Switch-mode Power Rectifier

These state−of−the−art devices use the Schottky Barrier principle with a proprietary barrier metal.

Features

- Dual Diode Construction, May be Paralleled for Higher Current Output
- Guard−Ring for Stress Protection
- Low Forward Voltage Drop
- 125°C Operating Junction Temperature
- Maximum Die Size
- Short Heat Sink Tab Manufactured − Not Sheared!
- AEC−Q101 Qualified and PPAP Capable
- NRVBB Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements
- All Packages are Pb−Free*

Mechanical Characteristics

- Case: Epoxy, Molded, Epoxy Meets UL 94 V−0
- Weight: 1.7 Grams (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Device Meets MSL1 Requirements
- ESD Ratings:
	- \triangleleft Machine Model = C (> 400 V)
	- \triangleleft Human Body Model = 3B (> 8000 V)

ON Semiconductor®

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 30 AMPERES, 30 VOLTS

D2PAK CASE 418B PLASTIC

MARKING DIAGRAM

ORDERING INFORMATION

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MAXIMUM RATINGS

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS (All device data is "Per Leg" except where noted.)

1. Mounted using minimum recommended pad size on FR−4 board.

ELECTRICAL CHARACTERISTICS

2. Pulse Test: Pulse Width = 250 μ s, Duty Cycle ≤ 2.0%.

Figure 1. Typical Forward Voltage Figure 2. Maximum Forward Voltage

Figure 3. Typical Reverse Current **Figure 4. Maximum Reverse Current**

0.00001

10

Figure 8. Typical Unclamped Inductive Surge

t, TIME (seconds)

0.001 0.01

0.0001

10 100

Figure 7. Typical Capacitance

V_R, REVERSE VOLTAGE (VOLTS)

┯╈

1.0

0.1

100

Modeling Reverse Energy Characteristics of Power Rectifiers

ABSTRACT

Power semiconductor rectifiers are used in a variety of applications where the reverse energy requirements often vary dramatically based on the operating conditions of the application circuit. A characterization method was devised using the Unclamped Inductive Surge (UIS) test technique. By testing at only a few different operating conditions (i.e. different inductor sizes) a safe operating range can be established for a device. A relationship between peak avalanche current and inductor discharge time was established. Using this relationship and circuit parameters, the part applicability can be determined. This technique offers a power supply designer the total operating conditions for a device as opposed to the present single−data−point approach.

INTRODUCTION

In today's modern power supplies, converters and other switching circuitry, large voltage spikes due to parasitic inductance can propagate throughout the circuit, resulting in catastrophic device failures. Concurrent with this, in an effort to provide low−loss power rectifiers, i.e., devices with lower forward voltage drops, Schottky technology is being applied to devices used in this switching power circuitry. This technology lends itself to lower reverse breakdown voltages. This combination of high voltage spikes and low reverse breakdown voltage devices can lead to reverse energy destruction of power rectifiers in their applications. This phenomena, however, is not limited to just Schottky technology.

In order to meet the challenges of these situations, power semiconductor manufacturers attempt to characterize their devices with respect to reverse energy robustness. The typical reverse energy specification, if provided at all, is usually given as energy−to−failure (mJ) with a particular inductor specified for the UIS test circuit. Sometimes the peak reverse test current is also specified. Practically all reverse energy characterizations are performed using the UIS test circuit shown in Figure 10. Typical UIS voltage and current waveforms are shown in Figure [11](#page-5-0).

In order to provide the designer with a more extensive characterization than the above mentioned one−point approach, a more comprehensive method for characterizing these devices was developed. A designer can use the given information to determine the appropriateness and safe operating area (SOA) of the selected device.

Figure 10. Simplified UIS Test Circuit

Suggested Method of Characterization

TIME (s)

Figure 11. Typical Voltage and Current UIS Waveforms

Utilizing the UIS test circuit in Figure [10](#page-4-0), devices are tested to failure using inductors ranging in value from 0.01 to 159 mH. The reverse voltage and current waveforms are acquired to determine the exact energy seen by the device and the inductive current decay time. At least 4 distinct inductors and 5 to 10 devices per inductor are used to generate the characteristic current versus time relationship. This relationship when coupled with the application circuit conditions, defines the SOA of the device uniquely for this application.

Example Application

The device used for this example was an MBR3035CT, which is a 30 A (15 A per side) forward current, 35 V reverse breakdown voltage rectifier. All parts were tested to destruction at 25°C. The inductors used for the characterization were 10, 3.0, 1.0 and 0.3 mH. The data recorded from the testing were peak reverse current (Ip), peak reverse breakdown voltage (BVR), maximum withstand energy, inductance and inductor discharge time (see Table [1](#page-6-0)). A plot of the Peak Reverse Current versus Time at device destruction, as shown in Figure 12, was generated. The area under the curve is the region of lower reverse energy or lower stress on the device. This area is known as the safe operating area or SOA.

Figure 12. Peak Reverse Current versus Time for DUT

PART NO.	$I_P(A)$	$B_{VR} (V)$	ENERGY (mJ)	L (mH)	TIME (μs)	$\mathbf{v} = \mathbf{12} \mathbf{v}$ and $\mathbf{v} \mathbf{v} = \mathbf{0} \mathbf{v} \mathbf{v}$. Figure 13 illustrates the example. Note the UIS		
1	46.6	65.2	998.3	1	715	characterization curve, the parasitic inductor current curve and the safe operating region as indicated.		
$\overline{2}$	41.7	63.4	870.2	1	657			
3	46.0	66.0	1038.9	1	697	120		
4	42.7	64.8	904.2	1	659	I _{peak} - TIME RELATIONSHIP 100		
5	44.9	64.8	997.3	$\mathbf{1}$	693	DUE TO CIRCUIT PARASITICS		
6	44.1	64.1	865.0	1	687	80		
$\overline{7}$	26.5	63.1	1022.6	3	1261			
8	26.4	62.8	1024.9	3	1262	60		
9	24.4	62.2	872.0	3	1178	UIS CHARACTERIZATION CURVE - 40		
10	27.6	62.9	1091.0	3	1316			
11	27.7	63.2	1102.4	3	1314	20		
12	17.9	62.6	1428.6	10	2851	SAFE OPERATING AREA ŋ		
13	18.9	62.1	1547.4	10	3038	0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0		
14	18.8	60.7	1521.1	10	3092	TIME (s)		
15	19.0	62.6	1566.2	10	3037	Figure 13. DUT Peak Reverse and Circuit		
16	74.2	69.1	768.4	0.3	322	Parasitic Inductance Current versus Time		
17	77.3	69.6	815.4	0.3	333			
18	75.2	68.9	791.7	0.3	328	SUMMARY		
19	77.3	69.6	842.6	0.3	333	Traditionally, power rectifier users have been supplied		
20	73.8	69.1	752.4	0.3	321	with single-data-point reverse-energy characteristics by		
21	75.6	69.2	823.2	0.3	328	the supplier's device data sheet; however, as has been shown		
22	74.7	68.6	747.5	0.3	327	here and in previous work, the reverse withstand energy can		
23	78.4	70.3	834.0	0.3	335	vary significantly depending on the application. What was done in this work was to create a characterization scheme by which the designer can overlay or map their particular		
24	70.5	66.6	678.4	0.3	317			
25	78.3	69.4	817.3	0.3	339	requirements onto the part capability and determine quite		

Table 1. UIS Test Data

The procedure to determine if a rectifier is appropriate, $\frac{1}{\sqrt{2}}$ characterization technique is v from a reverse energy standpoint, to be used in the application circuit is as follows:

- a. Obtain "Peak Reverse Current versus Time" curve from data book.
- b. Determine steady state operating voltage (OV) of circuit.
- c. Determine parasitic inductance (L) of circuit section of interest.
- d. Obtain rated breakdown voltage (BVR) of rectifier from data book.
- e. From the following relationships,

$$
V = L \cdot \frac{d}{dt} i(t) \qquad 1 = \frac{(BVR - OV) \cdot t}{L}
$$

a "designer" l versus t curve is plotted alongside the device characteristic plot.

f. The point where the two curves intersect is the current level where the devices will start to fail. A peak inductor current below this intersection should be chosen for safe operating.

Table 1. UIS Test Data As an example, the values were chosen as $L = 200 \mu H$,
OV = 12 V and BVR = 35 V. As an example, the values were chosen as $L = 200 \mu H$,

Figure 13. DUT Peak Reverse and Circuit

SUMMARY

 $\begin{array}{|l|l|l|l|}\n\hline\n20 & 73.8 & 69.1 & 752.4 & 0.3 & 321 & \text{with single-data-point reverse–energy characteristics by} \ \hline\n21 & 75.6 & 69.2 & 823.2 & 0.3 & 328 & \text{the supplier's device data sheet: however, as has been shown}\n\end{array}$ $\begin{array}{|l|l|l|}\n\hline\n21 & 75.6 & 69.2 & 823.2 & 0.3 & 328 & \text{the supplier's device data sheet; however, as has been shown here and in previous work, the reverse withstand energy can\n\end{array}$ $\frac{26}{6.6}$ (b. $\frac{6.6}{6.6}$ (c. $\frac{6.6}{6.6}$ (c. $\frac{6.6}{6.6}$ create a characterization scheme by $\begin{bmatrix} 24 & 70.5 & 66.6 \end{bmatrix}$ 678.4 0.3 317 which the designer can overlay or map their particular ÁÁÁÁ ÁÁÁ ÁÁÁÁ $\frac{A}{A}$ and $\frac{A}{A}$ are characterization technique is very robust due to its statistical the supplier's device data sheet; however, as has been shown vary significantly depending on the application. What was requirements onto the part capability and determine quite accurately if the chosen device is applicable. This approach, and with proper guardbanding (6σ) can be used to give worst−case device performance for the entire product line. A "typical" characteristic curve is probably the most applicable for designers allowing them to design in their own margins.

References

- 1. Borras, R., Aliosi, P., Shumate, D., 1993, "Avalanche Capability of Today's Power Semiconductors, "Proceedings, European Power Electronic Conference," 1993, Brighton, England
- 2. Pshaenich, A., 1985, "Characterizing Overvoltage Transient Suppressors," Powerconversion International, June/July

MARKING INFORMATION AND FOOTPRINT ON PAGE 2

D2PAK 3 CASE 418B−04

ISSUE L

DATE 17 FEB 2015

GENERIC MARKING DIAGRAM*

*This information is generic. Please refer to device data sheet for actual part marking. device data sneet for actual part markli
Pb−Free indicator, "G" or microdot " ■", may or may not be present.

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

onsemi, ONSOMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at [www.onsemi.com/site/pdf/Patent](https://www.onsemi.com/site/pdf/Patent-Marking.pdf)−Marking.pdf. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as–is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availabili of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products
and applications using **onsemi** or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates,
and distributors harmless against associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal
Opportunity/Affirmative Action Employer. Thi

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS: **Technical Library:** [www.onsemi.com/design/resources/technical](https://www.onsemi.com/design/resources/technical-documentation)−documentation **onsemi Website:** www.onsemi.com

ONLINE SUPPORT: [www.onsemi.com/support](https://www.onsemi.com/support?utm_source=techdocs&utm_medium=pdf) **For additional information, please contact your local Sales Representative at** www.onsemi.com/support/sales