

MOSFET – Dual, N-Channel, Logic Level, POWERTRENCH®

30 V, 6 A, 28 m Ω

FDS6912A

General Description

These N-Channel Logic Level MOSFETs are produced using **onsemi**'s advanced POWERTRENCH process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.

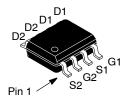
Features

• 6.0 A. 30 V

 $R_{DS(ON)} = 28 \text{ m}\Omega \text{ @ } V_{GS} = 10 \text{ V}$ $R_{DS(ON)} = 35 \text{ m}\Omega \text{ @ } V_{GS} = 4.5 \text{ V}$

- Fast Switching Speed
- Low Gate Charge
- High Performance Trench Technology for Extremely Low R_{DS(ON)}
- High Power and Current Handling Capability
- This Device is Pb-Free and Halogen Free

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

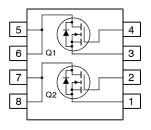

Symbol	Parameter		Ratings	Unit	
V _{DSS}	Drain-Source Voltage		30	V	
V _{GSS}	Gate-Source Voltage		±20	V	
I _D	Drain Current	- Continuous (Note 1a)	6	Α	
		- Pulsed	20		
P_{D}	Power Dissipation	(Note 1a)	1.6	W	
	for Single Operation	(Note 1b)	1.0		
	- р	(Note 1c)	0.9		
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
Rеja	Thermal Resistance, Junction-to-Ambient (Note 1a)	78	°C/W
Rелс	Thermal Resistance, Junction-to-Case (Note 1)	40	°C/W

V _{DSS}	R _{DS(ON)} MAX	I _D MAX
30 V	28 m Ω @ V _{GS} = 10 V	6.0 A
	35 m Ω @ V _{GS} = 4.5 V	5.0 A


SOIC8 CASE 751EB

MARKING DIAGRAM

FDS6912A = Specific Device Code
A = Assembly Site
L = Wafer Lot Number
YW = Assembly Start Week

PIN ASSIGNMENT

Dual N-Channel MOSFET

ORDERING INFORMATION

Device	Package	Shipping [†]			
FDS6912A	SOIC8 (Pb-Free)	2500 / Tape & Reel			

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

FDS6912A

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARA	ACTERISTICS					•
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	30	-	-	V
ΔBV_{DSS}	Breakdown Voltage Temperature	I _D = 250 μA, Referenced to 25°C	-	25	-	mV/°C
ΔT_{J}	Coefficient					
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V V _{DS} = 24 V, V _{GS} = 0 V, T _J = 55°C	_ _	- -	1 10	μΑ
I _{GSS}	Gate-Source Leakage	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	_	-	±100	nA
ON CHARA	CTERISTICS (Note 2)	•				
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA	1	1.9	3	V
$\Delta V_{GS(th)}$	Gate Threshold Voltage Temperature	I _D = 250 μA, Referenced to 25°C	-	-4.5	-	mV/°C
ΔT_{J}	Coefficient					
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 6 A	-	19	28	mΩ
		$V_{GS} = 4.5 \text{ V}, I_D = 5 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 6 \text{ A}, T_J = 125^{\circ}\text{C}$	-	24 27	35 44	
I _{D(on)}	On-State Drain Current	V _{GS} = 10 V, V _{DS} = 5 V	20	_	_	Α
9FS	Forward Transconductance	V _{DS} = 10 V, I _D = 6 A	_	25	_	S
	CHARACTERISTICS	, ,	1			1
C _{iss}	Input Capacitance	V _{DS} = 15 V, V _{GS} = 0 V, f = 1.0 MHz	_	575	_	pF
C _{oss}	Output Capacitance		_	145	_	pF
C _{rss}	Reverse Transfer Capacitance		_	65	_	pF
R _G	Gate Resistance	V _{GS} = 15 mV, f = 1.0 MHz	_	2.1	_	Ω
SWITCHING	CHARACTERISTICS (Note 2)					
t _{d(on)}	Turn-On Delay Time	V _{DD} = 15 V, I _D = 1 A,	_	8	16	ns
t _r	Turn-On Rise Time	$V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$	_	5	10	ns
t _{d(off)}	Turn-Off Delay Time		_	23	37	ns
t _f	Turn-Off Fall Time		_	3	6	ns
Qg	Total Gate Charge	V _{DS} = 15 V, I _D = 6 A, V _{GS} = 5 V	_	5.8	8.1	nC
Q _{gs}	Gate-Source Charge		_	1.7	-	nC
Q _{gd}	Gate-Drain Charge		-	2.1	_	nC
DRAIN-SOL	JRCE DIODE CHARACTERISTICS			-	•	-
I _S	Maximum Continuous Drain-Source Did	de Forward Current	_	_	1.3	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 1.3 A (Note 2)	_	0.75	1.2	V
t _{rr}	Diode Reverse Recovery Time	$I_F = 6 \text{ A}, d_{iF}/dt = 100 \text{ A}/\mu\text{s}$	_	20	_	ns
Q _{rr}	Diode Reverse Recovery Charge		-	10	-	nC
		•				

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta,CA}$ is determined by the user's board design.

a. 78°C/W when mounted on a $0.5\,\mathrm{in}^2$ pad of 2 oz copper

b. 125°C/W when mounted on a 0.02 in² pad of 2 oz copper

c. 135°C/W wh mounted on a mounting pad. c. 135°C/W when mounted on a minimum

Scale 1:1 on letter size paper

2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%.

FDS6912A

TYPICAL ELECTRICAL CHARACTERISTICS

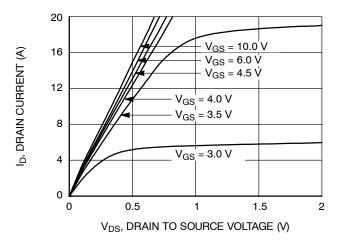


Figure 1. On-Region Characteristics

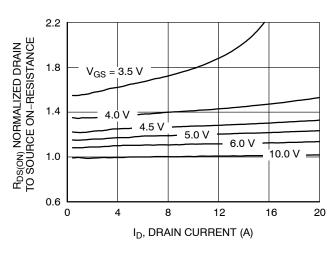


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage

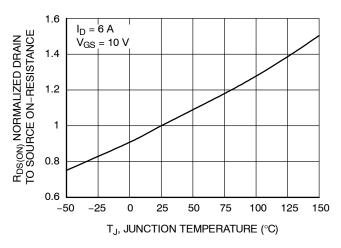


Figure 3. On–Resistance Variation with Temperature

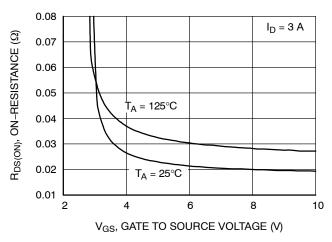


Figure 4. On-Resistance Variation with Gate to Source Voltage

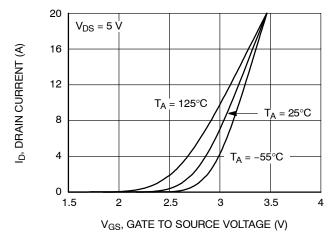


Figure 5. Transfer Characteristics

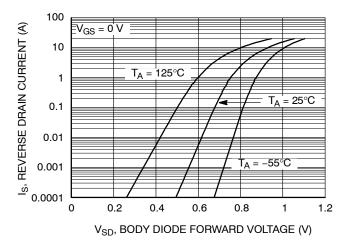
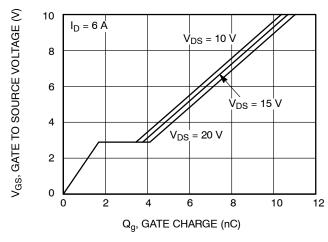
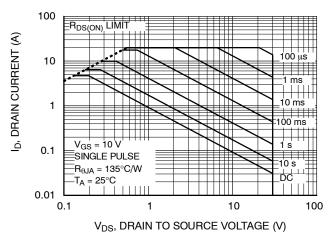



Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature

FDS6912A


TYPICAL ELECTRICAL CHARACTERISTICS (continued)

800 f = 1 MHz $V_{GS} = 0 V$ CAPACITANCE (pF) 600 C_{iss} 400 Coss 200 $\mathsf{C}_{\mathsf{rss}}$ 0 0 5 10 15 20 V_{DS}, DRAIN TO SOURCE VOLTAGE (V)

Figure 7. Gate Charge Characteristics

Figure 8. Capacitance Characteristics

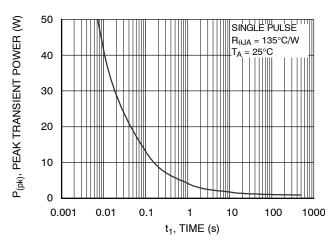


Figure 9. Maximum Safe Operating Area

Figure 10. Single Pulse Maximum Power Dissipation

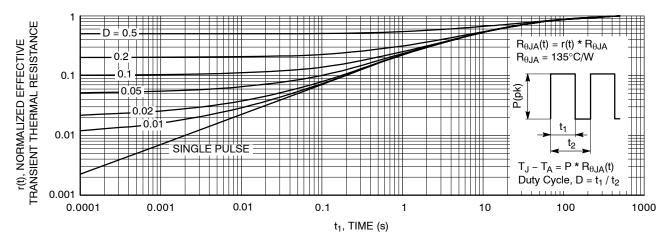


Figure 11. Transient Thermal Response Curve

(Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.)

POWERTRENCH is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

CASE 751EB **ISSUE A DATE 24 AUG 2017** ·4.90±0.10 → -0.65(0.635)В 6.00±0.20 5.60 3.90±0.10 PIN ONE **INDICATOR** 1.27 1.27 0.25(M) LAND PATTERN RECOMMENDATION В SEE DETAIL A 0.175±0.075 0.22±0.03 С 1.75 MAX 0.10 0.42±0.09 OPTION A - BEVEL EDGE $(0.43) \times 45^{\circ}$ R0.10 GAGE PLANE OPTION B - NO BEVEL EDGE R0.10-0.25 NOTES: A) THIS PACKAGE CONFORMS TO JEDEC MS-012, VARIATION AA. B) ALL DIMENSIONS ARE IN MILLIMETERS. **SEATING PLANE** C) DIMENSIONS DO NOT INCLUDE MOLD 0.65±0.25 FLASH OR BURRS. D) LANDPATTERN STANDARD: SOIC127P600X175-8M (1.04)**DETAIL** À SCALE: 2:1 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DOCUMENT NUMBER:** 98AON13735G

SOIC8

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DESCRIPTION:

SOIC8

PAGE 1 OF 1

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales