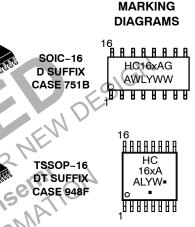
Presettable Counters

High–Performance Silicon–Gate CMOS

The MC74HC161A and HC163A are identical in pinout to the LS161 and LS163. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

The HC161A and HC163A are programmable 4-bit binary counters with asynchronous and synchronous reset, respectively.


Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1.0 µA
- High Noise Immunity Characteristic of CMOS Devices
- THIS DEVICE PLEASENTATIVE PLEASENT PLEASENTATIVE PLEASENTATIVE PLEASENTATIVE PLEASENTATIVE PLEASENT • In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- Chip Complexity: 192 FETs or 48 Equivalent Gates
- These are Pb-Free Devices

ON Semiconductor®

http://onsemi.com

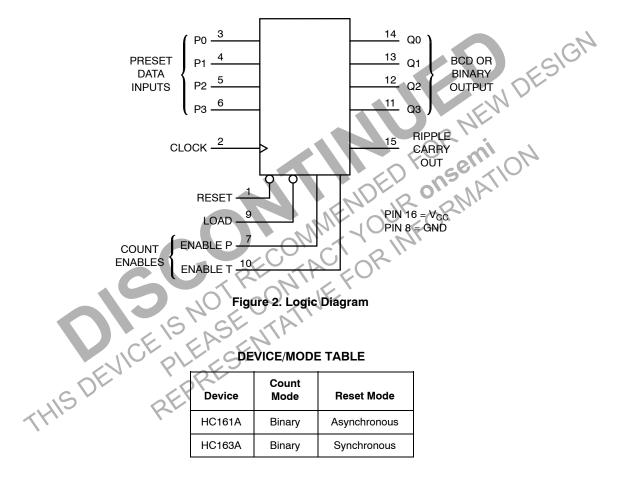
- = 1 or 3 = Assembly Location = Wafer Lot
- = Year
- = Work Week
- = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 13 of this data sheet.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


© Semiconductor Components Industries, LLC, 2013 May, 2024 - Rev. 14

RESET	1●	16	J ∨ _{cc}
сгоск [2	15	RIPPLE CARRY OUT
P0 [3	14	
P1 [4	13] Q1
P2 [5	12] Q2
P3 [6	11] Q3
ENABLE P	7	10] ENABLE T
GND [8	9	LOAD

		Output			
Clock	Reset*	Load	Enable P	Enable T	Q
	L	Х	Х	Х	Reset
	Н	L	X	Х	Load Preset Data
	Н	Н	н	Н	Count
	Н	Н	L	Х	No Count
	Н	Н	Х	L	No Count

FUNCTION TABLE

*HC163A only. HC161A is an Asynchronous Reset Device H = high |eve|, L = low |eve|, X = don't care

Figure 1. Pin Assignment

MAXIMUM RATINGS

Symbol	F	Parameter	Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +7.0	V
VI	DC Input Voltage		-0.5 to V _{CC} $+0.5$	V
Vo	DC Output Voltage	(Note 1)	$-0.5 \leq V_O \leq V_{CC} + 0.5$	V
Ι _{ΙΚ}	DC Input Diode Current		±20	mA
I _{OK}	DC Output Diode Current		±25	mA
Ι _Ο	DC Output Sink Current		±25	mA
I _{CC}	DC Supply Current per Supply Pin		±50	mA
I _{GND}	DC Ground Current per Ground Pin		±50	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case f	or 10 Seconds	260	°C
Τ _J	Junction Temperature Under Bias		+ 150	°C
θ_{JA}	Thermal Resistance	SOIC TSSOP	112 148-51	°C/W
PD	Power Dissipation in Still Air at 85°C	SOIC TSSOP	500 450	mW
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 30% – 35%	UL 94 V-0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 2) Machine Model (Note 3)	2000 >200	V
ILATCHUP	Latchup Performance	Above V_{CC} and Below GND at 85°C (Note 4)	±300	mA

 ILACHUP
 Eaterlup Ferrormance
 Addres V Cc and below GND at 85 C (Note 4)
 1.500
 IIIA

 Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

 1.
 I_O absolute maximum rating must be observed.

 2.
 Tested to EIA/JESD22-A114-A.

 3.
 Tested to EIA/JESD22-A115-A.

 4.
 Tested to EIA/JESD78.

Symbol	Parameter		Min	Мах	Unit
V _{CC}	DC Supply Voltage	(Referenced to GND)	2.0	6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage	(Referenced to GND)	0	V _{CC}	V
T _A	Operating Temperature, All Package Types		- 55	+ 125	°C
t _r , t _f	Input Rise and Fall Time (Figure 4)	$V_{CC} = 2.0 V V_{CC} = 3.0 V V_{CC} = 4.5 V V_{CC} = 6.0 V$	0 0 0 0	1000 600 500 400	ns

5. Unused inputs may not be left open. All inputs must be tied to a high- or low-logic input voltage level.

				V _{CC}	Guaranteed Limit			
Symbol	Parameter	Test Condition	ons	V	–55 to 25°C	≤ 85°C	≤ 125°C	Uni
VIH	Minimum High-Level	$V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V or } V_{CC}$	0.1 V	2.0	1.5	1.5	1.5	V
	Input Voltage	$ I_{out} \le 20 \mu A$		3.0	2.1	2.1	2.1	
		, out,		4.5	3.15	3.15	3.15	
				6.0	4.2	4.2	4.2	
VIL	Maximum Low-Level	$V_{out} = 0.1 \text{ V or } V_{CC} - $	0.1 V	2.0	0.5	0.5	0.5	V
	Input Voltage	$ I_{out} \le 20 \ \mu A$		3.0	0.9	0.9	0.9	
				4.5	1.35	1.35	1.35	
				6.0	1.8	1.8	1.8	
V _{OH}	Minimum High-Level	$V_{in} = V_{IH} \text{ or } V_{IL}$		2.0	1.9	1.9	1.9	V
	Output Voltage	$ I_{out} \le 20 \ \mu A$		4.5	4.4	4.4	4.4	
				6.0	5.9	5.9	5.9	
			$ t \le 3.6 \text{ mA}$	3.0	2.48	2.34	2.2	
		I _{ol}	$ t \le 4.0 \text{ mA}$	4.5	3.98	3.84	3.7	
		Ι _{οι}	$ t \le 5.2 \text{ mA}$	6.0	5.48	5.34	5.2	•
V _{OL}	Maximum Low-Level	$V_{in} = V_{IH} \text{ or } V_{IL}$		2.0	0.1	0.1	0.1	V
	Output Voltage	$ I_{out} \le 20 \ \mu A$		4.5	0.1	0.1	0.1	
				6.0	0.1	0.1	0.1	
		V _{in} = V _{IH} or V _{IL} I _{ou}	$ _{tt} \leq 3.6 \text{ mA}$	3.0	0.26	0.33	0.4	
		l _{ou}	$ t \le 4.0 \text{ mA}$	4.5	0.26	0.33	0.4	
		Π _{οι}	_{it} ≤ 5.2 mA	6.0	0.26	0.33	0.4	
I _{in}	Maximum Input	V _{in} = V _{CC} or GND		6.0	±0.1	±1.0	± 1.0	μA
	Leakage Current			K'	0			
ICC	Maximum Quiescent	$V_{in} = V_{CC}$ or GND	EN	6.0	4.0	40	160	μA
	Maximum Input Leakage Current Maximum Quiescent Supply Current	NOT REON	IAC FC	RIT				

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

			v _{cc}	Guar	anteed Lim	it	
Symbol	Parameter	Figure	V	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
f _{max}	Maximum Clock Frequency	4, 10	2.0	6	5	4	MHz
	(50% Duty Cycle)		3.0	15	12	10	
	(Note 6)		4.5	30	24	20	
			6.0	35	28	24	
t _{PLH}	Maximum Propagation Delay,	4, 10	2.0	120	160	200	ns
	Clock to Q		3.0	75	120	150	
			4.5	20	23	28	
			6.0	16	20	22	
t _{PHL}		4, 10	2.0	145	185	220	ns
			3.0	100	135	150	
			4.5	22	25	30	
			6.0	18	20	23	
t _{PHL}	Maximum Propagation Delay,	5, 10	2.0	145	185	220	ns
	Reset to Q (HC161A Only)		3.0	100	135	150	
			4.5 6.0	20 17	22 19	25 21	
touu	Maximum Propagation Delay,	6, 10	2.0	110	150	190	ns
t _{PLH}	Enable T to Ripple Carry Out	0, 10	3.0	60	115	140	113
			4.5	16	18	20	
			6.0	14	15	17	
t _{PHL}		6, 10	2.0	135	175	210	ns
			3.0	100	130	160	
			4.5		20	22	
			6.0	18 5 15	16	20	
t _{PLH}	Maximum Propagation Delay,	4, 10	2,0	120	160	200	ns
	Clock to Ripple Carry Out		3,0	75	135	150	
		$\sim \prec$	4.5	22	27	30	
		C	6.0	18	22	25	
t _{PHL}		4, 10	2.0	145	185	220	ns
			3.0	100	135	150	
			4.5	22	28	35	
	NULUTI	3	6.0	20	24	28	
t _{PHL}	Clock to Ripple Carry Out	5, 10	2.0	155	190	230	ns
	neset to hipple Garry Out		3.0	120	140	155	
	(HC161A Only)		4.5	22	26	30	
	EV. Profes		6.0	18	22	25	
t _{TLH} ,	Maximum Output Transition Time,	5, 10	2.0	75	95	110	ns
t _{THL}	Any Output		3.0	30	40	55	
~	Ki K		4.5	15	19	22	
	2		6.0	13	16	19	
		1					

AC ELECTRICAL CHARACTERISTICS (C_L = 50 pF, Input t_r = t_f = 6.0 ns)

6. Applies to noncascaded/nonsynchronous clocked configurations only with synchronously cascaded counters. (1) Clock to Ripple Carry Out propagation delays. (2) Enable T or Enable P to Clock setup times and (3) Clock to Enable T or Enable P hold times determine f_{max}. However, if Ripple Carry out of each stage is tied to the Clock of the next stage (nonsynchronously clocked) the f_{max} in the table above is applicable. See Applications information in this data sheet.

		Typical @ 25°C, V _{CC} = 5.0 V	
C _{PD}	Power Dissipation Capacitance (Per Gate) (Note 7)	45	pF

7. Used to determine the no-load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

TIMING REQUIREMENTS (C_L = 50 pF, Input $t_r = t_f = 6.0$ ns)

			v _{cc}	Guar	anteed Lim	It	
Symbol	Parameter	Figure	v	– 55 to 25°C	≤ 85 ° C	≤ 125°C	Unit
t _{su}	Minimum Setup Time,	8	2.0	40	60	80	ns
	Preset Data Inputs to Clock		3.0	20	30	40	
			4.5	15	20	30	
			6.0	12	18	20	
t _{su}	Minimum Setup Time,	8	2.0	60	75	90	ns
	Load to Clock		3.0	25	30	40	
			4.5 6.0	15 12	20 18	30 20	
t _{su}	Minimum Setup Time,	7	2.0	60	75	90	ns
'su	Reset to Clock (HC163A Only)	1	3.0	25	30	30 40	115
			4.5	20	25	35	
			6.0	17	23	25	
t _{su}	Minimum Setup Time,	9	2.0	80	95	110	ns
	Enable T or Enable P to Clock		3.0	35	40	50	
			4.5 6.0	20 17	25 23	35	
t _h	Minimum Hold Time,	8	2.0	3	3	3	ns
чh	Clock to Load or Preset Data Inputs	0	3.0	3	3	3	115
			4.5	3	3	3	
			6.0	3	3	3	
t _h	Minimum Hold Time,	7	2.0	3	3	3	ns
	Clock to Reset (HC163A Only)		3.0	3	3	3	
			4:5 6.0	F 3 3501	3	3 3	
t _h	Minimum Hold Time,	9	2,0	321	3	3	ns
-11	Clock to Enable T or Enable P		3,0	3	3	3	
		~ 1	4.5	3	3	3	
		\vec{C}	6.0	3	3	3	
t _{rec}	Minimum Recovery Time,	5	2.0	80	95	110	ns
	Reset Inactive to Clock (HC161A Only)	ZX	3.0	35	40	50	
	Reset Inactive to Clock (HC161A Only)	JE	4.5 6.0	15 12	20 17	26 23	
t _{rec}	Minimum Recovery Time;	8	2.0	80	95	110	ns
Tec	Minimum Recovery Time, Load Inactive to Clock		3.0	35	40	50	
	VIUVALE' CEL		4.5	15	20	26	
	ENTE PROEST		6.0	12	17	23	
t _w	Minimum Pulse Width,	4	2.0	60	75	90	ns
	Clock		3.0	25	30	40	
く			4.5	12	15	18	
		-	6.0	10	13	15	
tw	Minimum Pulse Width, Reset (HC161A Only)	5	2.0 3.0	60 25	75 30	90 40	ns
			3.0 4.5	25 12	30 15	40 18	
			4.5 6.0	12	13	15	
t _r , t _f	Maximum Input Rise and Fall Times		2.0	1000	1000	1000	ns
12 1			3.0	800	800	800	
			4.5	500	500	500	
			6.0	400	400	400	

FUNCTION DESCRIPTION

The HC161A/163A are programmable 4-bit synchronous counters that feature parallel Load, synchronous or asynchronous Reset, a Carry Output for cascading, and count-enable controls.

The HC161A and HC163A are binary counters with asynchronous Reset and synchronous Reset, respectively.

INPUTS

Clock (Pin 2)

The internal flip-flops toggle and the output count advances with the rising edge of the Clock input. In addition, control functions, such as resetting and loading, occur with the rising edge of the Clock input.

Preset Data Inputs P0, P1, P2, P3 (Pins 3, 4, 5, 6)

These are the data inputs for programmable counting. Data on these pins may be synchronously loaded into the internal flip-flops and appear at the counter outputs. P0 (Pin 3) is the least-significant bit and P3 (Pin 6) is the most-significant bit.

OUTPUTS

Q0, Q1, Q2, Q3 (Pins 14, 13, 12, 11)

These are the counter outputs. Q0 (Pin 14) is the least-significant bit and Q3 (Pin 11) is the most-significant bit.

Ripple Carry Out (Pin 15)

When the counter is in its maximum state, 1111, this output goes high, providing an external look-ahead carry pulse that may be used to enable successive cascaded counters. Ripple Carry Out remains high only during the maximum count state. The logic equation for this output is:

Ripple Carry Out = Enable T • Q0 • Q1 • Q2 • Q3

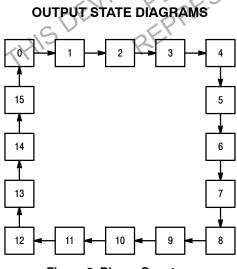


Figure 3. Binary Counters

CONTROL FUNCTIONS

Resetting

A low level on the Reset pin (Pin 1) resets the internal flip-flops and sets the outputs (Q0 through Q3) to a low level. The HC161A resets asynchronously, and the HC163A resets with the rising edge of the Clock input (synchronous reset).

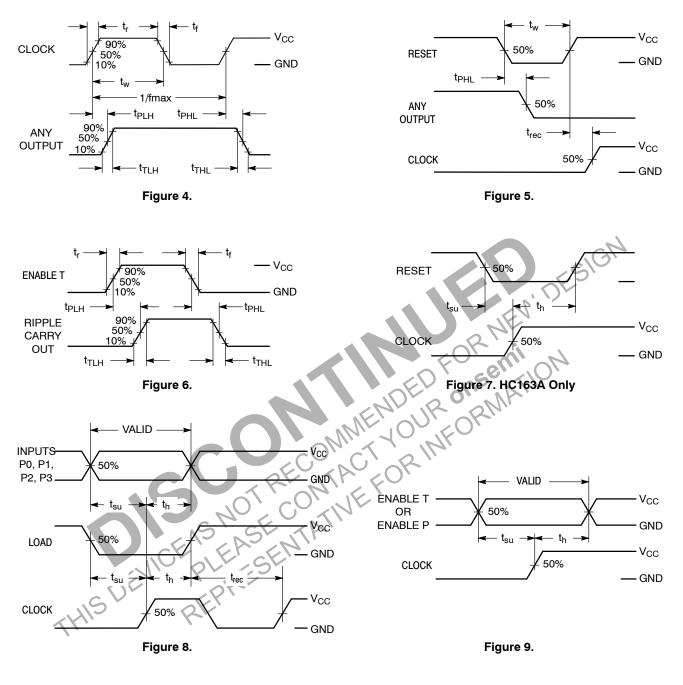
Loading

With the rising edge of the Clock, a low level on Load (Pin 9) loads the data from the Preset Data input pins (P0, P1, P2, P3) into the internal flip–flops and onto the output pins, Q0 through Q3. The count function is disabled as long as Load is low.

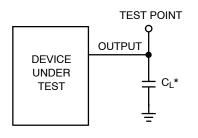
Count Enable/Disable

These devices have two count-enable control pins: Enable P (Pin 7) and Enable T (Pin 10). The devices count when these two pins and the Load pin are high. The logic equation is:

Count Enable = Enable P • Enable T • Load

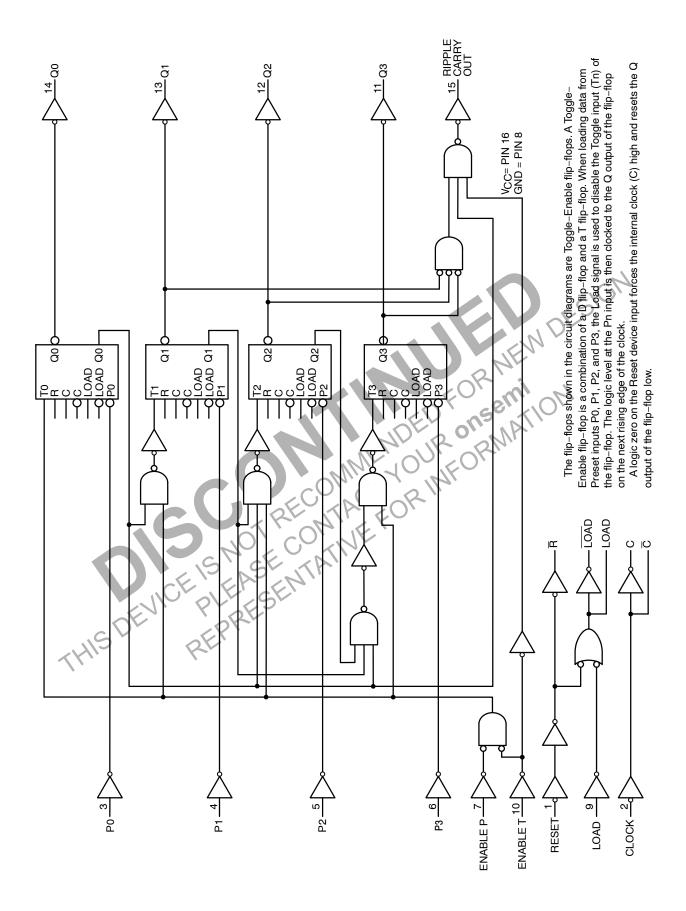

The count is either enabled or disabled by the control inputs according to Table 1. In general, Enable P is a count–enable control: Enable T is both a count–enable and a Ripple–Carry Output control.

Control Inputs			Result at Outputs		
Load	Enable P	Enable T	Q0 – Q3	Ripple Carry Out	
Н	Н	Н	Count		
L	Н	Н	No Count	High when Q0–Q3 are maximum*	
х	L	Н	No Count	High when Q0-Q3 are maximum*	
х	х	L	No Count	L	


Table 1. Count Enable/Disable

*Q0 through Q3 are maximum when Q3, Q2, Q1, Q0 = 1111.

SWITCHING WAVEFORMS



TEST CIRCUIT

*Includes all probe and jig capacitance

Figure 10.

Sequence illustrated in waveforms:

- 1. Reset outputs to zero.
- 2. Preset to binary twelve.
- 3. Count to thirteen, fourteen, fifteen, zero, one and two.

4. Inhibit.

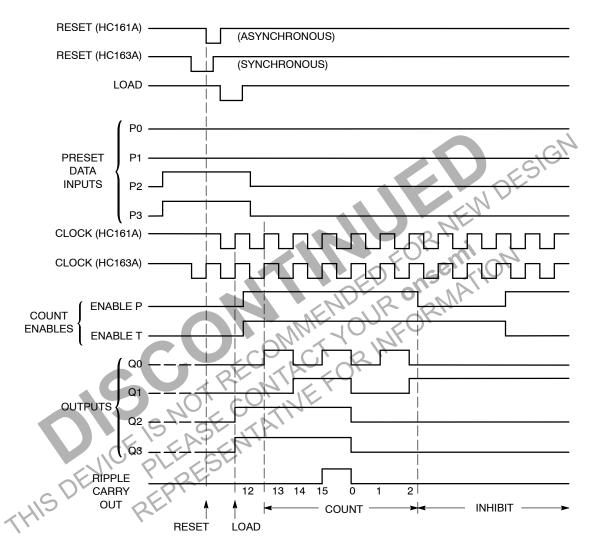


Figure 12. Timing Diagram

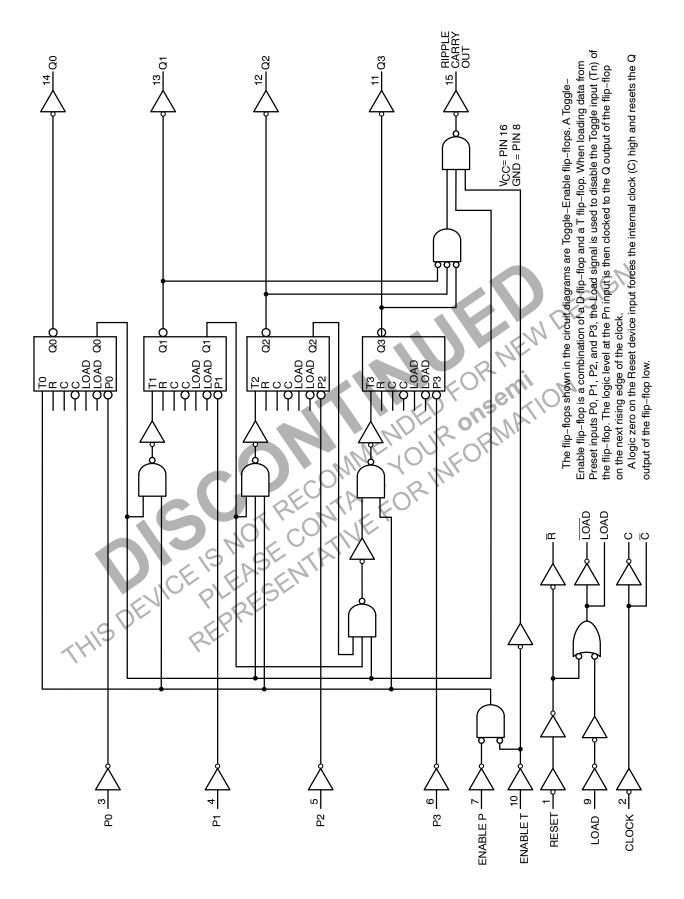


Figure 13. 4–Bit Binary Counter with Synchronous Reset (MC74HC163A)

TYPICAL APPLICATIONS CASCADING

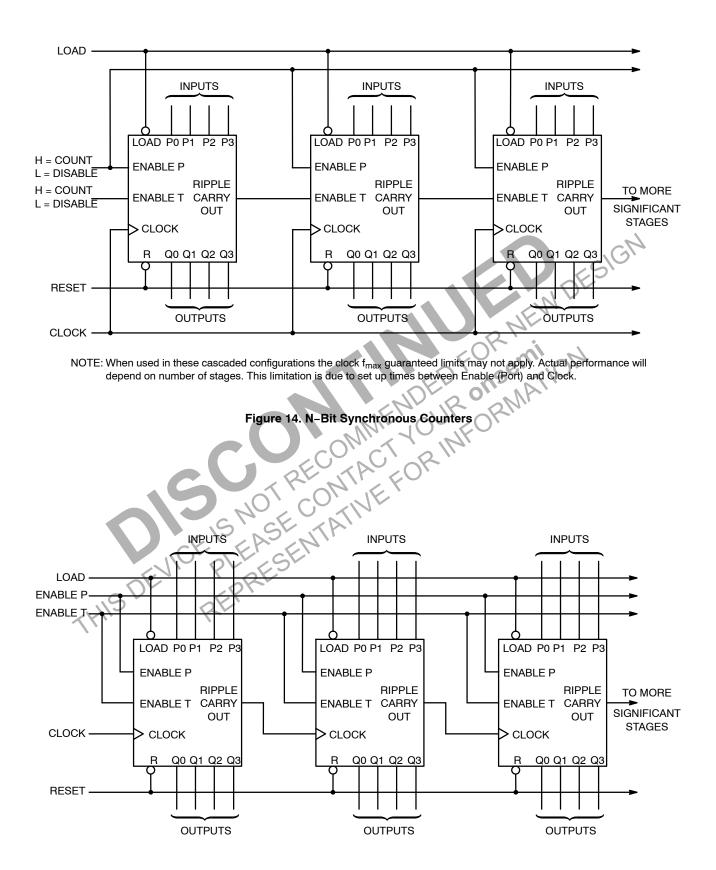


Figure 15. Nibble Ripple Counter

TYPICAL APPLICATIONS VARYING THE MODULUS

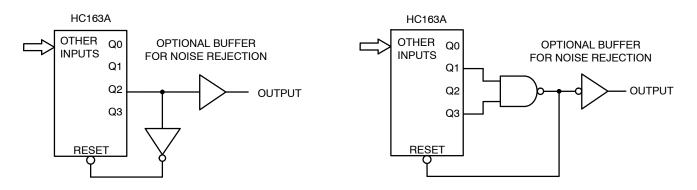


Figure 16. Modulo-5 Counter

Figure 17. Modulo-11 Counter

C The HC163A facilitates designing counters of any modulus with minimal external logic. The output is glitch-free due to FORNEWLY the synchronous Reset.

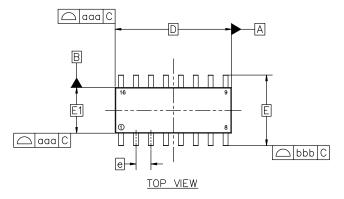
		S Statut
Device	Package	Shipping [†]
MC74HC161ADTG	TSSOP-16 (Pb-Free)	96 Units / Tube
MC74HC163ADTG	TSSOP-16 (Pb-Free)	96 Units / Tube
MC74HC161ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HC161ADR2G	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel
MC74HC161ADTR2G	TSSOP-16*	2500 Units / Tape & Reel
MC74HC163ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HC163ADR2G	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel
MC74HC163ADTR2G	TSSOP-16*	2500 Units / Tape & Reel

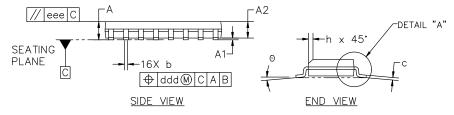
ORDERING INFORMATION

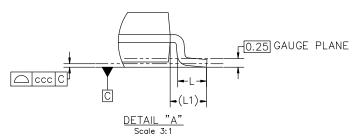
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*This package is inherently Pb-Free.

. esteric

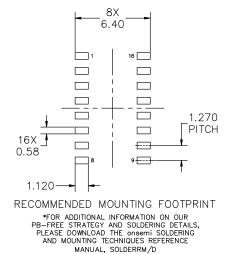

SOIC-16 9.90x3.90x1.50 1.27P CASE 751B ISSUE L


DATE 29 MAY 2024


onsemi

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
- 2. DIMENSION IN MILLIMETERS. ANGLE IN DEGREES.
- 3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15mm PER SIDE.
- DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127mm TOTAL IN EXCESS OF THE b DIMENSION AT MAXIMUM MATERIAL CONDITION.



DIM	A ALA L		
Dilwi	MIN	NOM	MAX
А	1.35	1.55	1.75
A1	0.00	0.05	0.10
A2	1.35	1.50	1.65
b	0.35	0.42	0.49
с	0.19	0.22	0.25
D		9.90 BSC	
E		6.00 BSC	
E1		3.90 BSC	
е		1.27 BSC	
h	0.25		0.50
L	0.40	0.83	1.25
L1		1.05 REF	
Θ	0.		7'
TOLERAN	CE OF FC	RM AND	POSITION
aaa		0.10	
bbb		0.20	
ccc		0.10	
ddd		0.25	
eee		0.10	

MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B	BASB42566B Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOIC-16 9.90X3.90X1.50 1	SOIC-16 9.90X3.90X1.50 1.27P				
onsemi and OOSEM) are trademarks of Semiconductor Components Industries LLC dia onsemi or its subsidiaries in the United States and/or other countries onsemi reserves						

the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi asyme any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights of others.

RANCING PER ASME Y14.5M, 2 RS. ANGLE IN DEGREES.

© Semiconductor Components Industries, LLC, 2019

onsemi

SOIC-16 9.90x3.90x1.50 1.27P CASE 751B ISSUE L

DATE 29 MAY 2024

GENERIC MARKING DIAGRAM*

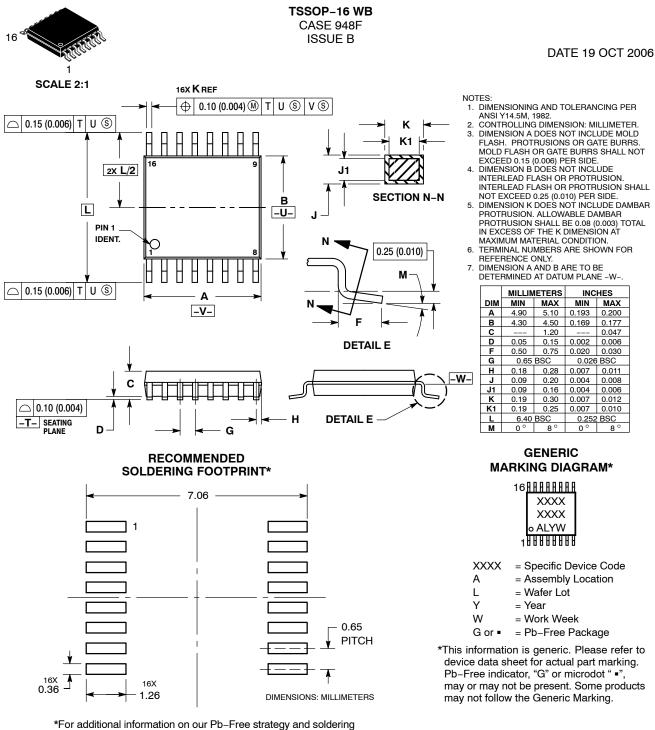
16	A	A	A	A	A	A	A	A.	
		XX)							
		XX	XX	XX	XX	XX)	XX	X	
	O AWLYWW								
1	Ŧ	H	H	H	H	H	H	Ŧ	I

XXXXX = Specific Device Code

A = Assembly Location

- WL = Wafer Lot
- Y = Year
- WW = Work Week
- G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.


STYLE 1:		STYLE 2:		STYLE 3:	ç	STYLE 4:	
PIN 1.	COLLECTOR	PIN 1.	CATHODE	PIN 1.		PIN 1.	COLLECTOR, DYE #1
2.	BASE	2.	ANODE	2.	BASE. #1	2.	
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER, #1	3.	COLLECTOR, #2
4.	NO CONNECTION	4.	CATHODE	4.	,	4.	COLLECTOR, #2
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3
6.	BASE	6.	NO CONNECTION	6.	BASE, #2	6.	COLLECTOR, #3
7.	COLLECTOR	7.	ANODE	7.	EMITTER, #2	7.	COLLECTOR, #4
8.	COLLECTOR	8.	CATHODE	8.	COLLECTOR, #2	8.	COLLECTOR, #4
9.	BASE	9.	CATHODE	9.	COLLECTOR, #3	9.	BASE, #4
10.	EMITTER	10.	ANODE	10.	BASE, #3	10.	EMITTER, #4
11.	NO CONNECTION	11.	NO CONNECTION	11.	EMITTER, #3	11.	BASE, #3
12.	EMITTER	12.	CATHODE	12.	COLLECTOR, #3	12.	EMITTER, #3
13.	BASE	13.	CATHODE	13.	COLLECTOR, #4	13.	BASE, #2
14.	COLLECTOR	14.	NO CONNECTION	14.	BASE, #4	14.	EMITTER, #2
15.	EMITTER	15.	ANODE	15.	EMITTER, #4	15.	BASE, #1
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1
STYLE 5:		STYLE 6:		STYLE 7:			
PIN 1.	DRAIN, DYE #1	PIN 1.	CATHODE	PIN 1.	SOURCE N-CH		
2.	DRAIN, #1	2.	CATHODE	2.	COMMON DRAIN (OUTPUT)	
3.	DRAIN, #2	3.	CATHODE	3.	COMMON DRAIN (OUTPUT)	
4.	DRAIN, #2	4.	CATHODE	4.	GATE P-CH		
5.	DRAIN, #3	5.	CATHODE	5.	COMMON DRAIN (OUTPUT)	
6.	DRAIN, #3	6.	CATHODE	6.	COMMON DRAIN (OUTPUT)	
7.	DRAIN, #4	7.	CATHODE	7.	COMMON DRAIN (OUTPUT)	
8.	DRAIN, #4	8.	CATHODE	8.	SOURCE P-CH		
9.	GATE, #4	9.	ANODE	9.	SOURCE P-CH		
10.	SOURCE, #4	10.	ANODE	10.			
11.	GATE, #3	11.		11.			
12.	SOURCE, #3	12.	ANODE	12.)	
13.	GATE, #2	13.		13.			
14.	SOURCE, #2	14.	ANODE	14.			
15.	GATE, #1	15.	ANODE	15.	COMMON DRAIN (OUTPUT)	
16.	SOURCE, #1	16.	ANODE	16.	SOURCE N-CH		

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOIC-16 9.90X3.90X1.50 1.27P		PAGE 2 OF 2			
onsemi and ONSEMI are trademarks of Semiconductor Components Industries. LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves						

the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

onsemí

*For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

 DOCUMENT NUMBER:
 98ASH70247A
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 TSSOP-16
 PAGE 1 OF 1

 onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>