## Digital Transistors (BRT) <br> R1 = $2.2 \mathrm{k} \Omega$, R2 = $\mathbf{4 7} \mathbf{~ k} \Omega$

## NPN Transistors with Monolithic Bias Resistor Network

## MUN2235, MMUN2235L, MUN5235, DTC123JE, DTC123JM3, NSBC123JF3

This series of digital transistors is designed to replace a single device and its external resistor bias network. The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base-emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space.

## Features

- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

| Rating | Symbol | Max | Unit |
| :--- | :---: | :---: | :---: |
| Collector-Base Voltage | $\mathrm{V}_{\mathrm{CBO}}$ | 50 | Vdc |
| Collector-Emitter Voltage | $\mathrm{V}_{\mathrm{CEO}}$ | 50 | Vdc |
| Collector Current - Continuous | $\mathrm{I}_{\mathrm{C}}$ | 100 | mAdc |
| Input Forward Voltage | $\mathrm{V}_{\mathrm{IN}(\text { (fwd })}$ | 12 | Vdc |
| Input Reverse Voltage | $\mathrm{V}_{\mathrm{IN}(\text { rev })}$ | 6 | Vdc |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

PIN CONNECTIONS

(GROUND)

(Note: Microdot may be in either location)
*Date Code orientation may vary depending upon manufacturing location.

## ORDERING INFORMATION

See detailed ordering, marking, and shipping information on page 2 of this data sheet.

NOTE: Some of the devices on this data sheet have been DISCONTINUED. Please refer to the table on page 2.

Table 1. ORDERING INFORMATION

| Device | Part Marking | Package | Shipping $^{\dagger}$ |
| :--- | :---: | :---: | :---: |
| MUN2235T1G | 6 M | SC-59 <br> (Pb-Free) | $3000 /$ Tape \& Reel |
| MMUN2235LT1G, NSVMMUN2235LT1G* | AA2 | SOT-23 <br> (Pb-Free) | $3000 /$ Tape \& Reel |
| MUN5235T1G, SMUN5235T1G* | 8 M | SC-70/SOT-323 <br> (Pb-Free) | $3000 /$ Tape \& Reel |
| DTC123JET1G, NSVDTC123JET1G* | 8 M | SC-75 <br> (Pb-Free) | $3000 /$ Tape \& Reel |
| DTC123JM3T5G, NSVDTC123JM3T5G* | 8 M | SOT-723 <br> (Pb-Free) | $8000 /$ Tape \& Reel |

DISCONTINUED (Note 1)

| NSBC123JF3T5G | V | SOT-1123 <br> (Pb-Free) | $8000 /$ Tape \& Reel |
| :--- | :---: | :---: | :---: |

$\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

1. DISCONTINUED: This device is not recommended for new design. Please contact your onsemi representative for information. The most current information on this device may be available on www.onsemi.com.

(1) SC-75 and SC-70/SOT323; Minimum Pad
(2) SC-59; Minimum Pad
(3) SOT-23; Minimum Pad
(4) SOT-1123; $100 \mathrm{~mm}^{2}$, 1 oz . copper trace
(5) SOT-723; Minimum Pad

Figure 1. Derating Curve

## MUN2235, MMUN2235L, MUN5235, DTC123JE, DTC123JM3, NSBC123JF3

Table 2. THERMAL CHARACTERISTICS

| Characteristic | Symbol | Max | Unit |
| :---: | :---: | :---: | :---: |

THERMAL CHARACTERISTICS (SC-59) (MUN2235)

| Total Device Dissipation $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ <br> Derate above $25^{\circ} \mathrm{C}$ | (Note 2) <br> (Note 3) <br> (Note 2) (Note 3) | $P_{\text {D }}$ | $\begin{aligned} & 230 \\ & 338 \\ & 1.8 \\ & 2.7 \end{aligned}$ | $\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| Thermal Resistance, Junction to Ambient | (Note 2) (Note 3) | $\mathrm{R}_{\text {өJA }}$ | $\begin{aligned} & 540 \\ & 370 \end{aligned}$ | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Thermal Resistance, Junction to Lead | (Note 2) <br> (Note 3) | $\mathrm{R}_{\text {өJL }}$ | $\begin{aligned} & 264 \\ & 287 \end{aligned}$ | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Junction and Storage Temperature Range |  | $\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$ | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |

THERMAL CHARACTERISTICS (SOT-23) (MMUN2235L)

| Total Device Dissipation $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ <br> Derate above $25^{\circ} \mathrm{C}$ | (Note 2) (Note 3) (Note 2) (Note 3) | $\mathrm{P}_{\mathrm{D}}$ | $\begin{aligned} & 246 \\ & 400 \\ & 2.0 \\ & 3.2 \\ & \hline \end{aligned}$ | $\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| Thermal Resistance, Junction to Ambient | (Note 1) <br> (Note 3) | $\mathrm{R}_{\text {өJA }}$ | $\begin{aligned} & 508 \\ & 311 \end{aligned}$ | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Thermal Resistance, Junction to Lead | (Note 2) <br> (Note 3) | $\mathrm{R}_{\text {өJL }}$ | $\begin{aligned} & 174 \\ & 208 \end{aligned}$ | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Junction and Storage Temperature Range |  | $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |

THERMAL CHARACTERISTICS (SC-70/SOT-323) (MUN5235)

| Total Device Dissipation $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ <br> Derate above $25^{\circ} \mathrm{C}$ | (Note 2) (Note 3) (Note 2) (Note 3 | $\mathrm{P}_{\mathrm{D}}$ | $\begin{aligned} & 202 \\ & 310 \\ & 1.6 \\ & 2.5 \\ & \hline \end{aligned}$ | $\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| Thermal Resistance, Junction to Ambient | (Note 2) <br> (Note 3) | $\mathrm{R}_{\text {өJA }}$ | $\begin{aligned} & 618 \\ & 403 \end{aligned}$ | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Thermal Resistance, Junction to Lead | (Note 2) <br> (Note 3) | $\mathrm{R}_{\text {өJL }}$ | $\begin{aligned} & 280 \\ & 332 \end{aligned}$ | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Junction and Storage Temperature Range |  | $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |

THERMAL CHARACTERISTICS (SC-75) (DTC123JE)

| Total Device Dissipation $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ <br> Derate above $25^{\circ} \mathrm{C}$ | (Note 2) (Note 3) (Note 2) (Note 3) | $P_{\text {D }}$ | $\begin{aligned} & 200 \\ & 300 \\ & 1.6 \\ & 2.4 \\ & \hline \end{aligned}$ | $\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| Thermal Resistance, Junction to Ambient | (Note 2) (Note 3) | $\mathrm{R}_{\theta \mathrm{JA}}$ | $\begin{aligned} & 600 \\ & 400 \end{aligned}$ | T/W |
| Junction and Storage Temperature Range |  | $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |

THERMAL CHARACTERISTICS (SOT-723) (DTC123JM3)

| Total Device Dissipation |  | $\mathrm{P}_{\mathrm{D}}$ |  |  |
| :--- | :--- | :---: | :---: | :---: |
| $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | (Note 2) |  | 260 | mW |
| Derate above $25^{\circ} \mathrm{C}$ | (Note 3) |  | 600 | $\mathrm{~mW} /{ }^{\circ} \mathrm{C}$ |
|  | (Note 2) |  | 2.0 | m |
|  | (Note 3) |  | 4.8 |  |
| Thermal Resistance, | (Note 2) | $\mathrm{R}_{\theta \mathrm{JA}}$ | 480 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Junction to Ambient | (Note 3) |  |  | 205 |
| Junction and Storage Temperature Range | $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |  |

## MUN2235, MMUN2235L, MUN5235, DTC123JE, DTC123JM3, NSBC123JF3

Table 2. THERMAL CHARACTERISTICS

| Characteristic | Symbol | Max | Unit |
| :---: | :---: | :---: | :---: |

THERMAL CHARACTERISTICS (SOT-1123) (NSBC123JF3)

| Total Device Dissipation $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ <br> Derate above $25^{\circ} \mathrm{C}$ | (Note 4) (Note 5) (Note 4) (Note 5) | $\mathrm{P}_{\mathrm{D}}$ | $\begin{aligned} & 254 \\ & 297 \\ & 2.0 \\ & 2.4 \\ & \hline \end{aligned}$ | $\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| Thermal Resistance, Junction to Ambient | (Note 4) (Note 5) | $\mathrm{R}_{\text {өJA }}$ | $\begin{aligned} & 493 \\ & 421 \end{aligned}$ | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Thermal Resistance, Junction to Lead | (Note 4) | $\mathrm{R}_{\text {өJL }}$ | 193 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Junction and Storage Temperature Range |  | $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |

2. FR-4 @ Minimum Pad.
3. FR-4 @ $1.0 \times 1.0$ Inch Pad.
4. FR-4 @ $100 \mathrm{~mm}^{2}, 1$ oz. copper traces, still air.
5. FR-4 @ $500 \mathrm{~mm}^{2}, 1 \mathrm{oz}$. copper traces, still air.

Table 3. ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

| Characteristic | Symbol | Min | Typ | Max | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- |

## OFF CHARACTERISTICS

| Collector-Base Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\right)$ | $\mathrm{I}_{\text {cbo }}$ | - | - | 100 | nAdc |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Collector-Emitter Cutoff Current $\left(V_{C E}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\right)$ | $I_{\text {CEE }}$ | - | - | 500 | nAdc |
| Emitter-Base Cutoff Current $\left(\mathrm{V}_{\mathrm{EB}}=6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\right)$ | $\mathrm{I}_{\text {ebo }}$ | - | - | 0.2 | mAdc |
| Collector-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0\right)$ | $\mathrm{V}_{\text {(BR) }} \mathrm{CBO}$ | 50 | - | - | Vdc |
| Collector-Emitter Breakdown Voltage (Note 6) $\left(\mathrm{I}_{\mathrm{C}}=2.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\right)$ | $\mathrm{V}_{\text {(BR)CEO }}$ | 50 | - | - | Vdc |

ON CHARACTERISTICS

| DC Current Gain (Note 5) $\left(\mathrm{l}_{\mathrm{C}}=5.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}\right)$ | $\mathrm{h}_{\text {FE }}$ | 80 | 140 | - |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Collector - Emitter Saturation Voltage (Note 6) $\left(I_{C}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1.0 \mathrm{~mA}\right)$ | $\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ | - | - | 0.25 | Vdc |
| Input Voltage (off) $\left(\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}\right)$ | $\mathrm{V}_{\mathrm{i} \text { (off) }}$ | - | 0.6 | 0.5 | Vdc |
| Input Voltage (on) $\left(\mathrm{V}_{\mathrm{CE}}=0.3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}\right)$ | $\mathrm{V}_{\text {i(on) }}$ | 1.1 | 0.8 | - | Vdc |
| Output Voltage (on) $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega\right)$ | $\mathrm{V}_{\text {OL }}$ | - | - | 0.2 | Vdc |
| Output Voltage (off) $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=0.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega\right)$ | $\mathrm{V}_{\mathrm{OH}}$ | 4.9 | - | - | Vdc |
| Input Resistor | R1 | 1.5 | 2.2 | 2.9 | k $\Omega$ |
| Resistor Ratio | $\mathrm{R}_{1} / \mathrm{R}_{2}$ | 0.038 | 0.047 | 0.056 |  |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
6. Pulsed Condition: Pulse Width $=300 \mathrm{msec}$, Duty Cycle $\leq 2 \%$.

MUN2235, MMUN2235L, MUN5235, DTC123JE, DTC123JM3, NSBC123JF3

TYPICAL CHARACTERISTICS
MUN2235, MMUN2235L, MUN5235, DTC123JE, DTC123JM3


Figure 2. $\mathrm{V}_{\mathrm{CE}(\text { sat })}$ vs. $\mathrm{I}_{\mathrm{C}}$


Figure 4. Output Capacitance


Figure 3. DC Current Gain


Figure 5. Output Current vs. Input Voltage


Figure 6. Input Voltage vs. Output Current

MUN2235, MMUN2235L, MUN5235, DTC123JE, DTC123JM3, NSBC123JF3

TYPICAL CHARACTERISTICS
NSBC123JF3


Figure 7. $\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}$ vs. Ic


Figure 9. Output Capacitance


Figure 8. DC Current Gain


Figure 10. Output Current vs. Input Voltage


Figure 11. Input Voltage vs. Output Current

## MUN2235, MMUN2235L, MUN5235, DTC123JE, DTC123JM3, NSBC123JF3

## PACKAGE DIMENSIONS

## SC-59-3 2.90×1.50x1.15, 1.90P

CASE 318D
ISSUE J
DATE 15 FEB 2024


TOP VIEW


SIDE VEW


$$
\begin{array}{ll}
\text { XXX } & =\text { Specific Device Code } \\
\text { M } & =\text { Date Code } \\
\text { - } & =\text { Pb-Free Package* }
\end{array}
$$

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " $\quad$ ", may or may not be present. Some products may not follow the Generic Marking.

$$
\begin{aligned}
& \text { STYLE 1: } \\
& \text { PIN 1. BASE } \\
& \text { 2. EMITIER } \\
& \text { 3. COLLECTOR } \\
& \\
& \text { STYLE 4: } \\
& \text { PIN 1. CATHODE } \\
& \text { 2. N.C. } \\
& \text { 3 ANODF }
\end{aligned}
$$



## STYLE 5:

PIN 1. CATHODE 2. CATHODE STYLE 6:

PIN 1. ANODE 2. CATHODE 3. ANODE/CATHODE


SOT-23 (TO-236)
CASE 318
ISSUE AT
DATE 01 MAR 2023

## SCALE 4:1


DETAIL


NDTES:

1. DIMENSIDNING AND TQLERANCING PER ASME Y14.5M,1994.
2. CDNTRDLLING DIMENSIDN: MILLIMETERS
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS DF THE BASE MATERIAL.
4. DIMENSIUNS D AND E DO NDT INCLUDE MDLD FLASH, PRDTRUSIINS, DR GATE BURRS.

| DIM | MILLIMETERS |  | INCHES |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | MIN. | NDM. | MAX. | MIN. | NDM. | MAX. |
| A | 0.89 | 1.00 | 1.11 | 0.035 | 0.039 | 0.044 |
| A1 | 0.01 | 0.06 | 0.10 | 0.000 | 0.002 | 0.004 |
| b | 0.37 | 0.44 | 0.50 | 0.015 | 0.017 | 0.020 |
| C | 0.08 | 0.14 | 0.20 | 0.003 | 0.006 | 0.008 |
| D | 2.80 | 2.90 | 3.04 | 0.110 | 0.114 | 0.120 |
| E | 1.20 | 1.30 | 1.40 | 0.047 | 0.051 | 0.055 |
| e | 1.78 | 1.90 | 2.04 | 0.070 | 0.075 | 0.080 |
| L | 0.30 | 0.43 | 0.55 | 0.012 | 0.017 | 0.022 |
| L1 | 0.35 | 0.54 | 0.69 | 0.014 | 0.021 | 0.027 |
| $H_{E}$ | 2.10 | 2.40 | 2.64 | 0.083 | 0.094 | 0.104 |
| T | $0^{\circ}$ | --- | $10^{\circ}$ | $0^{\circ}$ | --- | $10^{\circ}$ |



XXX = Specific Device Code
M = Date Code

- = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Fr}$ dee indicator, " G " or microdot " P ", may or may not be present. Some products may not follow the Generic Marking.


RECDMMENDED M MUNTING FOUTPRINT

* For additional information on our Pb-Free strategy and soldering details, please download the IN Semiconductor Soldering and Mounting Techniques Reference Manual, SULDERRM/D.


## STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42226B | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOT-23 (TO-236) | PAGE 1 OF 2 |

[^0] special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

| STYLE 1 THRU 5: CANCELLED | STYLE 6: <br> PIN 1. BASE <br> 2. EMITTER <br> 3. COLLECTOR | STYLE 7: <br> PIN 1. EMITTER <br> 2. BASE <br> 3. COLLECTOR | STYLE 8: <br> PIN 1. ANODE <br> 2. NO CONNECTION <br> 3. CATHODE |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| STYLE 9: <br> PIN 1. ANODE <br> 2. ANODE <br> 3. CATHODE | STYLE 10: <br> PIN 1. DRAIN <br> 2. SOURCE <br> 3. GATE | STYLE 11: <br> PIN 1. ANODE <br> 2. CATHODE <br> 3. CATHODE-ANODE | STYLE 12: <br> PIN 1. CATHODE <br> 2. CATHODE <br> 3. ANODE | STYLE 13: <br> PIN 1. SOURCE <br> 2. DRAIN <br> 3. GATE | STYLE 14: <br> PIN 1. CATHODE <br> 2. GATE <br> 3. ANODE |
| STYLE 15: <br> PIN 1. GATE <br> 2. CATHODE <br> 3. ANODE | STYLE 16: <br> PIN 1. ANODE <br> 2. CATHODE <br> 3. CATHODE | STYLE 17: <br> PIN 1. NO CONNECTION <br> 2. ANODE <br> 3. CATHODE | STYLE 18: <br> PIN 1. NO CONNECTION <br> 2. CATHODE <br> 3. ANODE | STYLE 19: <br> PIN 1. CATHODE <br> 2. ANODE <br> 3. CATHODE-ANODE | STYLE 20 : <br> PIN 1. CATHODE <br> 2. ANODE <br> 3. GATE |
| STYLE 21: <br> PIN 1. GATE <br> 2. SOURCE <br> 3. DRAIN | STYLE 22: <br> PIN 1. RETURN <br> 2. OUTPUT <br> 3. INPUT | STYLE 23: <br> PIN 1. ANODE <br> 2. ANODE <br> 3. CATHODE | STYLE 24: <br> PIN 1. GATE <br> 2. DRAIN <br> 3. SOURCE | STYLE 25: <br> PIN 1. ANODE <br> 2. CATHODE <br> 3. GATE | STYLE 26: <br> PIN 1. CATHODE <br> 2. ANODE <br> 3. NO CONNECTION |
| STYLE 27: <br> PIN 1. CATHODE <br> 2. CATHODE <br> 3. CATHODE | STYLE 28: <br> PIN 1. ANODE <br> 2. ANODE <br> 3. ANODE |  |  |  |  |


| DOCUMENT NUMBER: | 98ASB42226B | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |  |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOT-23 (TO-236) |  | PAGE 2 OF 2 |

[^1]

SCALE 4:1

## SC-70 (SOT-323) <br> CASE 419 <br> ISSUE R



NDTES:

1. DIMENSIINING AND TGLERANCING PER ASME Y14.5M, 1982.
2. CONTRULLING DIMENSIDN: INCH

| DIM | MILLIMETERS |  |  | INCHES |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | MIN. | NUM. | MAX. | MIN. | NUM. | MAX. |
| A | 0.80 | 0.90 | 1.00 | 0.032 | 0.035 | 0.040 |
| A1 | 0.00 | 0.05 | 0.10 | 0.000 | 0.002 | 0.004 |
| A2 | 0.70 REF |  |  | 0.028 BSC |  |  |
| b | 0.30 | 0.35 | 0.40 | 0.012 | 0.014 | 0.016 |
| C | 0.10 | 0.18 | 0.25 | 0.004 | 0.007 | 0.010 |
| D | 1.80 | 2.00 | 2.20 | 0.071 | 0.080 | 0.087 |
| E | 1.15 | 1.24 | 1.35 | 0.045 | 0.049 | 0.053 |
| e | 1.20 | 1.30 | 1.40 | 0.047 | 0.051 | 0.055 |
| e1 | 0.65 BSC |  |  | 0.026 BSC |  |  |
| L | 0.20 | 0.38 | 0.56 | 0.008 | 0.015 | 0.022 |
| $H_{E}$ | 2.00 | 2.10 | 2.40 | 0.079 | 0.083 | 0.095 |

GENERIC
MARKING DIAGRAM


XX = Specific Device Code
M = Date Code

- $\quad$ Pb-Free Package

* For additional information on our Pb -Free strategy and soldering details, please download Techniques Reference Manual

SULDERING FIDTPRINT
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

| STYLE 1: |  |  |
| :---: | :---: | :---: |
|  | STYLE 2: | STYLE 3: |
|  | PIN 1. ANODE | PIN 1. BASE |
|  | 2. N.C. | 2. EMITTER |
|  | 3. CATHODE | 3. COLLECTOR |
|  |  |  |
| STYLE 6: | STYLE 7: | STYLE 8: |
| PIN 1. EMITTER | PIN 1. BASE | PIN 1. GATE |
| 2. BASE | 2. EMITTER | 2. SOURCE |
| 3. COLLECTOR | 3. COLLECTOR | 3. DRAIN |


| STYLE 4: | STYLE 5: |
| :---: | :---: |
| PIN 1. CATHODE | PIN 1. ANODE |
| 2. CATHODE | 2. ANODE |
| 3. ANODE | 3. CATHODE |
| STYLE 9: |  |
| PIN 1. ANODE | STYLE 10: |
| 2. CATHODE | PIN 1. CATHODE |
| 3. CATHODE-ANODE | 2. ANODE |

STYLE 11:
PIN 1. CATHODE 2. CATHODE 3. CATHODE

| DOCUMENT NUMBER: | 98ASB42819B | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-70 (SOT-323) | PAGE 1 OF $\mathbf{1}$ |



NOTES:
DATE 01 FEB 2024


1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018.
2. ALL DIMENSION ARE IN MILLIMETERS.

CASE 463
ISSUE H

| DIM | MILLIMETERS |  |  |
| :---: | :---: | :---: | :---: |
|  | MIN. | NOM. | MAX. |
| A | 0.70 | 0.80 | 0.90 |
| A1 | 0.00 | 0.05 | 0.10 |
|  |  |  |  |

TOP VIEW


GENERIC
MARKING DIAGRAM*


XX = Specific Device Code
M = Date Code

- $\quad=\mathrm{Pb}-$ Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:
PIN 1. BASE
2. EMITTER
3. COLLECTOR

STYLE 4:
PIN 1. CATHODE
2. CATHODE
3. ANODE

STYLE 2:
PIN 1. ANODE
2. N/C
3. CATHODE
STYLE 3:
PIN 1. ANODE
2. ANODE 3. CATHODE
0.80 REF.

| $b$ | 0.15 | 0.20 | 0.30 |
| :---: | :---: | :---: | :---: |
| $c$ | 0.10 | 0.15 | 0.25 |
| $D$ | 1.55 | 1.60 | 1.65 |
| $E$ | 1.50 | 1.60 | 1.70 |
| $E 1$ | 0.70 | 0.80 | 0.90 |
| $e$ | 1.00 BSC |  |  |
| $L$ | 0.10 | 0.15 | 0.20 |




## SOT-1123 0.80x0.60x0.37, 0.35P <br> CASE 524AA <br> ISSUE D

DATE 18 JAN 2024


SIDE VIEW


## GENERIC MARKING DIAGRAM*


X = Specific Device Code
M = Date Code
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " * ", may or may not be present. Some products may not follow the Generic Marking.

NDTES:

1. DIMENSIUNING AND TQLERANCING PER ASME Y14.5M, 2018,
2. CONTROLLING DIMENSIDN: MILLIMETERS
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS IF BASE MATERIAL.
4. DIMENSIUNS D AND E D N T INCLUDE MULD FLASH, PRITRUSIUNS, QR GATE BURRS.

| MILLIMETERS |  |  |  |
| :---: | :---: | :---: | :---: |
| DIM | MIN | NDM | MAX |
| A | 0.34 | 0.37 | 0.40 |
| $b$ | 0.15 | 0.22 | 0.28 |
| b1 | 0.10 | 0.15 | 0.20 |
| $c$ | 0.07 | 0.12 | 0.17 |
| D | 0.75 | 0.80 | 0.85 |
| E | 0.55 | 0.60 | 0.65 |
| e | 0.35 | 0.38 | 0.40 |
| H | 0.950 | 1.000 | 1.050 |
| L | 0.185 REF |  |  |
| L2 | 0.05 | 0.10 | 0.15 |



RECDMMENDED MUUNTING FQDTPRINT
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the GN Semiconductor Soldering and Mounting Techniques Reference manual, SDLDERRM/D.

[^2]STYLE 5:
PIN 1. GATE 2. SOURCE 3. DRAIN

| DOCUMENT NUMBER: | 98AON23134D | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOT-1123 0.80x0.60×0.37, 0.35P | PAGE 1 OF 1 |

[^3]SOT-723 1.20x0.80x0.50, 0.40P
CASE 631AA
ISSUE E
DATE 24 JAN 2024
NOTES:

1. DIMENSIUNING AND TZLERANCING PER ASME Y14.5M, 2018.
2. CDNTRDLLING DIMENSIDN: MILLIMETERS,
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS DF BASE MATERIAL.
4. DIMENSIUNS D AND E DZ NDT INCLUDE MLLD FLASH, PRITRUSIUNS GR GATE BURRS.


GENERIC
MARKING DIAGRAM*


RECDMMENDED MDUNTING FIDTPRINT
*For additional information on our $\mathrm{Pb}-F r e e$ strategy and soldering details, please download the aN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.


XX = Specific Device Code
M = Date Code
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

| STYLE 1: | STYLE 2: | STYLE 3: | STYLE 4: | STYLE 5: |
| :---: | :---: | :---: | :---: | :---: |
| PIN 1. BASE | PIN 1. ANODE | PIN 1. ANODE | PIN 1. CATHODE | PIN 1. GATE |
| 2. EMITTER | 2. N/C | 2. ANODE | 2. CATHODE | 2. SOURCE |
| 3. COLLECTOR | 3. CATHODE | 3. CATHODE | 3. ANODE | 3. DRAIN |


| DOCUMENT NUMBER: | 98AON12989D | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOT-723 1.20x0.80x0.50, 0.40P | PAGE 1 OF 1 |

[^4]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

## ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:
Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support
For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales


[^0]:    onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

[^1]:    onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

[^2]:    STYLE 4:
    PIN 1. CATHODE 2. CATHODE 3. ANODE

[^3]:    onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

[^4]:    onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

