Single Channel Operational Amplifier

LM321

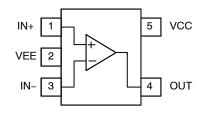
LM321 is a general purpose, single channel op amp with internal compensation and a true differential input stage. This op amp features a wide supply voltage ranging from 3 V to 32 V for single supplies and ± 1.5 to ± 16 V for split supplies, suiting a variety of applications. LM321 is unity gain stable even with large capacitive loads up to 1.5 nF. LM321 is available in a space-saving TSOP-5/SOT23-5 package.

Features

- Wide Supply Voltage Range: 3 V to 32 V
- Short Circuit Protected Outputs
- True Differential Input Stage
- Low Input Bias Currents
- Internally Compensated
- Single and Split Supply Operation
- Unity Gain Stable with 1.5 nF Capacitive Load
- This Device is Pb-Free, Halogen Free/BFR Free and is RoHS Compliant

Typical Applications

- Gain Stage
- Active Filter
- Signal Processing



ON Semiconductor®

www.onsemi.com

PIN CONNECTION

MARKING DIAGRAM

ADY = Specific Device Code

- A = Assembly Location
- Y = Year
- W = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

	Device	Package	Shipping [†]
LI	M321SN3T1G	TSOP-5 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Table 1. ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature, unless otherwise stated)

Parameter	Rating	Unit	
Supply Voltage	36	V	
INPUT AND OUTPUT PINS			
Input Voltage	V _{EE} – 0.3 to 32	V	
Input Current	±10	mA	
Output Short Circuit Duration (Note 1)	Continuous		
TEMPERATURE			
Operating Temperature	-40 to +125	°C	
Storage Temperature	-65 to +150	°C	
Junction Temperature	-65 to +150	°C	
ESD RATINGS (Note 2)			
Human Body Model (HBM)	200	V	
Charged Device Model (CDM)	800	V	
Machine Model (MM)	100	V	
OTHER RATINGS			
Latch-Up Current (Note 3)	100	mA	
MSL	Level 1		

should not be assumed, damage may occur and reliability may be affected. 1. Short circuits can cause excessive heating and eventual destruction.

 Short circuits can cause excessive nearing and eventual destruction.
This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per JEDEC standard: JESD22–A114

ESD Machine Model tested per JEDEC standard: JESD22-A115

3. Latch-up Current tested per JEDEC standard: JESD78

Table 2. THERMAL INFORMATION (Note 4)

Parameter	Symbol	Package	Value	Unit
Junction to Ambient	θ_{JA}	TSOP-5/SOT23-5	235	°C/W

4. As mounted on an 80 × 80 × 1.5 mm FR4 PCB with 650 mm² and 2 oz (0.034 mm) thick copper heat spreader. Following JEDEC JESD/EIA 51.1, 51.2, 51.3 test guidelines.

Table 3. RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Range	Unit
Supply Voltage (V _{CC} - V _{EE})	V _S	3 to 32	V
Specified Operating Range	T _A	-40 to 85	°C
Common Mode Input Voltage Range	V _{CM}	V_{EE} to V_{CC} -1.7	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 4. ELECTRICAL CHARACTERISTICS – $V_S = 5 V$

(At $T_A = +25^{\circ}C$, $R_L = 10 \text{ k}\Omega$ connected to mid-supply, $V_{CM} = V_{OUT}$ = mid-supply, unless otherwise noted. **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to $85^{\circ}C$, guaranteed by characterization and/or design.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS		•	•		L	
Offset Voltage	V _{OS}	$V_{S} = 5 V, V_{CM} = V_{EE} \text{ to } V_{CC} - 1.7 V$ $T_{A} = 25^{\circ}C$ $T_{A} = -40^{\circ}C \text{ to } 85^{\circ}C$		0.3	7 9	mV
Offset Voltage Drift vs Temp	$\Delta V_{OS} / \Delta T$	$T_A = -40^{\circ}C$ to $85^{\circ}C$	-	7	-	μV/°C
Input Bias Current	I _{IB}	$\begin{array}{l} T_A=25^\circ C\\ T_A=-40^\circ C \text{ to } 85^\circ C \end{array}$		-10 -	_ -500	nA
Input Offset Current	I _{OS}	$\begin{array}{l} T_A = 25^\circ C \\ T_A = -40^\circ C \text{ to } 85^\circ C \end{array}$		1 -	_ 150	nA
Common Mode Rejection Ratio	CMRR	V_{CM} = V_{EE} to V_{CC} – 1.7 V	65	85	-	dB
Input Resistance	R _{IN}	Differential Common Mode		85 300		GΩ
Input Capacitance	C _{IN}	Differential Common Mode		0.6 1.6		pF
OUTPUT CHARACTERISTICS						
Open Loop Voltage Gain	A _{VOL}		-	100	-	dB
Open Loop Output Impedance	Z _{OUT_OL}	f = UGBW, I _O = 0 mA	-	1,200	-	Ω
Output Voltage High	V _{OH}	$R_L = 2 k\Omega$ to V _{EE} $R_L = 10 k\Omega$ to V _{EE}	V _{CC} -1.8 V _{CC} -1.8	V _{CC} -1.4 V _{CC} -1.4		V
Output Voltage Low	V _{OL}	$R_L = 10 \text{ k}\Omega \text{ to } V_{CC}$	-	V _{EE} +0.8	V _{EE} +1.0	V
Output Current Capability	Ι _Ο	Sinking Current $V_S = 5 V$ $V_S = 15 V$	10 10	20 20		mA
Output Current Capability	Ι _Ο	Sourcing Current $V_S = 5 V$ $V_S = 15 V$	20 20	40 40	- -	mA
Capacitive Load Drive	CL	Phase Margin = 15°	-	1,500	-	pF
NOISE PERFORMANCE						
Voltage Noise Density	e _N	f _{IN} = 1 kHz	-	40	-	nV/√Hz
DYNAMIC PERFORMANCE						
Gain Bandwidth Product	GBWP	$C_L = 25 \text{ pF}, \text{ R}_L \text{ to } V_{CC}$	-	750	-	kHz
Gain Margin	A _M	$C_L = 25 \text{ pF}, \text{ R}_L \text{ to } \text{V}_{CC}$	-	14	-	dB
Phase Margin	α_{M}	$C_L = 25 \text{ pF}, \text{ R}_L \text{ to } \text{V}_{CC}$	-	60	-	0
Slew Rate	SR	$C_L = 25 \text{ pF}, \text{ R}_L = \infty$	-	0.3	_	V/μs
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{\rm S}$ = 5 V to 32 V	62	100	-	dB
Quiescent Current	IQ	No Load	-	0.25	0.5	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 5. ELECTRICAL CHARACTERISTICS – V_S = 32 V

(At $T_A = +25^{\circ}$ C, $R_L = 10 \text{ k}\Omega$ connected to mid-supply, $V_{CM} = V_{OUT}$ = mid-supply, unless otherwise noted. **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}$ C to 85°C, guaranteed by characterization and/or design.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS		•				
Offset Voltage	V _{OS}			0.3	7 9	mV
Offset Voltage Drift vs Temp	$\Delta V_{OS} / \Delta T$	$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	-	7	-	μV/°C
Common Mode Rejection Ratio	CMRR	$V_{CM} = V_{EE}$ to $V_{CC} - 1.7$ V	-	100	-	dB
OUTPUT CHARACTERISTICS						•
Open Loop Voltage Gain	A _{VOL}	$ \begin{array}{l} T_A = 25^\circ C \\ T_A = -40^\circ C \text{ to } 85^\circ C \end{array} $	_ 84	100 -		dB
Open Loop Output Impedance	Z _{OUT_OL}	f = UGBW, I _O = 0 mA	-	2,000	-	Ω
Output Voltage High	V _{OH}	$R_L = 2 k\Omega$ to V_{EE} $R_L = 10 k\Omega$ to V_{EE}	V _{CC} -2.5 V _{CC} -2.5	V _{CC} -2.0 V _{CC} -1.5		V
Output Voltage Low	V _{OL}	R_L = 10 k Ω to V _{CC}	-	V _{EE} +1.0	V _{EE} +1.5	V
Capacitive Load Drive	CL	Phase Margin = 15°	-	1,500	-	pF
NOISE PERFORMANCE		·				
Voltage Noise Density	e _N	f _{IN} = 1 kHz	-	40	-	nV/√Hz
Total Harmonic Distortion + Noise	THD+N	V_{S} = 30 V, $f_{\rm IN}$ = 1 kHz, R_{L} to $V_{\rm CC}$	-	0.02	_	%
DYNAMIC PERFORMANCE		•				
Gain Bandwidth Product	GBWP	$C_L = 25 \text{ pF}, \text{ R}_L \text{ to } \text{V}_{CC}$	_	900	_	kHz
Gain Margin	A _M	$C_L = 25 \text{ pF}, \text{ R}_L \text{ to } \text{V}_{CC}$	_	18	_	dB
Phase Margin	α _M	C_L = 25 pF, R_L to V_{CC}	-	66	-	0
Slew Rate	SR	$C_L = 25 \text{ pF}, R_L = \infty$	-	0.4	-	V/µs
POWER SUPPLY	•		•	•	•	•
Power Supply Rejection Ratio	PSRR	$V_{S} = 5 V \text{ to } 32 V$	62	100	-	dB
Quiescent Current	lq	No Load, V _S = 32 V	-	0.3	1.2	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

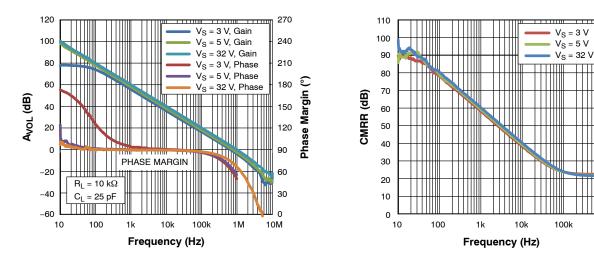


Figure 1. Open Loop Gain and Phase Margin vs. Frequency

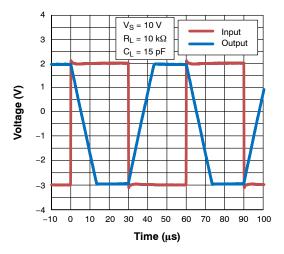


Figure 3. Inverting Large Signal Step Response

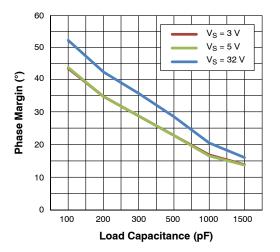


Figure 5. Phase Margin vs. Load Capacitance

Figure 2. CMRR vs. Frequency

1M

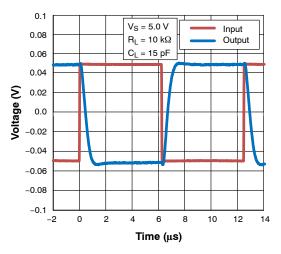


Figure 4. Inverting Small Signal Step Response

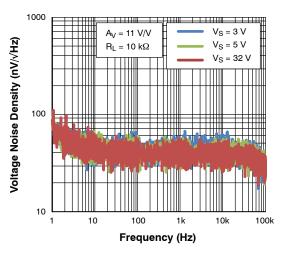


Figure 6. Voltage Noise Density vs. Frequency

TYPICAL CHARACTERISTICS

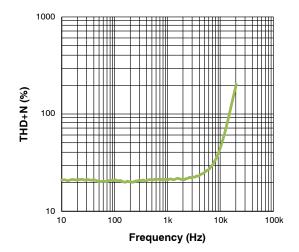


Figure 7. THD+N vs. Frequency

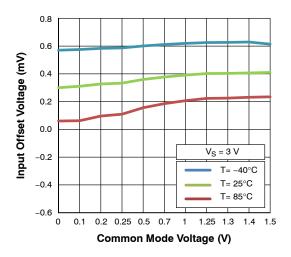


Figure 9. Input Offset Voltage vs. Common Mode Voltage at 3 V Supply

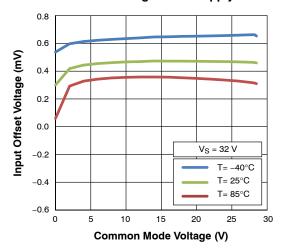


Figure 11. Input Offset Voltage vs. Common Mode Voltage at 32 V Supply

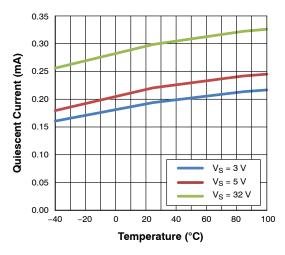


Figure 8. Quiescent Current vs. Temperature

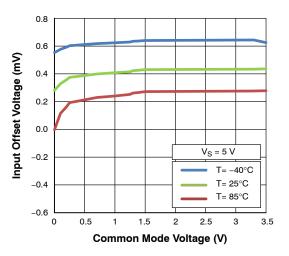


Figure 10. Input Offset Voltage vs. Common Mode Voltage at 5 V Supply

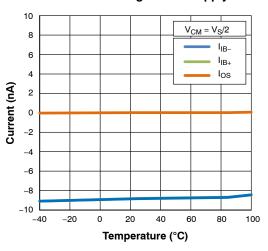


Figure 12. Input Bias and Offset Current vs. Temperature

TYPICAL CHARACTERISTICS

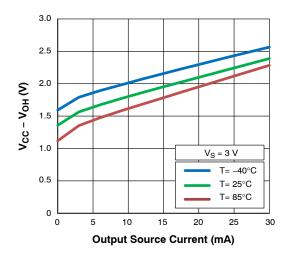


Figure 13. High Level Output Voltage Swing vs. Output Current at 3 V Supply

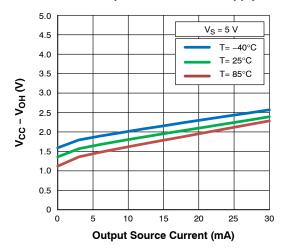


Figure 15. High Level Output Voltage Swing vs. Output Current at 5 V Supply

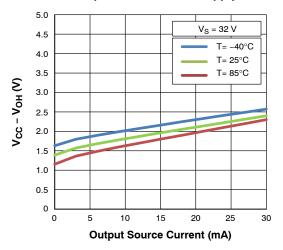


Figure 17. High Level Output Voltage Swing vs. Output Current at 32 V Supply

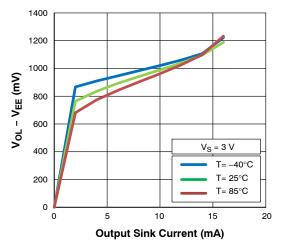


Figure 14. Low Level Output Voltage Swing vs. Output Current at 3 V Supply

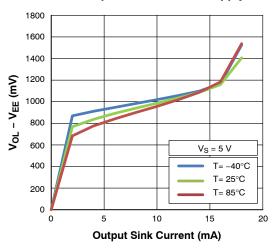


Figure 16. Low Level Output Voltage Swing vs. Output Current at 5 V Supply

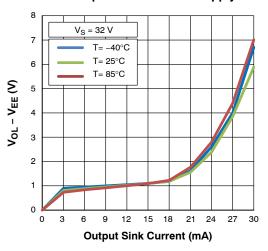


Figure 18. Low Level Output Voltage Swing vs. Output Current at 32 V Supply

APPLICATION INFORMATION

CIRCUIT DESCRIPTION

The LM321 is made using two internally compensated, two-stage operational amplifiers. The first stage of each consists of differential input devices Q20 and Q18 with input buffer transistors Q21 and Q17 and the differential to single ended converter Q3 and Q4. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance, a smaller compensation capacitor (only 5.0 pF) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q20 and Q18. Another feature of this input stage is that the input common mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single–ended converter. The second stage consists of a standard current source load amplifier stage.

Each amplifier is biased from an internal-voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.

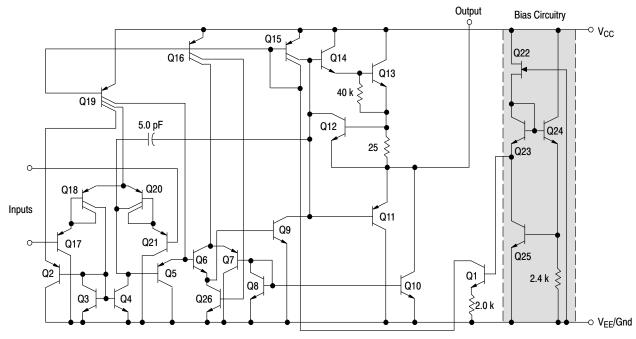


Figure 19. LM321 Representative Schematic Diagram

LM321 has a class B output stage, which is comprised of push-pull transistors. This type of output is inherently subject to crossover distortion near mid-rail where neither push or pull transistors are conducting. Several techniques can be used to minimize crossover distortion. Connecting the output load to either the positive or negative supply rail instead of mid-rail can reduce the crossover distortion. Additionally, increasing the load resistance relatively decreases the amount of crossover distortion.

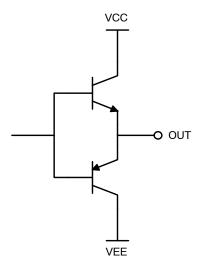


Figure 20. Simplified Class B Output

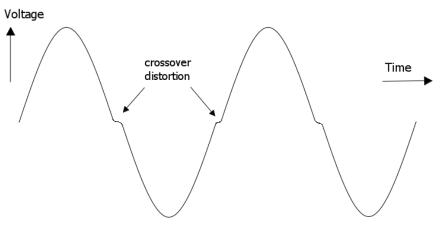


Figure 21. Sine wave with crossover distortion

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>