

ON Semiconductor®

FDS6986AS

Dual Notebook Power Supply N-Channel PowerTrench® SyncFET[™]

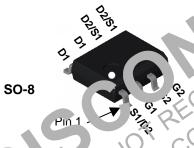
General Description

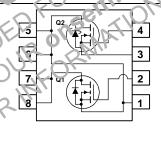
The FDS6986AS is designed to replace two single SO-8 MOSFETs and Schottky diode in synchronous DC:DC power supplies that provide various peripheral voltages for notebook computers and other battery powered electronic devices. FDS6986AS contains two unique 30V, N-channel, logic level, PowerTrench MOSFETs designed to maximize power conversion efficiency.

The high-side switch (Q1) is designed with specific emphasis on reducing switching losses while the low-side switch (Q2) is optimized to reduce conduction losses. Q2 also includes an integrated Schottky diode using ON Semiconductor's monolithic SyncFET technology.

Features

 Q2: Optimized to minimize conduction losses Includes SyncFET Schottky body diode


7.9A, 30V
$$R_{DS(on)} = 20 \text{ m}\Omega @ V_{GS} = 10V$$


$$R_{DS(on)} = 2 @ V_{GS} = 4.5V$$

• Q1: Optimize for a viswinhing lossed Low lite of large 1 and typical)

6.5A, 30
$$^{\circ}$$
 29 m Ω @ $V_{GS} = 10V$

$$R_{DS(on)} = 38 \text{ m}\Omega @ V_{GS} = 4.5V$$

Absc'.. N. x...um Ratings T_A = 25°C unless otherwise noted

Symbo	Parameter		Q2	Q1	Units
V _{DSS}	Drain-Source Voltage		30	30	V
V _{GSS}	Gate-Source Voltage		±20	±16	V
I _D G	Drain Current - Continuous	(Note 1a)	7.9	6.5	Α
7/1/10	- Pulsed		30	20	
Pο	Power Dissipation for Dual Operation		:	2	W
	Power Dissipation for Single Operation	(Note 1a)	1	.6	
		(Note 1b)	,	1	
		(Note 1c)	0	.9	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		–55 to	+150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W
R _{e,IC}	Thermal Resistance, Junction-to-Case	(Note 1)	40	°C/W

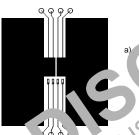
Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity		
FDS6986AS	FDS6986AS	13"	12mm	2500 units		
FDS6986AS	FDS6986AS-NL (Note 4)	13"	12mm	2500 units		

BV _{DSS} C ΔBV _{DSS} E ΔT _J T Ibss Z C C Idss C On Chara V _{GS(th)} G ΔV _{GS(th)} AT _J T R _{DS(on)} S C C	Crain-Source Breakdown Voltage Breakdown Voltage Femperature Coefficient Cero Gate Voltage Drain Current Gate-Body Leakage Cateristics (Note 2) Gate Threshold Voltage Femperature Coefficient Cateristics Cateristics Cateristics Characteristics Cateristics Country Co	$\begin{array}{c} V_{GS} = 0 \ V, \ I_D = 1 \ mA \\ V_{GS} = 0 \ V, \ I_D = 250 \ uA \\ I_D = 1 \ mA, \ Referenced to 25^{\circ}C \\ I_D = 250 \ \mu A, \ Referenced to 25^{\circ}C \\ V_{DS} = 24 \ V, \ V_{GS} = 0 \ V \\ V_{GS} = \pm 20 \ V, \ V_{DS} = 0 \ V \\ V_{GS} = \pm 16 \ V, \ V_{DS} = 0 \ V \\ V_{DS} = 250 \ \mu A, \ Referenced to 25^{\circ}C \\ I_D = 250 \ uA, \ Referenced to 25^{\circ}C \\ I_D = 250 \ uA, \ Referenced to 25^{\circ}C \\ I_D = 250 \ uA, \ Referenced to 25^{\circ}C \\ V_{GS} = 10 \ V, \ I_D = 7.9 \ A, \ T_J = 125^{\circ}C \\ V_{GS} = 4.5 \ V, \ I_D = 7 \ A \\ V_{GS} = 10 \ V, \ I_D = 6.5 \ A \\ V_{GS} = 10 $	Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1	30 30 30	1.7 1.9 - 2 -) 17 25 22 21	500 1 ±100 3 3 3 3 20 32 28	V mV/°C μA nA V
V ΔBV _{DSS}	Voltage Breakdown Voltage Femperature Coefficient Zero Gate Voltage Drain Current Gate-Body Leakage acteristics (Note 2) Gate Threshold Voltage Gate Threshold Voltage Gemperature Coefficient Static Drain-Source On-Resistance	$\begin{array}{c} V_{GS} = 0 \text{ V}, I_D = 250 \text{ uA} \\ I_D = 1 \text{ mA}, \text{ Referenced to } 25^{\circ}\text{C} \\ I_D = 250 \mu\text{A}, \text{ Referenced to } 25^{\circ}\text{C} \\ V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V} \\ V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V} \\ V_{GS} = \pm 16 \text{ V}, V_{DS} = 0 \text{ V} \\ V_{DS} = V_{GS}, I_D = 1 \text{ mA} \\ V_{DS} = V_{GS}, I_D = 250 \mu\text{A} \\ I_D = 1 \text{ mA}, \text{ Referenced to } 25^{\circ}\text{C} \\ I_D = 250 \text{ uA}, \text{ Referenced to } 25^{\circ}\text{C} \\ V_{GS} = 10 \text{ V}, I_D = 7.9 \text{ A} \\ V_{GS} = 10 \text{ V}, I_D = 7.9 \text{ A} \\ V_{GS} = 10 \text{ V}, I_D = 6.5 \text{ A} \\ V_{GS} = 10 \text{ V}, I_D = 6.5 \text{ A} \\ V_{GS} = 4.5 \text{ V}, I_D = 6.5 \text{ A} \\ V_{GS} = 4.5 \text{ V}, I_D = 6.5 \text{ A} \\ V_{GS} = 4.5 \text{ V}, I_D = 6.5 \text{ A} \\ V_{GS} = 4.5 \text{ V}, I_D = 6.5 \text{ A} \\ V_{GS} = 6$	Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1	30	1.7 1.9 - 2 - 4) 17 25 22 21	1 ±100	mV/°C μA nA
ΔΒV _{DSS} ΔΤ _J I _{DSS} Z C I _{GSS} On Chara V _{GS(th)} G ΔV _{GS(th)} C R DS(on) S C	Breakdown Voltage Femperature Coefficient Zero Gate Voltage Drain Current Gate-Body Leakage acteristics (Note 2) Gate Threshold Voltage Gate Threshold Voltage Temperature Coefficient Static Drain-Source On-Resistance	$\begin{split} &I_D = 1 \text{ mA, Referenced to } 25^{\circ}\text{C} \\ &I_D = 250 \text{ µA, Referenced to } 25^{\circ}\text{C} \\ &V_{DS} = 24 \text{ V, } V_{GS} = 0 \text{ V} \\ &V_{GS} = \pm 20 \text{ V, } V_{DS} = 0 \text{ V} \\ &V_{GS} = \pm 16 \text{ V, } V_{DS} = 0 \text{ V} \\ &V_{DS} = V_{GS}, I_D = 1 \text{ mA} \\ &V_{DS} = V_{GS}, I_D = 250 \text{ µA} \\ &I_D = 1 \text{ mA, Referenced to } 25^{\circ}\text{C} \\ &I_D = 250 \text{ uA, Referenced to } 25^{\circ}\text{C} \\ &V_{GS} = 10 \text{ V, } I_D = 7.9 \text{ A} \\ &V_{GS} = 10 \text{ V, } I_D = 7.9 \text{ A} \\ &V_{GS} = 10 \text{ V, } I_D = 6.5 \text{ A} \\ &V_{GS} = 10 \text{ V, } I_D = 6.5 \text{ A} \\ &V_{GS} = 4.5 \text{ V, } I_D $	Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1		1.7 1.9 - 2 - 4) 17 25 22 21	1 ±100	μA nA V
ΔΤ _J Τ	Temperature Coefficient Zero Gate Voltage Drain Current Gate-Body Leakage acteristics (Note 2) Gate Threshold Voltage Gate Threshold Voltage Temperature Coefficient Static Drain-Source On-Resistance	$\begin{split} &I_D = 250 \ \mu\text{A}, \ \text{Referenced to } 25^{\circ}\text{C} \\ &V_{DS} = 24 \ \text{V}, \ V_{GS} = 0 \ \text{V} \\ &V_{GS} = \pm 20 \ \text{V}, \ V_{DS} = 0 \ \text{V} \\ &V_{GS} = \pm 16 \ \text{V}, \ V_{DS} = 0 \ \text{V} \\ &V_{DS} = V_{GS}, \ I_D = 1 \ \text{mA} \\ &V_{DS} = V_{GS}, \ I_D = 250 \ \mu\text{A} \\ &I_D = 1 \ \text{mA}, \ \text{Referenced to } 25^{\circ}\text{C} \\ &I_D = 250 \ \text{uA}, \ \text{Referenced to } 25^{\circ}\text{C} \\ &V_{GS} = 10 \ \text{V}, \ I_D = 7.9 \ \text{A} \\ &V_{GS} = 10 \ \text{V}, \ I_D = 7.9 \ \text{A} \\ &V_{GS} = 10 \ \text{V}, \ I_D = 6.5 \ \text{A} \\ &V_{GS} = 10 \ \text{V}, \ I_D = 6.5 \ \text{A} \\ &V_{GS} = 4.5 \ \text{V}, \ I_D = 6.5 \ \text{A} \\ &V_{GS} = 4.5 \ \text{V}, \ I_D = 6.5 \ \text{A} \\ &V_{GS} = 4.5 \ \text{V}, \ I_D = 6.5 \ \text{A} \\ &V_{GS} = 4.5 \ \text{V}, \ I_D = 6.5 \ \text{A} \\ &V_{GS} = 6.5 \ \text{V}, \ I_D = 6.5 \ \text{A} \\ &V_{GS} = 4.5 \ \text{V}, \ I_D = 6.5 \ \text{A} \\ &V_{GS} = 4.5 \ \text{V}, \ I_D = 6.5 \ \text{A} \\ &V_{GS} = 4.5 \ \text{V}, \ I_D = 6.5 \ \text{A} \\ &V_{GS} = 4.5 \ \text{V}, \ I_D = 6.5 \ \text{A} \\ &V_{GS} = 4.5 \ \text{V}, \ I_D = 6.5 \ \text{A} \\ &V_{GS} = 4.5 \ \text{V}, \ I_D = 6.5 \ \text{A} \\ &V_{GS} = 6.5 \ \text{C} \\ &V_{GS} = 4.5 \ \text{V}, \ I_D = 6.5 \ \text{A} \\ &V_{GS} = 4.5 \ \text{V}, \ I_D = 6.5 \ \text{A} \\ &V_{GS} = 4.5 \ \text{V}, \ I_D = 6.5 \ \text{A} \\ &V_{GS} = 4.5 \ \text{V}, \ I_D = 6.5 \ \text{A} \\ &V_{GS} = 4.5 \ \text{V}, \ I_D = 6.5 \ \text{A} \\ &V_{GS} = 6.5$	Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1	1 1 1	1.7 1.9 - 2 - 4) 17 25 22 21	1 ±100	μA nA V
I _{DSS}	Zero Gate Voltage Drain Current Gate-Body Leakage acteristics (Note 2) Gate Threshold Voltage Gate Threshold Voltage Femperature Coefficient Static Drain-Source On-Resistance	$\begin{split} &V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V} \\ &V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V} \\ &V_{GS} = \pm 16 \text{ V}, V_{DS} = 0 \text{ V} \\ &V_{DS} = 250 \text{ UA}, \text{ Referenced to } 25^{\circ}\text{C} \\ &V_{DS} = 250 \text{ UA}, \text{ Referenced to } 25^{\circ}\text{C} \\ &V_{CS} = 10 \text{ V}, V_{D} = 7.9 \text{ A}, V_{D} = 125^{\circ}\text{C} \\ &V_{CS} = 10 \text{ V}, V_{D} = 7.9 \text{ A}, V_{D} = 125^{\circ}\text{C} \\ &V_{CS} = 10 \text{ V}, V_{D} = 6.5 \text{ A}, V_{CS} = 10 \text{ V}, V_{D} = 6.5 \text{ A} \\ &V_{CS} = 10 \text{ V}, V_{D} = 6.5 \text{ A}, V_{CS} = 10 \text{ V}, V_{D} = 6.5 \text{ A} \\ &V_{CS} = 4.5 \text{ V}, V_{CS} = 6.5 \text{ A} \\ &V_{CS} = 4.5 \text{ V}, V_{CS} = 6.5 \text{ A} \\ &V_{CS} = 4.5 \text{ V}, V_{CS} = 6.5 \text{ A} \\ &V_{CS} = 4.5 \text{ V}, V_{CS} = 6.5 \text{ A} \\ &V_{CS} = 4.5 \text{ V}, V_{CS} = 6.5 \text{ A} \\ &V_{CS} = 4.5 \text{ V}, V_{CS} = 6.5 \text{ A} \\ &V_{CS} = 4.5 \text{ V}, V_{CS} = 6.5 \text{ A} \\ &V_{CS} = 4.5 \text{ V}, V_{CS} = 6.5 \text{ A} \\ &V_{CS} = 4.5 \text{ V}, V_{CS} = 6.5 \text{ A} \\ &V_{CS} = 4.5 \text{ V}, V_{CS} = 6.5 \text{ A} \\ &V_{CS} = 4.5 \text{ V}, V_{CS} = 6.5 \text{ A} \\ &V_{CS} = 4.5 \text{ V}, V_{CS} = 6.5 \text{ A} \\ $	Q2 Q1 Q2 Q1 Q1 Q2 Q1 Q2 Q1	1 1 1	1.7 1.9 - 2 - () 17 25 22 21	1 ±100	nA V
Con Chara Con	Current Gate-Body Leakage acteristics (Note 2) Gate Threshold Voltage Gate Threshold Voltage Femperature Coefficient Static Drain-Source On-Resistance	$\begin{split} &V_{GS}=\pm 20 \text{ V}, V_{DS}=0 \text{ V} \\ &V_{GS}=\pm 16 \text{ V}, V_{DS}=0 \text{ V} \\ &V_{DS}=V_{GS}, I_D=1 \text{ mA} \\ &V_{DS}=V_{GS}, I_D=250 \mu\text{A} \\ &I_D=1 \text{ mA}, \text{ Referenced to } 25^{\circ}\text{C} \\ &I_D=250 \text{ uA}, \text{ Referenced to } 25^{\circ}\text{C} \\ &V_{GS}=10 \text{ V}, I_D=7.9 \text{ A} \\ &V_{GS}=10 \text{ V}, I_D=7.9 \text{ A}, T_J=125^{\circ}\text{C} \\ &V_{GS}=4.5 \text{ V}, I_D=6.5 \text{ A} \\ &V_{GS}=10 \text{ V}, I_D=6.5 \text{ A} \\ &V_{GS}=4.5 \text{ V}, I_D=6.5 \text{ A} \\ &V_{GS}=6.5 \text{ A} \\ \\ &V_{GS}=6.5 \text{ A} \\ &V_{GS}=6.5 \text{ A} \\ \\ &V$	Q1 Q2 Q1 Q1 Q2 Q1 Q2 Q'	1 1 1	1.9 - 2 -/) 17 25 22 21	1 ±100	nA V
On Chara V _{GS(th)} G ΔV _{GS(th)} G ΔT _J T R _{DS(on)} S C C	Gate Threshold Voltage Gate Threshold Voltage Generature Coefficient Static Drain-Source On-Resistance	$\begin{split} V_{GS} &= \pm 16 \text{ V}, V_{DS} = 0 \text{ V} \\ \\ V_{DS} &= V_{GS}, I_D = 1 \text{ mA} \\ V_{DS} &= V_{GS}, I_D = 250 \text{ µA} \\ \\ I_D &= 1 \text{ mA}, \text{ Referenced to } 25^{\circ}\text{C} \\ I_D &= 250 \text{ uA}, \text{ Referenced to } 25^{\circ}\text{C} \\ \\ V_{GS} &= 10 \text{ V}, I_D = 7.9 \text{ A} \\ V_{GS} &= 10 \text{ V}, I_D = 7.9 \text{ A}, T_J = 125^{\circ}\text{C} \\ \\ V_{GS} &= 4.5 \text{ V}, I_D = 7 \text{ A} \\ \\ V_{GS} &= 10 \text{ V}, I_D = 6.5 \text{ A} \\ V_{GS} &= 10 \text{ V}, I_D = 6.5 \text{ A} \\ V_{GS} &= 4.5 \text{ V}, I_D = 6.5 \text{ A} \\ V_{GS} &= 4.5 \text{ V}, I_D = 6.5 \text{ A} \\ \end{split}$	Q2 Q1 Q2 Q1 Q2 Q'	1 1	1.9 - 2 -/) 17 25 22 21	3 3 20 32	V mV/°¢
$V_{GS(th)}$ G $\Delta V_{GS(th)}$ G ΔT_J T $R_{DS(on)}$ S	Gate Threshold Voltage Gate Threshold Voltage Temperature Coefficient Static Drain-Source On-Resistance	$\begin{split} &V_{DS} = V_{GS}, I_D = 1 \text{ mA} \\ &V_{DS} = V_{GS}, I_D = 250 \text{ µA} \\ &I_D = 1 \text{ mA}, \text{ Referenced to } 25^{\circ}\text{C} \\ &I_D = 250 \text{ uA}, \text{ Referenced to } 25^{\circ}\text{C} \\ &V_{GS} = 10 \text{ V}, I_D = 7.9 \text{ A} \\ &V_{GS} = 10 \text{ V}, I_D = 7.9 \text{ A}, T_J = 125^{\circ}\text{C} \\ &V_{GS} = 4.5 \text{ V}, I_D = 7 \text{ A} \\ &V_{GS} = 10 \text{ V}, I_D = 6.5 \text{ A} \\ &V_{GS} = 10 \text{ V}, I_D = 6.5 \text{ A} \\ &V_{GS} = 4.5 \text{ V}, I_D = 6.5 \text{ A} \\ &V_{GS} = 4.5 \text{ V}, I_D = 6.5 \text{ A} \\ &V_{GS} = 4.5 \text{ V}, I_D = 6.5 \text{ A} \\ \end{split}$	Q2 Q1 Q2 Q'	1 1	1.9 - 2 -/) 17 25 22 21	3 20 32	V mV/°Σ mΩ
$V_{GS(th)}$ G $\Delta V_{GS(th)}$ G ΔT_J T $R_{DS(on)}$ S	Gate Threshold Voltage Gate Threshold Voltage Temperature Coefficient Static Drain-Source On-Resistance	$\begin{array}{l} V_{DS} = V_{GS}, \ I_D = 250 \ \mu A \\ I_D = 1 \ mA, \ Referenced to 25^{\circ}C \\ I_D = 250 \ uA, \ Referenced to 25^{\circ}C \\ V_{GS} = 10 \ V, \ I_D = 7.9 \ A \\ V_{GS} = 10 \ V, \ I_D = 7.9 \ A, \ T_J = 125^{\circ}C \\ V_{GS} = 4.5 \ V, \ I_D = 7 \ A \\ V_{GS} = 10 \ V, \ I_D = 6.5 \ A \\ V_{GS} = 10 \ V, \ I_D = 6.5 \ A \\ V_{GS} = 4.5 \ V$	Q1 Q2 C′	1 1	1.9 - 2 -/) 17 25 22 21	3 20 32	V mV/°C mΩ
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$ G T R _{DS(on)} S C	Gate Threshold Voltage Temperature Coefficient Static Drain-Source On-Resistance	$\begin{array}{l} V_{DS} = V_{GS}, \ I_D = 250 \ \mu A \\ I_D = 1 \ mA, \ Referenced to 25^{\circ}C \\ I_D = 250 \ uA, \ Referenced to 25^{\circ}C \\ V_{GS} = 10 \ V, \ I_D = 7.9 \ A \\ V_{GS} = 10 \ V, \ I_D = 7.9 \ A, \ T_J = 125^{\circ}C \\ V_{GS} = 4.5 \ V, \ I_D = 7 \ A \\ V_{GS} = 10 \ V, \ I_D = 6.5 \ A \\ V_{GS} = 10 \ V, \ I_D = 6.5 \ A \\ V_{GS} = 4.5 \ V$	Q1 Q2 C′	N	1.9 - 2 -/) 17 25 22 21	3 20 32	mV/°C mΩ
ΔT _J T R _{DS(on)} S C	emperature Coefficient Static Drain-Source On-Resistance	$\begin{array}{l} I_D = 1 \text{ mA, Referenced to } 25^{\circ}\text{C} \\ I_D = 250 \text{ uA, Referenced to } 25^{\circ}\text{C} \\ \hline V_{GS} = 10 \text{ V, } I_D = 7.9 \text{ A} \\ V_{GS} = 10 \text{ V, } I_D = 7.9 \text{ A, } T_J = 125^{\circ}\text{C} \\ \hline V_{GS} = 4.5 \text{ V, } I_D = 7 \text{ A} \\ \hline V_{GS} = 10 \text{ V, } I_D = 6.5 \text{ A} \\ \hline V_{GS} = 10 \text{ V, } I_D = 6.5 \text{ A} \\ \hline V_{GS} = 4.5 \text{ V, } I_D = 6.5 \text{ A} \\ \hline V_{GS} = 4.5 \text{ V, } I_D = 6.5 \text{ A} \\ \hline \end{array}$	Q2 C′ ?	N	- 2 -/) 17 25 22 21)20 32	mV/°.
ΔT _J T R _{DS(on)} S C	emperature Coefficient Static Drain-Source On-Resistance	$\begin{split} I_D &= 250 \text{ uA}, \text{ Referenced to } 25^{\circ}\text{C} \\ V_{GS} &= 10 \text{ V}, I_D = 7.9 \text{ A} \\ V_{GS} &= 10 \text{ V}, I_D = 7.9 \text{ A}, T_J = 125^{\circ}\text{C} \\ V_{GS} &= 4.5 \text{ V}, I_D = 7 \text{ A} \\ V_{GS} &= 10 \text{ V}, I_D = 6.5 \text{ A} \\ V_{GS} &= 10 \text{ V}, I_D = 6.5 \text{ A} \\ V_{GS} &= 4.5 \text{ V}, I_D = 6.5 \text{ A} \\ V_{GS} &= 4.5 \text{ V}, I_D = 6.5 \text{ A} \\ \end{split}$	3	N	17 25 22 21	32	mΩ
R _{DS(on)} S	Static Drain-Source On-Resistance	$\begin{aligned} &V_{GS} = 10 \text{ V, } I_D = 7.9 \text{ A} \\ &V_{GS} = 10 \text{ V, } I_D = 7.9 \text{ A, } T_J = 125^{\circ}\text{C} \\ &V_{GS} = 4.5 \text{ V, } I_D = 7 \text{ A} \\ &V_{GS} = 10 \text{ V, } I_D = 6.5 \text{ A} \\ &V_{GS} = 10 \text{ V, } I_D = 6.5 \end{aligned}$	2	N	25 22 21	32	mΩ
C	On-Resistance	$\begin{aligned} &V_{GS} = 10 \text{ V, } I_D = 7.9 \text{ A, } T_J = 125^{\circ}\text{C} \\ &V_{GS} = 4.5 \text{ V, } I_D = 7 \text{ A} \\ &V_{GS} = 10 \text{ V, } I_D = 6.5 \text{ A} \\ &V_{GS} = 10 \text{ V, } I_D = 6.5 \end{aligned}$	1	N	25 22 21	32	11152
		$V_{GS} = 4.5 \text{ V}, I_D = 7 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 6.5 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 6.5$ $V_{GS} = 4.5 \text{ V}, I_D = 6.5$	1	N	21		
I _{D(on)} C	On-State Drain Current	$V_{GS} = 10 \text{ V}, I_D = 6.5$ $T = ^5^{\circ}\text{C}$ $V_{GS} = 4.5 \text{ V}, I_D = 6.5$	1	4	1.		
I _{D(on)} C	On-State Drain Current	$V_{GS} = 10 \text{ V}, I_D = 6.5$ $T = ^5^{\circ}\text{C}$ $V_{GS} = 4.5 \text{ V}, I_D = 6.5$		D /_	1	29	1
I _{D(on)} C	On-State Drain Current	$V_{GS} = 4.5 \text{ V}, I_D = 6 \text{ A}$			32	49	
I _{D(on)}	On-State Drain Current	V = 10 V : - V	+<		32	38	
		$V_{GS} = 10 V_{DS} = 3$	Q2 Q1	30	1	DL	Α
g _{FS} F	Forward Transconductance	$V_{DS} = \langle V, I_D \rangle = \langle 9, A \rangle$	C2	1	25 15		S
D	Oh a sa a ta sta ti a t	$I_D = 6.5 A$	<u> </u>	5111.	13		
	Characteristics	A COLOR	Q2	1	550		
C _{iss} Ir	nput Capacitance	$y_{S} = 10 \text{ (V, } y_{GS} = 0 \text{ (V,)}$	Q2 Q1		550 720		pF
C _{oss} O	Output Capacit ice		Q2		180		pF
- 033		∩= 1.9 MHz	Q1		120		'
C _{rss} R	Revers Tro fer ucitance	L'MIST	Q2		70		pF
	101	CO, "IK	Q1		60		
R _G	ate es: Je	V _{GS} = 15mV, f -= 1.0 MHz	Q2		3.2		Ω
	1,5,5	KA'	Q1		1.2		
Switch.	Characteristics (Note:	2)					
	Furn-On Delay Time	ý `	Q2		9	18	ns
4(0.1)	E		Q1		10	19	
t _r	urn-On Rise Time	$V_{DD} = 15 \text{ V}, I_D = 1 \text{ A},$	Q2		6	12	ns
112	0/,		Q1		4	8	
$t_{a(Off)}$ T	Γurn-Off Delay Time	$V_{GS} = 10V, R_{GEN} = 6 \Omega$	Q2		25	40	ns
_		_	Q1		24	39	
t _f T	Turn-Off Fall Time		Q2 Q1		4	8 6	ns
t.() T	Furn-On Delay Time		Q2		11	20	ns
t _{d(on)}	Tan On Dolay Tille		Q2 Q1		10	20	113
t _r T	Turn-On Rise Time	$V_{DD} = 15 \text{ V}, I_D = 1 \text{ A},$	Q2		15	26	ns
. '		, - ,	Q1		9	18	
t _{d(off)} T	Turn-Off Delay Time	$V_{GS} = 4.5V, R_{GEN} = 6 \Omega$	Q2		15	26	ns
	<u> </u>	_	Q1		13	23	
t _f T	Turn-Off Fall Time		Q2 Q1		6 3	12	ns

Electrical Characteristics (continued)

T_A = 25°C unless otherwise noted


Symbol	Parameter	Test Conditions	Type	Min	Тур	Max	Units		
Switching Characteristics (Note 2)									
$Q_{g(TOT)}$	Total Gate Charge, Vgs = 10V		Q2		10	14	nC		
		00.	Q1		12	17			
$\overline{Q_g}$	Total Gate Charge, Vgs = 5V	Q2: V _{DS} = 15 V, I _D = 7.9 A	Q2		5.6	8	nC		
3		$V_{DS} = 15 \text{ V}, I_D = 7.9 \text{ A}$	Q1		6.5	9			
$\overline{Q_gs}$	Gate-Source Charge	Q1:	Q2		2.0		nC		
3 -		V _{DS} = 15 V. I _D = 6.5 A	Q1		2.3				
$\overline{Q_{gd}}$	Gate-Drain Charge	V _{DS} = 13 V, 1 _D = 0.3 A	Q2		1.5		nC		
3.			Q1		2.1				

Drain-Source Diode Characteristics and Maximum Ratings

Is	Maximum Continuous Drain-So	um Continuous Drain-Source Diode Forward Current		Q2			3.0	A
				Q1			1.3	
T_{rr}	Reverse Recovery Time	$I_F = 10 A,$		Q2		15	_ (lis
Qrr	Reverse Recovery Charge	$d_{iF}/d_t = 300 \text{ A/}\mu\text{s} \tag{N}$	Note 3)				OF	nC
Trr	Reverse Recovery Time	$I_F = 6.5 A,$		<u>2</u> 1		20		ns
Qrr	Reverse Recovery Charge	$d_{iF}/d_t = 100 \text{ A/}\mu\text{s}$	Vote			12		nC
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 2.3 \text{ A}$ $V_{GS} = 0 \text{ V}, I_S = 1.7 \text{ A}$	N 2)	Q1	R	0.6 ∂.8	0.7 1.2	V
						- 77	-	

Notes

1. R_{BJA} is the sum of the junction-to-case and case-to-ambient therm* resistant where to case thermal reference is derived as the solder mounting surface of the drain pins. R_{BJC} is guaranteed by design while R_{BCA} is determined by the units board design.

, C/V, hen mounted 0.5in ad of 2

1.75°C/W when mounted in a 0.02 inf pact of 2 oz copper 9999

135°C/W when mounted on a minimum pad.

Scale 1 : 1 on letter size pape.

- 2. Pulse Test: P vlse Width < 300 μ s, Duty Cycle < 2.0%
- 3. See 'S rocket Schottky body dioce haracteristics' below.
- 4. FDS6986AS-NL is a lead free product. FDS6986AS-NL marking will appear on the reel label.

Typical Characteristics: Q2

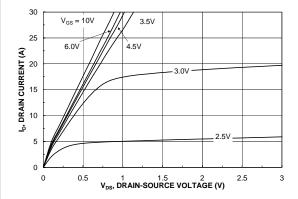


Figure 1. On-Region Characteristics.

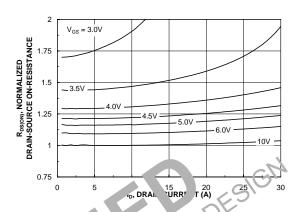


Figure 2. n-t sist ice Variation with D in C. ret and Gate Voltage.

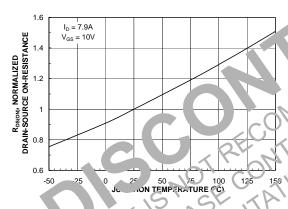


Fig 'e 3 On-Resistance Variation with Vernperature.

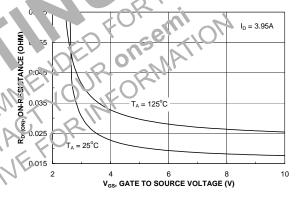


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

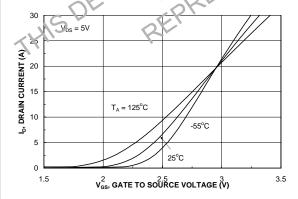


Figure 5. Transfer Characteristics.

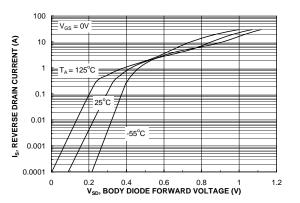


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics: Q2

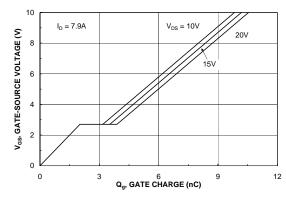


Figure 7. Gate Charge Characteristics.

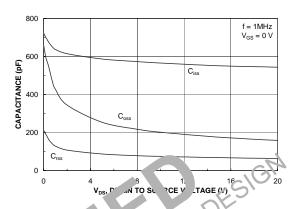
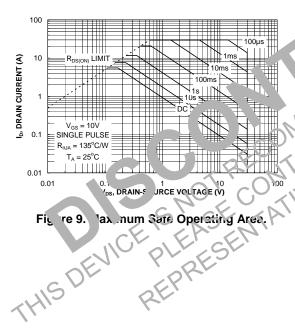



Figure 8. ap. itar a Characteristics.

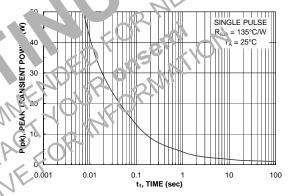


Figure 10. Single Pulse Maximum Power Dissipation.

Typical Characteristics Q1

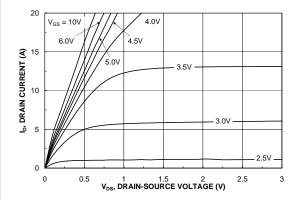


Figure 11. On-Region Characteristics.

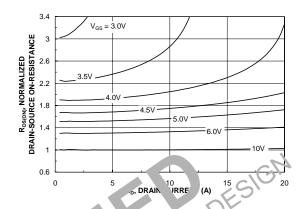


Figure 12. `n-. Psis' ance Mariation with Doin Core. and Gate Voltage.

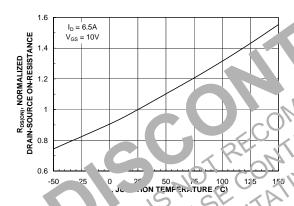


Fig. > 1° On-Resistance Variation with Temperature.

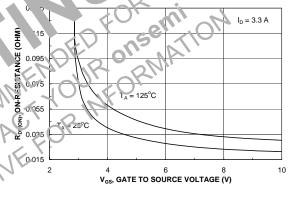


Figure 14. On-Resistance Variation with Gate-to-Source Voltage.

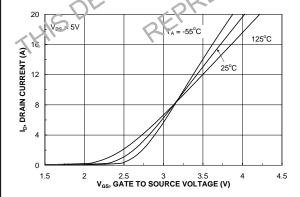


Figure 15. Transfer Characteristics.

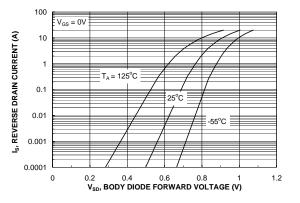
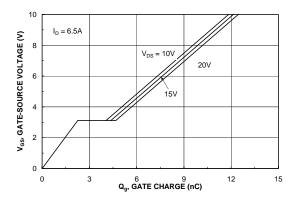



Figure 16. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics Q1

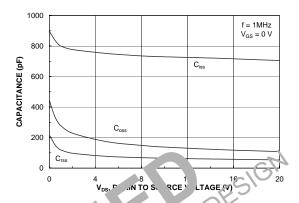
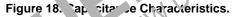
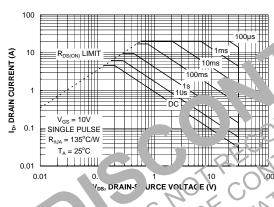




Figure 17. Gate Charge Characteristics.

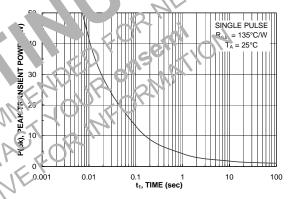
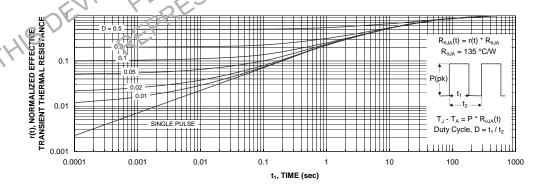
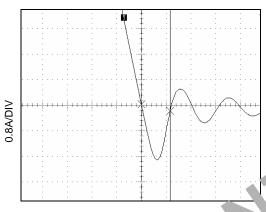


Fig e 19. Ia. mum Safe Operating Area.

Figure 20. Single Pulse Maximum Power Dissipation.




Figure 21. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.

Typical Characteristics (continued)

SyncFET Schottky Body Diode Characteristics

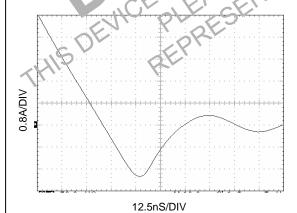
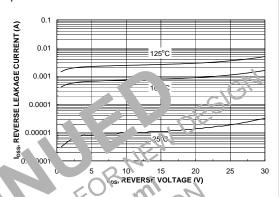
ON Semiconductor's SyncFET process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 22 shows the reverse recovery characteristic of the FDS6986AS.

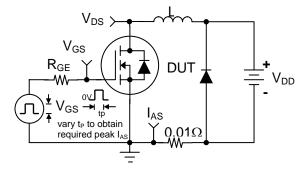
12.5nS/DIV

Figure 22. FDS6986AS reverse recorry

yncFET . _y dio le harai eristic.

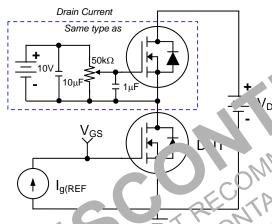
ure 23 shows the reverse the body diode of an duced without SyncFET For comparison, 'rposes, F jure 23 shows the reverse recovery note stic size MC FET equival produced without Syn :F (FDS6696)


Figure 23. Non-SyncFET (FDS6690A) body diode reverse recovery characteristic.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

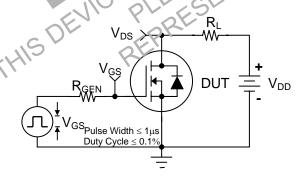
gure 24. SyncFET body diode reverse leakage versus araın-source voltage and temperature.


Typical Characteristics



BV_{DSS}
V_{DS}
V_{DD}
V_{DD}

Figure 25. Unclamped Inductive Load Test Circuit


Figure 26. Unclamp a Inc octive Way Jorn

rigu 12 Gate Charge Test Circuit

Figure 28. Gate Charge Waveform

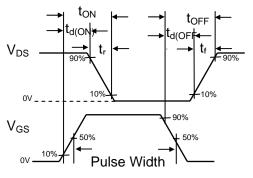


Figure 29. Switching Time Test Circuit

Figure 30. Switching Time Waveforms

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative