 3.0 \text{ V}; \text{ I}_{OH} = -18 \text{ mA}$	2.4		2.4		
		$V_{CC} = 3.0 \text{ V}; \text{ I}_{OH} = -24 \text{ mA}$	2.2		2.2		
V _{OL}	LOW Level Out-	$2.3~\text{V} \leq \text{V}_{CC} \leq 3.6~\text{V};~\text{I}_{OL}$ = 100 μA		0.2		0.2	V
	put Voltage	V _{CC} = 2.3 V; I _{OL} = 8 mA		0.6		0.6	
		V _{CC} = 2.7 V; I _{OL} = 12 mA		0.4		0.4	
		$V_{CC} = 3.0 \text{ V}; \text{ I}_{OL} = 16 \text{ mA}$		0.4		0.4	
		V _{CC} = 3.0 V; I _{OL} = 24 mA		0.55		0.60	
I _{OZ}	3–State Output Current	$\label{eq:VCC} \begin{array}{l} V_{CC} = 3.6 \ V, \ V_{IN} = V_{IH} \ or \ V_{IL}, \\ V_{OUT} = 0 \ to \ 5.5 \ V \end{array}$		±5		±5	μΑ
I _{OFF}	Power Off Leak- age Current	$V_{CC} = 0, V_{IN} = 5.5 \text{ V or } V_{OUT} = 5.5 \text{ V}$		10		10	μΑ
I _{IN}	Input Leakage Current	V_{CC} = 3.6 V, V_{IN} = 5.5 V or GND		±5		±5	μΑ
I _{CC}	Quiescent Supply Current	V_{CC} = 3.6 V, $V_{\rm IN}$ = 5.5 V or GND		10		10	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$2.3 \leq V_{CC} \leq 3.6$ V; V_{IH} = V_{CC} – 0.6 V		500		500	μΑ

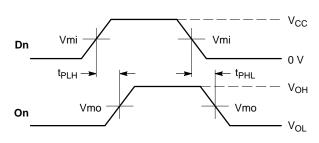
3. These values of V_1 are used to test DC electrical characteristics only.

AC CHARACTERISTICS t_R = t_F = 2.5 ns; R_L = 500 Ω

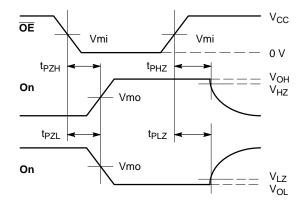
					Lin	nits			
				T _A = –55°C to +125°C					1
			V _{CC} = 3.3	V \pm 0.3 V	V _{CC} =	2.7 V	V _{CC} = 2.5	V \pm 0.2 V	1
			C _L =	50 pF	C _L =	50 pF	C _L =	30 pF	1
Symbol	Parameter	Waveform	Min	Max	Min	Max	Min	Max	Units
t _{PLH} t _{PHL}	Propagation Delay D_n to O_n	1	1.5 1.5	8.0 8.0	1.5 1.5	9.0 9.0	1.5 1.5	9.6 9.6	ns
t _{PLH} t _{PHL}	Propagation Delay LE to O _n	3	1.5 1.5	8.5 8.5	1.5 1.5	9.5 9.5	1.5 1.5	10.5 10.5	ns
t _{PZH} t _{PZL}	Output Enable Time to HIGH and LOW Level	2	1.5 1.5	8.5 8.5	1.5 1.5	9.5 9.5	1.5 1.5	10.5 10.5	ns
t _{PHZ} t _{PLZ}	Output Disable Time From High and Low Level	2	1.5 1.5	6.5 6.5	1.5 1.5	7.0 7.0	1.5 1.5	7.8 7.8	ns
t _s	Setup TIme, HIGH or LOW D_n to LE	3	2.5		2.5		4.0		
t _h	Hold Time, HIGH or LOW D_n to LE	3	1.5		1.5		2.0		
tw	LE Pulse Width, HIGH	3	3.3		3.3		4.0		
t _{OSHL} t _{OSLH}	Output-to-Output Skew (Note 4)			1.0 1.0					ns

4. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

MC74LCX573

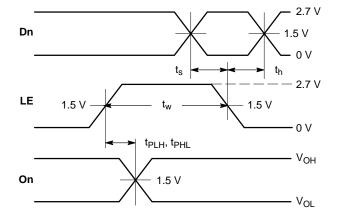

DYNAMIC SWITCHING CHARACTERISTICS


			T _A = +25°C			
Symbol	Characteristic	Condition	Min	Тур	Max	Units
V _{OLP}	Dynamic LOW Peak Voltage (Note 5)	$ \begin{array}{l} {\sf V}_{CC} = 3.3 \; {\sf V}, \; {\sf C}_{L} = 50 \; {\sf pF}, \; {\sf V}_{IH} = 3.3 \; {\sf V}, \; {\sf V}_{IL} = 0 \; {\sf V} \\ {\sf V}_{CC} = 2.5 \; {\sf V}, \; {\sf C}_{L} = 30 \; {\sf pF}, \; {\sf V}_{IH} = 2.5 \; {\sf V}, \; {\sf V}_{IL} = 0 \; {\sf V} \end{array} $		0.8 0.6		V V
V _{OLV}	Dynamic LOW Valley Voltage (Note 5)	$ \begin{array}{l} {\sf V}_{CC} = 3.3 \; {\sf V}, \; {\sf C}_{L} = 50 \; {\sf pF}, \; {\sf V}_{IH} = 3.3 \; {\sf V}, \; {\sf V}_{IL} = 0 \; {\sf V} \\ {\sf V}_{CC} = 2.5 \; {\sf V}, \; {\sf C}_{L} = 30 \; {\sf pF}, \; {\sf V}_{IH} = 2.5 \; {\sf V}, \; {\sf V}_{IL} = 0 \; {\sf V} \end{array} $		-0.8 -0.6		V V


5. Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

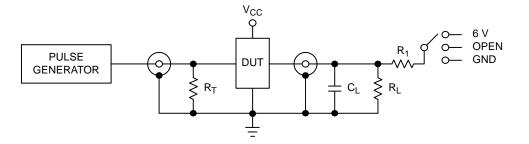
CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Parameter Condition		Units
C _{IN}	Input Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	7	pF
C _{I/O}	Input/Output Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	10 MHz, V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	25	pF



WAVEFORM 2 - OUTPUT ENABLE AND DISABLE TIMES

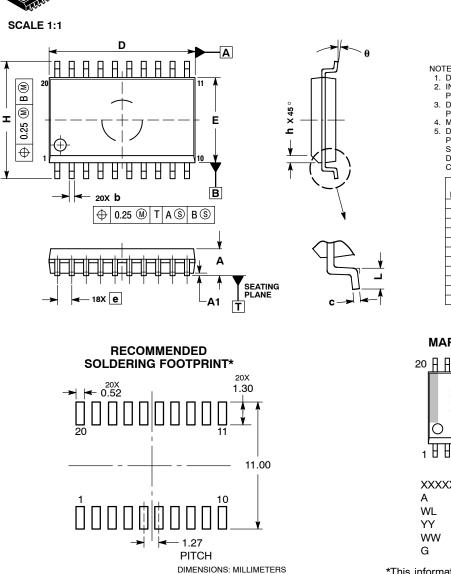
 $t_R = t_F = 2.5 \text{ ns}, 10\% \text{ to } 90\%; f = 1 \text{ MHz}; t_W = 500 \text{ ns}$


		V _{CC}			
Symbol	3.3 V \pm 0.3 V	2.7 V	$\textbf{2.5 V} \pm \textbf{0.2 V}$		
Vmi	1.5 V	1.5 V	V _{CC} /2		
Vmo	1.5 V	1.5 V	V _{CC} /2		
V _{HZ}	V _{OL} + 0.3 V	V _{OL} + 0.3 V	V _{OL} + 0.15 V		
V _{LZ}	V _{OL} – 0.3 V	V _{OL} – 0.3 V	V _{OL} – 0.15 V		

WAVEFORM 3 – LE to On PROPAGATION DELAYS, LE MINIMUM PULSE WIDTH, Dn to LE SETUP AND HOLD TIMES

 t_R = t_F = 2.5 ns, 10% to 90%; f = 1 MHz; t_W = 500 ns except when noted

Figure 3. AC Waveforms


MC74LCX573

Test	Switch
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6 V at V _{CC} = 3.3 ± 0.3 V 6 V at V _{CC} = 2.5 ± 0.2 V
Open Collector/Drain $t_{\mbox{PLH}}$ and $t_{\mbox{PHL}}$	6 V
t _{PZH} , t _{PHZ}	GND

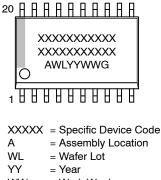
 $\begin{array}{l} C_L = 50 \ \text{pF} \ \text{at} \ V_{CC} = \ 3.3 \pm 0.3 \ \text{V} \ \text{or equivalent} \ (\text{includes jig and probe capacitance}) \\ C_L = \ 30 \ \text{pF} \ \text{at} \ V_{CC} = \ 2.5 \pm 0.2 \ \text{V} \ \text{or equivalent} \ (\text{includes jig and probe capacitance}) \\ R_L = \ R_1 = \ 500 \ \Omega \ \text{or equivalent} \\ R_T = \ Z_{OUT} \ \text{of pulse generator} \ (\text{typically} \ 50 \ \Omega) \end{array}$

Figure 4. Test Circuit

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DATE 22 APR 2015

DUSEM

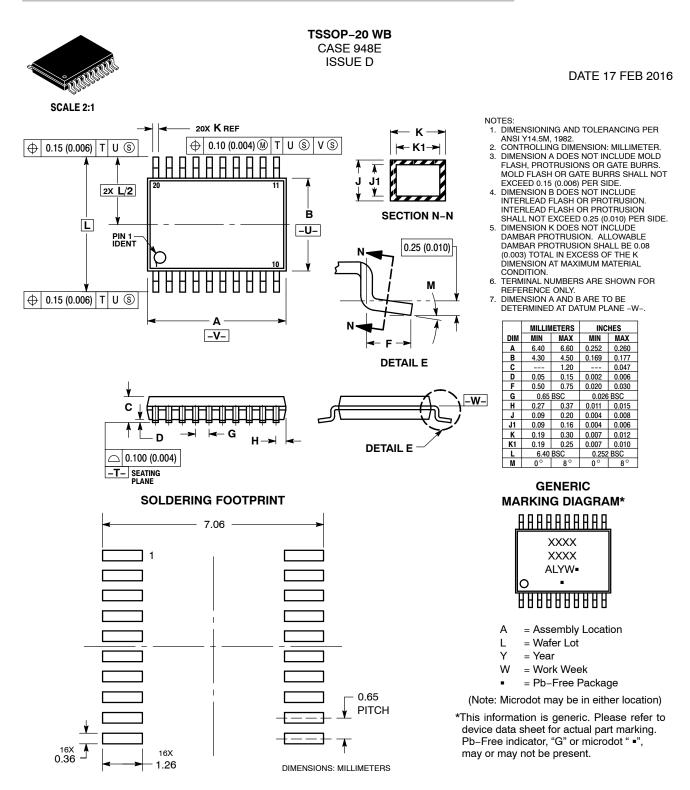

NOTES:

SOIC-20 WB CASE 751D-05 ISSUE H

- 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES
- PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		
DIM	MIN	MAX	
Α	2.35	2.65	
A1	0.10	0.25	
b	0.35	0.49	
C	0.23	0.32	
D	12.65	12.95	
Е	7.40	7.60	
е	1.27 BSC		
Н	10.05	10.55	
h	0.25	0.75	
L	0.50	0.90	
θ	0 °	7 °	

GENERIC **MARKING DIAGRAM***



= Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42343B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-20 WB		PAGE 1 OF 1		
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.					

DOCUMENT NUMBER:	98ASH70169A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSSOP-20 WB		PAGE 1 OF 1

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the right or others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>