

Regulator - TinyPower™, Buck-Boost, 2.5 A, I²C FAN49103

Description

The FAN49103 is a high efficiency buck-boost switching mode regulator which accepts input voltages either above or below the regulated output voltage. Using full-bridge architecture with synchronous rectification, the FAN49103 is capable of delivering up to 2.5 A while regulating the output at 3.4 V. The FAN49103 exhibits seamless transition between step-up and step-down modes reducing output disturbances. The output voltage and operation mode of the regulator can be programmed through an I²C interface.

At moderate and light loads, Pulse Frequency Modulation (PFM) is used to operate the device in power–save mode to maintain high efficiency. In PFM mode, the part still exhibits excellent transient response during load steps. At moderate to heavier loads or Forced PWM mode, the regulator switches to PWM fixed–frequency control. While in PWM mode, the regulator operates at a nominal fixed frequency of 1.8 MHz, which allows for reduced external component values.

The FAN49103 is available in a 20-bump 1.615 mm \times 2.015 mm with 0.4 mm pitch WLCSP.

Features

- 24 μA Typical PFM Quiescent Current
- Above 95% Efficiency
- Total Layout Area = 11.61 mm²
- Input Voltage Range: 2.5 V to 5.5 V
- Maximum Continuous Load Current:
 - 3.0 A at $V_{OUT} = 3.4 \text{ V}$, $V_{IN} = 3.3 \text{ V}$
 - 2.5 A at $V_{OUT} = 3.4 \text{ V}, V_{IN} = 3.0 \text{ V}$
 - 2.0 A at $V_{OUT} = 3.4 \text{ V}$, $V_{IN} = 2.5 \text{ V}$
- I²C Compatible Interface
- Programmable Output Voltage:
 - 2.5 V to 2.8 V in 50 mV Steps
 - 2.8 V to 4.0 V in 25 mV Steps
- 1.8 MHz Fixed-Frequency Operation in PWM Mode
- Automatic / Seamless Step-up and Step-down Mode Transitions
- Forced PWM and Automatic PFM/PWM Mode Selection
- 0.5 μA Typical Shutdown Current
- Low Quiescent Current Pass-Through Mode
- Internal Soft-Start and Output Discharge
- Low Ripple and Excellent Transient Response
- Internally Set, Automatic Safety Protections (UVLO, OTP, SCP, OCP)
- Package: 20 Bump, 0.4 mm Pitch WLCSP

Applications

- Smart Phones
- Portable Devices with Li-ion Battery
- 2G/3G/4G Power Amplifiers
- NFC Applications

May. 2024 - Rev. 14

WLCSP20 2.015x1.615x0.586 CASE 567QK

MARKING DIAGRAM

12 = Alphanumeric Device Marking

KK = Lot Run Code

X = Alphabetical Year Code Y = 2-weeks Date Code Z = Assembly Plant Code

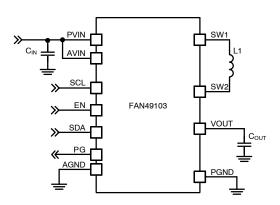


Figure 1. Typical Application

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ORDERING INFORMATION

Part Number	Default VOUT	Output Discharge	Slave Address	Temperature Range	Package	Packing Method [†]	Device Marking
FAN49103AUC340X	3.4 V	Yes	7h'70	−40 to 85°C	20-Ball (WLCSP)	Tape and Reel	FF
FAN49103AUC330X	3.3 V	Yes	7h'70	−40 to 85°C	20-Ball (WLCSP)	Tape and Reel	KX
FAN49103AUC34AX	3.4 V	Yes	7h'71	−40 to 85°C	20-Ball (WLCSP)	Tape and Reel	MQ

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

BLOCK DIAGRAM

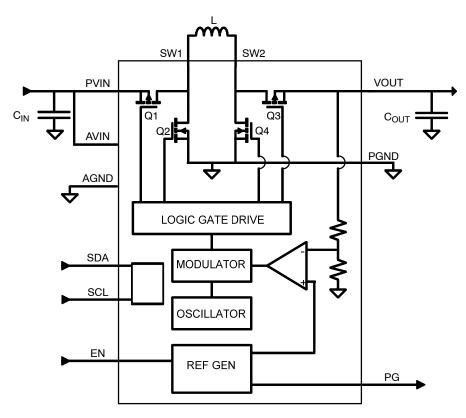


Figure 2. Block Diagram

PIN CONFIGURATION

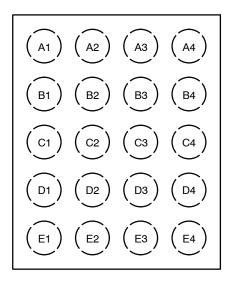


Figure 3. Top View (Bump Down)

PIN DEFINITIONS (Note 1)

Pin#	Name	Description
A3, A4	PVIN	Power Input Voltage. Connect to input power source. Connect to C _{IN} with minimal path
A1	AVIN	Analog Input Voltage. Analog input for device. Connect to C _{IN} and PVIN
A2	EN	Enable. A HIGH logic level on this pin forces the device to be enabled. A LOW logic level forces the device into shutdown. EN pin can be tied to VIN or driven via a GPIO logic voltage
B3, B4	SW1	Switching Node 1. Connect to inductor L1
E1	AGND	Analog Ground. Control block signal is referenced to this pin. Short AGND to PGND at GND pad of COUT
B1, C1, C2, C3, C4, D1	PGND	$ \begin{array}{c} \textbf{Power Ground.} \ \text{Low-side MOSFET of buck and main MOSFET of boost are referenced to this pin.} \ C_{\text{IN}} \ \text{and} \\ C_{\text{OUT}} \ \text{should be returned with a minimal path to these pins} \end{array} $
D2	SDA	I2C Data Line. Used for I2C communication. If SDA is unused then tie pin to either AGND or PGND.
D3, D4	SW2	Switching Node 2. Connect to inductor L1
E2	PG	Power Good. This is an open-drain output and normally High Z. An external pull-up resistor from VOUT can be used to generate a logic HIGH. PG is pulled LOW if output falls out of regulation due to current overload or if thermal protection threshold is exceeded. If EN is LOW, PG is high impedance
B2	SCL	I ² C Clock Line. Used for I ² C communication. If SCL is unused then tie pin to either AGND or PGND.
E3, E4	VOUT	Output Voltage. Buck-Boost Output. Connect to output load and COUT

^{1.} Refer to Layout Recommendation section located near the end of the datasheet.

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C, Unless otherwise specified)

Symbol	Param	Parameter			Unit
PVIN/AVIN	PVIN/AVIN Voltage		-0.3	6.5	V
VOUT	VOUT Voltage		-0.3	6.5	V
SW1, SW2	SW Nodes Voltage	SW Nodes Voltage			V
	Other Pins			6.5	V
	ESD Electrostatic Discharge Protection Level Charged Device Model per JESD22-A114 Charged Device Model per JESD22-C101		2000		V
ESD			1000		
TJ	Junction Temperature			+150	°C
T _{STG}	Storage Temperature			+150	°C
T _L	Lead Soldering Temperature, 10 Seconds			+260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Тур	Max	Unit
PVIN	Supply Voltage Range	2.5		5.5	V
l _{OUT}	Output Current (Note 2)	0		2.5	Α
L	Inductor (Note 3)		1		μΗ
C _{OUT}	Output Capacitance (Note 3)		47		μF
T _A	Operating Ambient Temperature	-40		+85	°C
TJ	Operating Junction Temperature	-40		+125	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

THERMAL PROPERTIES (Note 4, 5)

Symbol	Parameter	Min	Тур	Max	Unit
θја	Junction-to-Ambient Thermal Resistance		66		°C/W

^{4.} Junction-to-ambient thermal resistance is a function of application and board layout. This data is measured with four- layer 2s2p with vias JEDEC class boards in accordance to JEDEC standard JESD51. Special attention must be paid not to exceed junction temperature T_{J(max)} at a given ambient temperature T_A.

^{2.} Maximum current may be limited by the thermal conditions of the end application, PCB layout, and external component selection in addition to the device's thermal properties. Refer to the Application Information and Application Guidelines sections for more information.

^{3.} Refer to the Application Guidelines section for details on external component selection.

^{5.} See Thermal Considerations in the Application Information section.

ELECTRICAL CHARACTERISTICS (Note 6, 7)

Minimum and maximum values are at PVIN = AVIN = 2.5 V to 5.5 V, VOUT = 2.8 V to 4.0 V, $T_A = -40^{\circ}C$ to +85°C. Typical values are at $T_A = 25^{\circ}C$, PVIN = AVIN = $V_{EN} = 3.6$ V, VOUT = 3.4 V.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
POWER SUPP	PLIES				•	
ΙQ	Quiescent Current	PFM Mode, I _{OUT} = 0 mA (Note 8)		24		μΑ
		PT Mode, I _{OUT} = 0 mA		27		
I _{SD}	Shutdown Supply Current	EN = GND, PVIN = 3.6 V		0.5	5.0	μΑ
V _{UVLO}	Under-Voltage Lockout Threshold	Falling PVIN	1.95	2.00	2.05	V
V _{UVHYST}	Under-Voltage Lockout Hysteresis			200		mV
EN, SDA, SCL						
V _{IH}	HIGH Level Input Voltage		1.1			V
V _{IL}	LOW Level Input Voltage				0.4	V
I _{IN}	Input Bias Current Into Pin	Input Tied to GND or PVIN		0.01	1.00	μΑ
PG						
V_{PG}	PG LOW	I _{PG} = 5 mA			0.4	V
I _{PG_LK}	PG Leakage Current	V _{PG} = 5 V			1	μΑ
SWITCHING						
f _{SW}	Switching Frequency	PVIN = 3.6 V, T _A = 25°C	1.6	1.8	2.0	MHz
I _{p_LIM}	Peak PMOS Current Limit	PVIN = 3.6 V	4.6	5.2	5.9	Α
ACCURACY						
V _{OUT_ACC}	DC Output Voltage Accuracy	PVIN = 3.6 V, Forced PWM, I _{OUT} = 0 mA, VOUT = 3.4 V	3.366	3.400	3.434	V
		PVIN = 3.6 V, PFM Mode, I _{OUT} = 0 mA, VOUT = 3.4 V	3.366	3.475	3.563	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{6.} Refer to Typical Characteristics waveforms/graphs for Closed–Loop data and its variation with input voltage and ambient temperature. Electrical Characteristics reflects Open–Loop steady state data. System Characteristics reflects both steady state and dynamic Close–Loop data associated with the recommended external components.

^{7.} Minimum and Maximum limits are verified by design, test, or statistical analysis. Typical (Typ.) values are not tested, but represent the parametric norm.

^{8.} Device is not switching.

SYSTEM CHARACTERISTICS

The following table is verified by design and bench test while using circuit of Figure 1 with the recommended external components. Typical values are at $T_A = 25^{\circ}C$, $PVIN = AVIN = V_{EN} = 3.6 V$, VOUT = 3.4 V. These parameters are not verified in production.

Symbol	Parameter		Min	Тур	Max	Unit
V _{OUT_ACC}	Total Accuracy (Includes DC accuracy and load transient) (Note 9)			±5		%
ΔV_{OUT}	Load Regulation	I _{OUT} = 0.4 A to 2.5 A, PVIN = 3.6 V		-0.20		%/A
ΔV_{OUT}	Line Regulation	3.0 V ≤ PVIN ≤ 4.2 V, I _{OUT} = 1.5 A		-0.06		%/V
VOUT_RIPPLE	Ripple Voltage	PVIN = 4.2 V, VOUT = 3.4 V, I _{OUT} = 1 A, PWM Mode		4		mV
		PVIN = 3.6 V, VOUT = 3.4 V, I _{OUT} = 100 mA, PFM Mode		22		
		PVIN = 3.0 V, VOUT = 3.4 V, I _{OUT} = 1 A, PWM Mode		14		
η	Efficiency	PVIN = 3.0 V, VOUT = 3.4 V, I _{OUT} = 50 mA, PFM		90		%
		PVIN = 3.0 V, VOUT = 3.4 V, I _{OUT} = 500 mA, PWM		96		
		PVIN = 3.8 V, VOUT = 3.4 V, I _{OUT} = 50 mA, PFM		90		
		PVIN = 3.8 V, VOUT = 3.4 V, I _{OUT} = 600 mA, PWM		94		
		PVIN = 3.4 V, VOUT = 3.4 V, I _{OUT} = 300 mA, PWM		94		
T _{SS}	Soft-Start	EN HIGH to 95% of Target VOUT, I _{OUT} = 68 mA		260		μs
ΔV OUT_LOAD	Load Transient	PVIN = 3.4 V, I_{OUT} = 0.5 A \Leftrightarrow 1 A, TR = TF = 1 μs		±45		mV
		PVIN = 3.4 V, I _{OUT} = 0.5 A ⇔2.0 A, TR = TF = 1 μs, Pulse Width = 577 μs		±125		
ΔV OUT_LINE	Line Transient	PVIN = 3.0 V \Leftrightarrow 3.6 V, TR = TF = 10 μ s, I _{OUT} = 1 A		±60		mV

^{9.} Load transient is from 0.5 A \Leftrightarrow 1 A.

TYPICAL CHARACTERISTICS

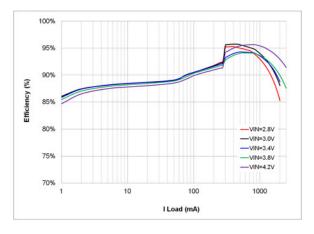


Figure 4. Efficiency vs. Load

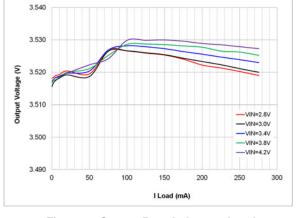


Figure 5. Output Regulation vs. Load

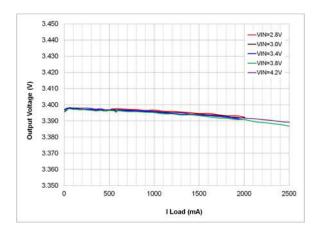


Figure 6. Output Regulation vs. Load, FPWM Mode

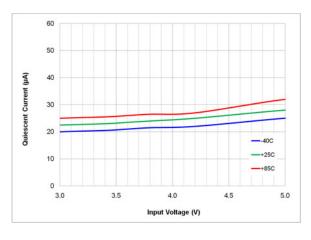


Figure 7. Quiescent Current (No Switching) vs. Input Voltage

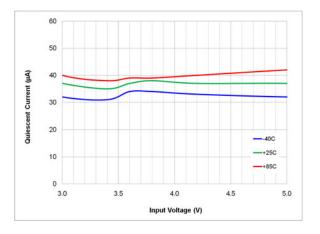


Figure 8. Quiescent Current (Switching) vs. Input Voltage

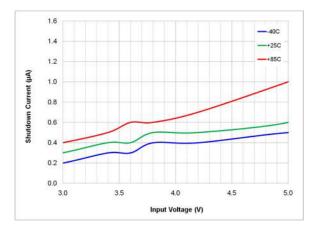


Figure 9. Shutdown Current vs. Input Voltage

TYPICAL CHARACTERISTICS

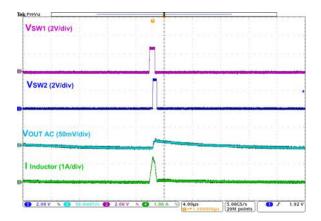


Figure 10. Output Ripple, VIN = 2.8 V, I_{OUT} = 20 mA, Boost Operation

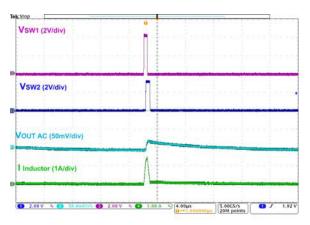


Figure 12. Output Ripple, VIN = 4.2 V, I_{OUT} = 20 mA, Buck Operation

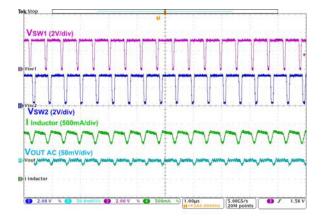


Figure 14. Output Ripple, VIN = 3.3 V, I_{OUT} = 1000 mA, Buck-Boost Operation

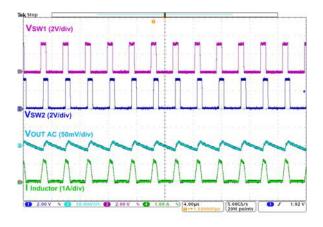


Figure 11. Output Ripple, VIN = 3.3 V, I_{OUT} = 200 mA, Buck-Boost Operation

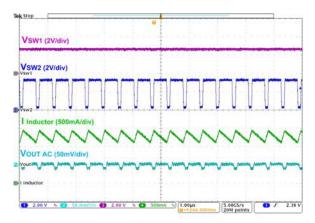


Figure 13. Output Ripple, VIN = 2.5 V, I_{OUT} = 1000 mA, Boost Operation

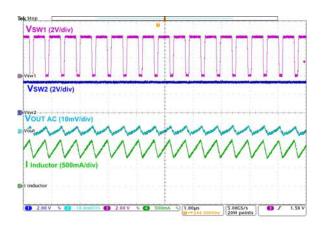


Figure 15. Output Ripple, VIN = 4.5 V, I_{OUT} = 1000 mA, Buck Operation

TYPICAL CHARACTERISTICS

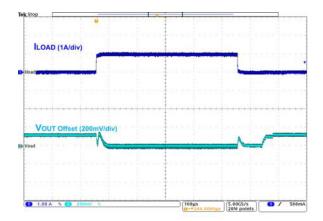


Figure 16. Load Transient, 0 mA ⇔ 1000 mA, 1 ms Edge, VIN = 3.60 V

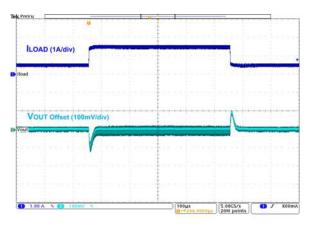


Figure 17. Load Transient, 500 mA ⇔ 1500 mA, 1 ms Edge, VIN = 3.60 V

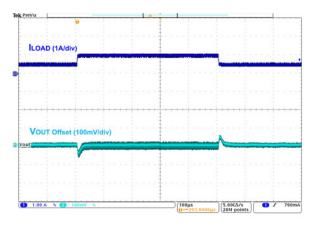


Figure 18. Load Transient, 500 mA ⇔ 1000 mA, 1 ms Edge, VIN = 3.40 V

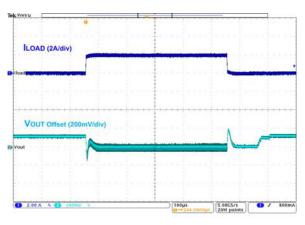


Figure 19. Load Transient, 0 mA ⇔ 2000 mA, 1 ms Edge, VIN = 3.60 V

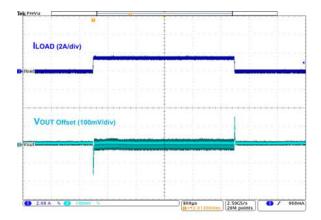


Figure 20. Load Transient, 0 mA ⇔ 1500 mA, 10 ms Edge, VIN = 2.80 V, PWM Mode

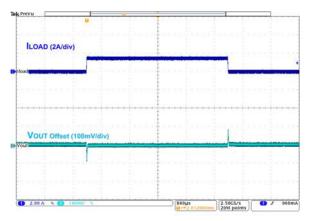


Figure 21. Load Transient, 0 mA ⇔ 1500 mA, 10 ms Edge, VIN = 4.20 V, PWM Mode

TYPICAL CHARACTERISTICS

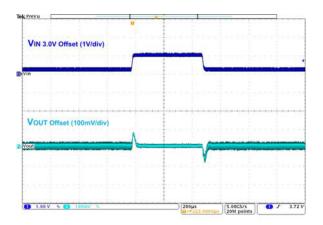
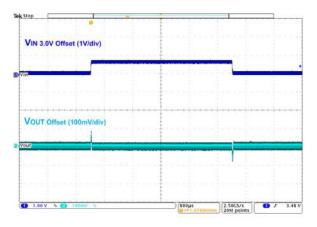



Figure 22. Line Transient, 3.2 ⇔ 4.0 VIN, 10 ms Edge, 1000 mA Load

Figure 23. Line Transient, 3.0 ⇔ 3.6 VIN, 10 ms Edge, 1500 mA Load, PWM

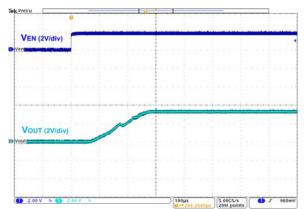
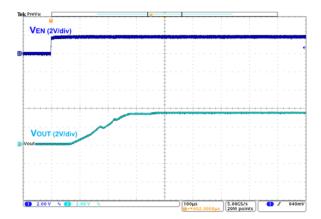



Figure 24. Line Transient, 3.0 ⇔ 3.6 VIN, 10 ms Edge, 1000 mA Load, PWM

Figure 25. Startup, VIN = 3.6 V, I_{OUT} = 0 mA

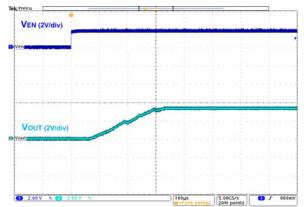


Figure 26. Startup, VIN = 3.6 V, I_{OUT} = 68 mA

Figure 27. Startup, VIN = 3.6 V, I_{OUT} = 1000 mA

TYPICAL CHARACTERISTICS

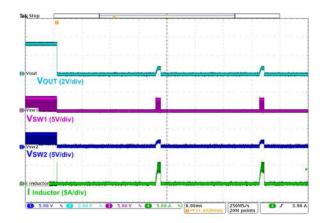


Figure 28. Short-Circuit Protection

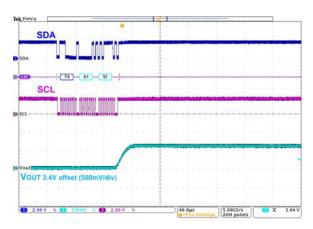


Figure 29. V_{OUT} Transition, 3.4 V \Leftrightarrow 4.0 V, 500 mA Load

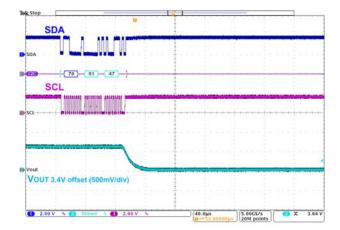


Figure 30. V_{OUT} Transition, 4.0 V \Leftrightarrow 3.4 V, 500 mA Load

APPLICATION INFORMATION

Functional Description

FAN49103 is a fully integrated synchronous, full bridge DC-DC converter that can operate in buck operation (during high PVIN), boost operation (for low PVIN) and a combination of buck-boost operation when PVIN is close to the target VOUT value. The PWM/PFM controller switches automatically and seamlessly between buck, buck-boost and boost modes.

The FAN49103 uses a four-switch operation during each switching period when in the buck-boost mode. Mode operation is as follows: referring to the power drive stage

shown in Figure 31 if PVIN is greater than target VOUT, then the converter is in buck mode: Q3 is ON and Q4 is OFF continuously leaving Q1, Q2 to operate as a current-mode controlled PWM converter. If PVIN is lower than target VOUT then the converter is in boost mode with Q1 ON and Q2 OFF continuously, while leaving Q3, Q4 to operate as a current-mode boost converter. When PVIN is near VOUT, the converter goes into a 3-phase operation in which combines a buck phase, a boost phase and a reset phase; all switches are switching to maintain an average inductor volt-second balance.

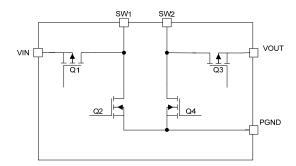


Figure 31. Simplified Block Diagram

PFM/PWM Mode

The FAN49103 uses a current-mode modulator to achieve smooth transitions between PWM and PFM operation. In Pulsed Frequency Modulation (PFM), frequency is reduced to maintain high efficiency. During PFM operation, the converter positions the output voltage typically 75 mV higher than the nominal output voltage during PWM operation, allowing additional headroom for voltage drop during a load transient from light to heavy load. As the load increased from light loads, the converter enters PWM operation typically at 300 mA of current load. The converter switching frequency is typically 1.8 MHz during PWM operation for moderate to heavy load currents.

PT (Pass-Through) Mode

In Pass–Through mode, all of the switches are not switching and VOUT tracks PVIN (VOUT = PVIN $-I_{OUT}\times (Q1_{RDSON}+Q3_{RDSON}+L_{DCR}).$ In PT mode only Over–Temperature (OTP) and Under Voltage Lockout (UVLO) protection circuits are activated. There is no Over– Current Protection (OCP) in PT mode.

Shutdown and Startup

When the EN pin is LOW, the IC is in Shutdown mode and non-essential internal circuits are off. In this state, I²C can be written to or read from. During shutdown, VOUT is isolated from PVIN. Raising EN pin activates the device and begins the soft-start cycle. During soft-start, the modulator's internal reference is ramped slowly to minimize surge currents on the input and prevent overshoot of the

output voltage. If VOUT fails to reach target VOUT value after 1 ms, a FAULT condition is declared.

Over-Temperature (OTP)

The regulator shuts down when the die temperature exceeds 150°C. Restart occurs when the IC has cooled by approximately 20°C.

Output Discharge

When the regulator is disabled and driving the EN pin LOW, a 230 Ω internal resistor is activated between VOUT and GND. The Output Discharge is not activated during a FAULT state condition.

Over-Current Protection (OCP)

If the peak current limit is activated for a typical 700 μ s, a FAULT state is generated, so that the IC protects itself as well as external components and load.

FAULT State

The regulator enters the FAULT state under any of the following conditions:

- VOUT fails to achieve the voltage required after soft-start
- Peak current limit triggers
- OTP or UVLO are triggered

Once a FAULT is triggered, the regulator stops switching and presents a high-impedance path between PVIN and VOUT. After waiting 30 ms, a restart is attempted.

Power Good

PG, an open-drain output, is LOW during FAULT state and HIGH for Power Good.

The PG pin is provided for signaling the system when the regulator has successfully completed soft-start and no FAULTs have occurred. PG pin also functions as a warning flag for high die temperature and overload conditions.

- PG is released HIGH when the soft-start sequence is successfully completed
- PG is pulled LOW when a FAULT is declared. Any FAULT condition causes PG to be de-asserted

Thermal Considerations

For best performance, the die temperature and the power dissipated should be kept at moderate values. The maximum power dissipated can be evaluated based on the following relationship:

$$P_{D(max)} = \left\{ \frac{T_{J(max)} - T_A}{\Theta_{JA}} \right\}$$

where $T_{J(max)}$ is the maximum allowable junction temperature of the die; T_A is the ambient operating temperature; and θ_{JA} is dependent on the surrounding PCB layout and can be improved by providing a heat sink of surrounding copper ground.

The addition of backside copper with through–holes, stiffeners, and other enhancements can help reduce $\theta_{JA}.$ The heat contributed by the dissipation of devices nearby must be included in design considerations. Following the layout recommendation may lower the $\theta_{JA}.$

I²C Interface

The FAN49103's serial interface is compatible with Standard, Fast, Fast Plus, and HS Mode I²C-Bus specifications. The SCL line is an input and its SDA line is a bi-directional open-drain output; it can only pull down the bus when active. The SDA line only pulls LOW during data reads and when signaling ACK. All data is shifted in MSB (bit 7) first.

I²C Slave Address

In hex notation, the slave address assumes a 0 LS Bit. The hex slave address is 8h'E0 (7h'70) for FAN49103AUC340X. See Ordering information for other address options.

Table 1. I²C SLAVE ADDRESS

		Bits						
Hex	7	6	5	4	3	2	1	0
E0	1	1	1	0	0	0	0	R/W

Bus Timing

As shown in Figure 32, data is normally transferred when SCL is LOW. Data is clocked in on the rising edge of SCL. Typically, data transitions shortly at or after the

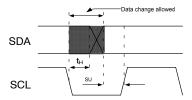


Figure 32. Data Transfer Timing

Each bus transaction begins and ends with SDA and SCL HIGH. A transaction begins with a START condition, which is defined as SDA transitioning from 1 to 0 with SCL HIGH, as shown in Figure 33.

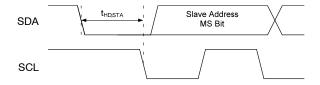


Figure 33. START Bit

A transaction ends with a STOP condition, which is defined as SDA transitioning from 0 to 1 with SCL HIGH, as shown in Figure 34.

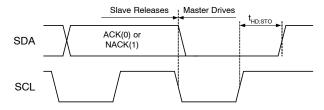


Figure 34. STOP Bit

During a read from the FAN49103, the master issues a REPEATED START after sending the register address, and before resending the slave address. The REPEATED START is a 1 to 0 transition on SDA while SCL is HIGH, as shown in Figure 35.

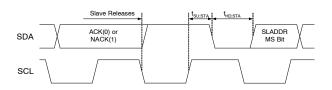


Figure 35. REPEATED START Bit

High-Speed (HS) Mode

The protocols for High-Speed (HS), Low-Speed (LS), and Fast-Speed (FS) Modes are identical; except the bus speed for HS mode is 3.4 MHz. HS Mode is entered when the bus master sends the HS master code 00001XXX after a START condition. The master code is sent in Fast or Fast-Plus Mode (less than 1 MHz clock); slaves do not ACK this transmission.

The master generates a REPEATED START condition (Figure 33) that causes all slaves on the bus to switch to HS Mode. The master then sends I2C packets, as described above, using the HS Mode clock rate and timing.

The bus remains in HS Mode until a STOP bit (Figure 34) is sent by the master. While in HS Mode, packets are separated by REPEATED START conditions (Figure 35).

Read and Write Transactions

The following figures outline the sequences for data read and write. Bus control is signified by the shading of the packet, defined as

Master Drives Bus
and
Slave Drives Bus

All addresses and data are MSB first.

Table 2. I²C BIT DEFINITIONS FOR FIGURE 36 & FIGURE 37

Symbol	Definition			
R	REPEATED START, see Figure 35			
Р	P, see Figure 34			
S	TART, see Figure 33			
Α	ACK. The slave drives SDA to 0 to acknowledge the preceding packet			
A	NACK. The slave sends a 1 to NACK the preceding packet			
R	EPEATED START, see Figure 35			
Р	STOP, see Figure 34			

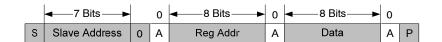


Figure 36. Write Transaction

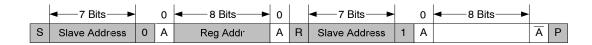


Figure 37. Read Transaction

Register Description

Table 3. REGISTER TABLE

Hex Address	Name	Function	
01	VOUT_REF	Set the target regulation point of VOUT	
02	CONTROL	PT and MODE control	
40	Manufacturer_ID	Read-only register identifies vendor and device type	
41	Device_ID	Read-only register identifies die ID	

BIT DEFINITIONS

The following table defines the operation of each register bit. **Bold** indicates power–on default values.

Bit	Name	Value	Description			
VOUT_REF	R/W		REGISTER ADDRESS: 01			
7	Reserved	0				
6:0	Ref_dac_code	0000000	Sets the target regulation point for VOUT. By default, the bits will read back as all zeroes. When changing the VOUT target, do not write the Reserved values, including 00h. If the default VOUT voltage must be written, the device must be programmed to the non-reserved equivalent value. HEX			
CONTROL	R/W		REGISTER ADDRESS: 02			
7:4	Reserved	0000				
3	i2c_pt_in	0	Enables Pass-Through mode. Code Mode 0 Regulated output (Boost, Buck or Buck-Boost) 1 Pass-Through enabled			
2	i2c_mode_in	0	Enables Forced PWM mode, as long as Pass-Through is not enabled. Code Mode 0 Auto PWM – PFM mode based on load 1 Forced PWM mode enabled			
1:0	Reserved	00				
MANUFACT	URER_ID R		REGISTER ADDRESS: 40			
7:0	Manufacture_ID	10000011				
DEVICE_ID	R		REGISTER ADDRESS: 41			
7:0	Device_ID	00000111				

APPLICATION GUIDELINES

Table 4. RECOMMENDED EXTERNAL COMPONENTS

Reference Designator Description		Quantity	Part Number
L	1 μ H, Isat(max) = 4.2 A, 36 m Ω (max), 2016	1	Cyntec HTEH20161T-1R0MSR
C _{OUT}	47 μF (x2), 6.3 V, X5R, 1608	2	Murata GRM188R60J476ME15
C _{IN}	22 μF, 10 V, X5R, 1608	1	Murata GRM187R61A226ME15

Alternative External Components

It is recommended to use the external components in Table 4. Alternative components that are suitable for a design's specific requirements must also meet the IC's requirements for proper device operation.

De-rating factors should be taken into consideration to ensure selected components meet minimum requirements.

Output Capacitor (COUT)

As shown in the recommended layout, C_{OUT} must connect to the VOUT pin with the lowest impedance trace possible. Additionally, C_{OUT} must connect to the GND pin with the lowest impedance possible.

Smaller-than-recommended value output capacitors may be used for applications with reduced load current requirements. When selecting capacitors for minimal solution size, it must be noted that the effective capacitance (C_{EFF}) of small, high-value, ceramic capacitors will decrease as bias voltage increases. The effects of Bias Voltage (DC Bias Characteristics), Tolerance, and

Temperature should be included when determining a component's effective capacitance.

The FAN49103 is guaranteed for stable operation with no less than the minimum effective output capacitance values shown in Table 5.

Table 5. REQUIRED MINIMUM EFFECTIVE OUTPUT CAPACITANCE VERSUS MAXIMUM LOAD

Maximum Load Current	Inductor (μH)	Required Minimum Effective Output Capacitance (μF)
<u><</u> 2000 mA	1.0	15
	0.47	9
<u>≤</u> 1500 mA	1.0	12
<u>≤</u> 1000 mA	1.0	9
<u><</u> 600 mA	1.0	7
<u><</u> 500 mA	1.0	6

Table 6. EFFECTIVE CAPACITANCE VERSUS PART NUMBER

PN	Size (mm) LW x H	Nominal Value (μF)	Rating (V)	Tol. (%)	Bias (V)	Effective Capacitance (μF) Due to Bias, Temperature and Tolerance
Murata GRM188R60J476ME15	1608 x 1.0	47	6.3	20	3.4	8.5
Murata GRM187R61A226ME15	1608 x 0.8	22	10	20	3.4	6.3
					5	4.2
Murata GRM188R61A106KE69	1608 x 1.0	10	10	10	3.4	3.2
					5	2.3

Input Capacitor (C_{IN})

As shown in the recommended layout, $C_{\rm IN}$ must connect to the PVIN pin with the lowest impedance trace possible. Additionally, $C_{\rm IN}$ must connect to the GND pin with the lowest impedance possible.

The FAN49103 is guaranteed for stable operation with a minimum effective capacitance of 2 μ F. It is recommended to use a high quality input capacitor rated at 10 μ F nominal or greater. Additional capacitance is required when the FAN49103's power source is not located close to the device.

Inductor (L)

As shown in the recommended layout, the inductor (L) must connect to the SW1 and SW2 pins with the lowest impedance trace possible.

The recommended nominal inductance value is 1.0 μH . A value of 0.47 μH can be used, but higher peak currents should be expected.

The FAN49103 employs peak current limiting, and the peak inductor current can reach I_{P_LIM} before limiting, therefore current saturation should be considered when choosing an inductor.

Table 7. ALTERNATE INDUCTOR OPTIONS

Description	Part Number
1 μ H, Isat(max) = 5.0 A, 25 m Ω (max), 2520	Cyntec HTEH20161T-1R0MSR
1 μH, Isat(max) = 5.3 A, 23 mΩ (max), 2520	Semco CIGT252010TM1R0ML

LAYOUT RECOMMENDATIONS

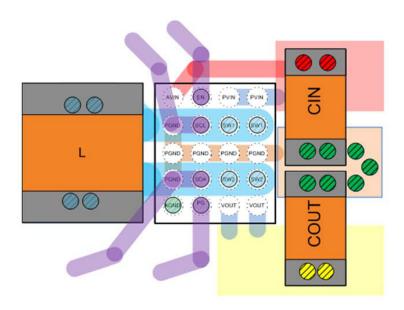


Figure 38. Component Placement and Routing for FAN49103

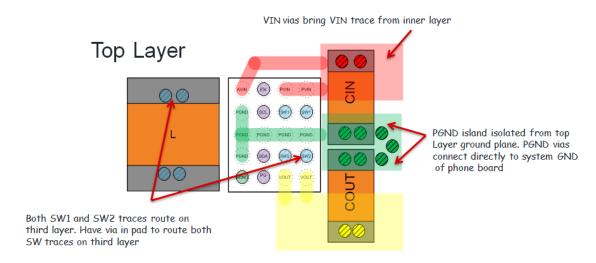


Figure 39. Top Layer Routing for FAN49103

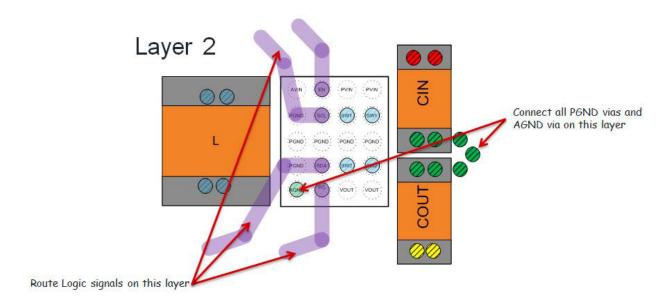


Figure 40. Layer 2 Routing for FAN49103

Route SW1 and SW 2 signals on this layer with a min of 20 mils wide.

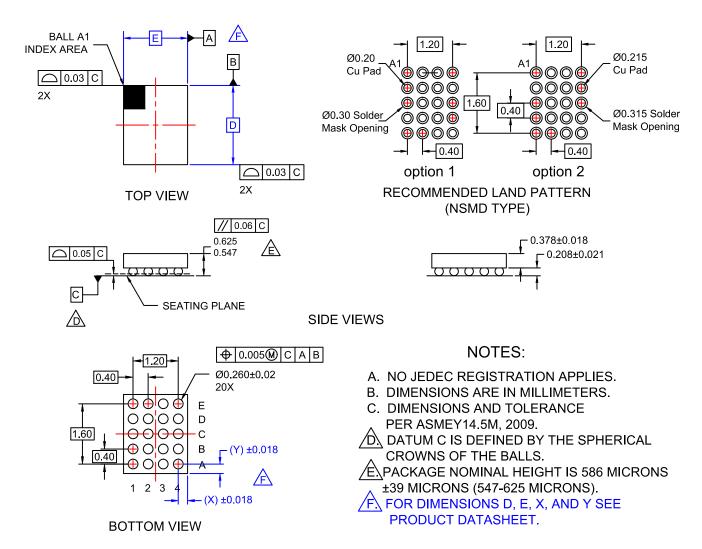
Layer 3

PRINC SCL (SW1) (SW1)
PRINC SDA (SW2) (SW2)

ARNO PG (VOUT) (VOUT)

Figure 41. Layer 3 Routing for FAN49103

PHYSICAL DIMENSIONS


This table information applies to the Package drawing on the following page.

Product	D	E	Х	Υ
FAN49103AUC340X	2.015 ±0.030	1.615 ±0.030	0.2075	0.2075
FAN49103AUC330X	2.015 ±0.030	1.615 ±0.030	0.2075	0.2075
FAN49103AUC34AX	2.015 ±0.030	1.615 ±0.030	0.2075	0.2075

TinyPower is registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. I²C **onsemi** is licensed by the Philips Corporation to carry the I²C **bus** protocol.

WLCSP20 2.015x1.615x0.586 CASE 567QK ISSUE O

DATE 31 OCT 2016

DOCUMENT NUMBER:	98AON13330G	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	WLCSP20 2.015x1.615x0.586		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales