Onsemi

IGBT – Power, Co-PAK **N-Channel, Field Stop VII** (FS7), SCR, T0247-3L 1200 V, 1.42 V, 40 A AFGHL40T120RWD

Description

Using the novel field stop 7th generation IGBT technology and the Gen7 Diode in TO247 3-lead package, this device offers the optimum performance with low on state voltage and minimal switching losses for both hard and soft switching topologies in automotive applications.

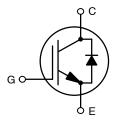
Features

- Extremely Efficient Trench with Field Stop Technology
- Maximum Junction Temperature T_J =175°C
- Short Circuit Rated and Low Saturation Voltage
- Fast Switching and Tightened Parameter Distribution
- AEC-Q101 Qualified, PPAP Available Upon Request
- This Device is Pb-Free, Halogen Free/BFR Free and is RoHS Compliant

Applications

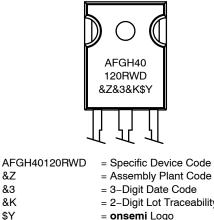
• Automotive E-compressor / Automotive EV PTC Heater / OBC

MAXIMUM RATINGS (T₁ = 25°C unless otherwise noted)


$\begin{array}{c c c c c c c } \hline Collector-to-Emitter Voltage & V_{CE} & 1200 & V_{GE} & \pm 20 & \\ \hline Collector-Emitter Voltage & V_{GE} & \pm 20 & \\ \hline Transient Gate-to-Emitter Voltage & & \pm 30 & \\ \hline Transient Gate-to-Emitter Voltage & & \pm 30 & \\ \hline Collector Current & T_{C} = 25^{\circ}C & I_{C} & 80 & A & \\ \hline T_{C} = 100^{\circ}C & & 40 & \\ \hline Power Dissipation & T_{C} = 25^{\circ}C & P_{D} & 652 & W & \\ \hline T_{C} = 100^{\circ}C & & 326 & \\ \hline Pulsed Collector & T_{C} = 25^{\circ}C, & I_{CM} & 120 & A & \\ \hline Diode Forward & T_{C} = 25^{\circ}C, & I_{F} & 80 & \\ \hline T_{C} = 100^{\circ}C & & 40 & \\ \hline Diode Forward & T_{C} = 25^{\circ}C, & I_{F} & 80 & \\ \hline T_{C} = 100^{\circ}C & & 40 & \\ \hline Pulsed Diode Maximum & T_{C} = 25^{\circ}C, & I_{FM} & 120 & \\ \hline Pulsed Diode Maximum & T_{C} = 25^{\circ}C, & I_{FM} & 120 & \\ \hline Short Circuit Withstand Time & T_{C} = 25^{\circ}C, & I_{FM} & 120 & \\ \hline Short Circuit Withstand Time & T_{C} = 150^{\circ}C & & \\ \hline Operating Junction and Storage Temperature & T_{J}, T_{stg} & -55 \text{ to} \\ \hline Range & & \hline \end{array}$		(1) = 25 O unless other	wise noted)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Param	eter	Symbol	Value	Unit
$\begin{tabular}{ c c c c } \hline Transient Gate-to-Emitter Voltage & \pm 30 \\ \hline Tc = 25^\circ C & Ic & 80 & A \\ \hline Tc = 100^\circ C & 40 & \\ \hline Tc = 100^\circ C & P_D & 652 & W \\ \hline Tc = 100^\circ C & 326 & \\ \hline Tc = 100^\circ C & & \\ \hline Tc = 25^\circ C, & IcM & 120 & \\ \hline Pulsed Collector & T_C = 25^\circ C, & IcM & 120 & \\ \hline Pulsed Collector & T_C = 25^\circ C, & IcM & 120 & \\ \hline Diode Forward & T_C = 25^\circ C & IF & 80 & \\ \hline Tc = 100^\circ C & & 40 & \\ \hline Pulsed Diode Maximum & T_C = 25^\circ C, & IF & 80 & \\ \hline Pulsed Diode Maximum & T_C = 25^\circ C, & IF & 80 & \\ \hline Pulsed Diode Maximum & T_C = 25^\circ C, & IF & 80 & \\ \hline Pulsed Diode Maximum & T_C = 25^\circ C, & IF & 80 & \\ \hline Short Circuit Withstand Time & T_C = 150^\circ C & T_SC & 6 & \mu s & \\ \hline VgE = 15 V, V_{CC} = 800 V, T_C = 150^\circ C & T_J, T_{stg} & -55 & to \\ \hline Range & T_J, T_{stg} & -55 & to \\ \hline Range & T_J, T_{stg} & -55 & to \\ \hline Tc = 100^\circ C & T_SC & C & \\ \hline Tc = 100^\circ C & T_SC & C & \\ \hline Tc = 100^\circ C & T_SC & C & \\ \hline Tc = 100^\circ C & T_SC & C & \\ \hline Tc = 150^$	Collector-to-Emitter Volta	age	V _{CE}	1200	V
$\begin{tabular}{ c c c c c } \hline Collector Current & $T_C = 25^\circ C$ & I_C & 80 & A \\ \hline $T_C = 100^\circ C$ & 40 & 40 & 40 & 40 & 40 & 10 & $T_C = 25^\circ C$ & P_D & 652 & W & $$T_C = 100^\circ C$ & 326 & $1CM$ & 120 & 326 & $1CM$ & 120 & $1CM$ & $1CM$ & 120 & $1CM$ & $1CM$ & 120 & $1CM$ & $1C$	Gate-to-Emitter Voltage		V _{GE}	±20	
$\begin{tabular}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $	Transient Gate-to-Emitte	er Voltage		±30	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Collector Current	$T_{C} = 25^{\circ}C$	۱ _C	80	А
$\begin{tabular}{ c c c c c c c c c c } \hline T_C &= 100^\circ C & 326 \\ \hline T_C &= 100^\circ C & T_C &= 25^\circ C, \\ tp &= 10 \ \mu s \ (Note \ 1) & I_{CM} & 120 & A \\ \hline Diode \ Forward & $T_C &= 25^\circ C$ & I_F & 80 \\ \hline T_C &= 100^\circ C & 40 \\ \hline Pulsed \ Diode \ Maximum & $T_C &= 25^\circ C$, \\ tp &= 10 \ \mu s \ (Note \ 1) & I_{FM} & 120 \\ \hline Pulsed \ Diode \ Maximum & $T_C &= 25^\circ C$, \\ tp &= 10 \ \mu s \ (Note \ 1) & I_F & 120 \\ \hline Short \ Circuit \ Withstand \ Time & $T_C &= 150^\circ C$ & $T_{SC} & 6$ & μs \\ \hline Operating \ Junction \ and \ Storage \ Temperature & $T_J, \ T_{stg} & -55 to $+175$ \\ \hline \end{tabular}$		T _C = 100°C		40	
$\begin{array}{c c} Pulsed Collector \\ Current \\ \end{array} \begin{array}{c} T_{C} = 25^{\circ}C, \\ tp = 10 \ \mu s \ (Note 1) \\ \end{array} \begin{array}{c} I_{CM} \\ tp = 10 \ \mu s \ (Note 1) \\ \end{array} \begin{array}{c} I_{CM} \\ \end{array} \begin{array}{c} I_{20} \\ \end{array} \begin{array}{c} A \\ \end{array} \begin{array}{c} A \\ \hline \\ A \\ \hline $	Power Dissipation	T _C = 25°C	PD	652	W
$\begin{tabular}{ c c c c c c } \hline Current & tp = 10 \ \mu s \ (Note 1) & T_C & CW & T_C & T_C & 25^\circ C & I_F & 80 & T_C & 100^\circ C & 40 & 40 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	Dulaad Callector	T _C = 100°C		326	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			I _{CM}	120	A
$\begin{tabular}{ c c c c c c } \hline T_C &= 100^\circ C & 40 \\ \hline Pulsed Diode Maximum & $T_C = 25^\circ C$, $$$ tp = 10 \ \mu s (Note 1)$ & I_{FM} & 120 \\ \hline Short Circuit Withstand Time $$$$ volume V_{GE} &= 15 \ V$, $V_{CC} = 800 \ V$, $T_C = 150^\circ C$ & T_{SC} & 6 & $$$$ \mus $$ $$ $$ $$ $$ Operating Junction and Storage Temperature $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$		$T_{C} = 25^{\circ}C$	١ _F	80	A
Forward Currenttp = 10 μ s (Note 1)TmShort Circuit Withstand Time V _{GE} = 15 V, V _{CC} = 800 V, T _C = 150°CT _{SC} 6Operating Junction and Storage Temperature RangeT _J , T _{stg} -55 to +175	Current	T _C = 100°C		40	
V_{GE} = 15 V, V_{CC} = 800 V, T_C = 150°CTJ, T_{stg} -55 toOperating Junction and Storage Temperature RangeTJ, T_{stg} -55 to+175			I _{FM}	120	
Range +175			T _{SC}	6	μs
Lead Temperature for Soldering Purposes T ₁ 260	0	torage Temperature	T _J , T _{stg}		°C
, J J ,	Lead Temperature for Sol	dering Purposes	ΤL	260	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Repetitive rating: Pulse width limited by max. junction temperature


BV _{CES}	V _{CE(sat)} TYP	I _C MAX
1200 V	1.42 V	40 A

PIN CONNECTIONS

MARKING DIAGRAM

- = 2-Digit Lot Traceability Code
- = onsemi Logo

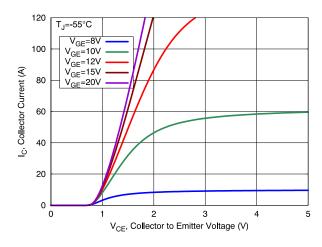
ORDERING INFORMATION

Device	Package	Shipping
AFGHL40T120RWD	TO-247-3L (Pb-Free)	30 Units / Tube

THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case for IGBT		0.23	°C/W
Thermal Resistance, Junction-to-Case for Diode	R _{0JCD}	0.41	
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	40	

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)


Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
OFF CHARACTERISTICS				-		
Collector-to-Emitter Breakdown Voltage	BV _{CES}	V _{GE} = 0 V, I _C = 1 mA	1200	-	-	V
Collector-to-Emitter Breakdown Voltage Temperature Coefficient	$\Delta BV_{CES}/\Delta T_{J}$	V _{GE} = 0 V, I _C = 9.99 mA	_	1226	-	mV/°C
Zero Gate Voltage Collector Current	I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	-	-	40	μA
Gate-to-Emitter Leakage Current	I _{GES}	V_{GE} = ±20 V, V_{CE} = 0 V	-	-	±400	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	V _{GE(th)}	V_{GE} = V_{CE} , I_C = 40 mA	5.03	5.93	6.83	V
Collector-to-Emitter Saturation	V _{CE(sat)}	V_{GE} = 15 V, I _C = 40 A, T _J = 25°C	-	1.42	1.75	V
Voltage		V_{GE} = 15 V, I _C = 40 A, T _J = 175°C	-	1.71	-	1
DYNAMIC CHARACTERISTICS						
Input Capacitance	CIES	V_{CE} = 30 V, V_{GE} = 0 V, f = 1 MHz	_	4714	-	pF
Output Capacitance	C _{OES}		-	195	-	-
Reverse Transfer Capacitance	C _{RES}		-	23.7	-	
Total Gate Charge	Q _G	V _{CE} = 600 V, V _{GE} = 15 V,	-	170	-	nC
Gate-to-Emitter Charge	Q _{GE}	I _C = 40 A	-	42.2	-	
Gate-to-Collector Charge	Q _{GC}		-	73.1	-	
SWITCHING CHARACTERISTICS						-
Turn-On Delay Time	t _{d(on)}	$V_{CE} = 600 \text{ V}, V_{GE} = 0/15 \text{ V},$	-	50.1	-	ms
Turn-Off Delay Time	t _{d(off)}	I _C = 20 A, R _G = 4.7 Ω, T _J = 25°C	-	293	-	
Rise Time	t _r		-	30.9	-	
Fall Time	t _f		-	189	-	
Turn-On Switching Loss	E _{on}		-	1.37	-	
Turn-Off Switching Loss	E _{off}		-	1.35	-	
Total Switching Loss	E _{ts}	1	-	2.72	-	
Turn-On Delay Time	t _{d(on)}	$V_{CE} = 600 \text{ V}, \text{ V}_{GE} = 0/15 \text{ V},$	_	55.2	_	ns
Turn-Off Delay Time	t _{d(off)}	I _C = 40 A, R _G = 4.7 Ω, T _J = 25°C	-	241	-	
Rise Time	t _r		_	55.2	_	
Fall Time	t _f		_	122	-	1
Turn-On Switching Loss	E _{on}		-	3.68	-	mJ
Turn-Off Switching Loss	E _{off}		_	1.7	_	
Total Switching Loss	E _{ts}		-	5.38	_	

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS						
Turn-On Delay Time	t _{d(on)}	$V_{CE} = 600 \text{ V}, \text{ V}_{GE} = 0/15 \text{ V},$	-	56	_	ns
Turn-Off Delay Time	t _{d(off)}	l _C = 20 A, R _G = 4.7 Ω, T _{.I} = 175°C	-	414	-	
Rise Time	tr		-	41.7	_	
Fall Time	t _f		-	375	-	
Turn–On Switching Loss	E _{on}		-	2.13	-	mJ
Turn–Off Switching Loss	E _{off}		-	2.51	_	
Total Switching Loss	E _{ts}		-	4.64	-	
Turn-On Delay Time	t _{d(on)}	$V_{CE} = 600 \text{ V}, \text{ V}_{GE} = 0/15 \text{ V},$	-	63.1	-	ns
Turn-Off Delay Time	t _{d(off)}	I _C = 40 A, R _G = 4.7 Ω, T _J = 175°C	-	325	-	
Rise Time	t _r		-	71.2	-	1
Fall Time	t _f		-	233	-	
Turn–On Switching Loss	E _{on}		-	5.75	-	mJ
Turn–Off Switching Loss	E _{off}		-	3.03	-	
Total Switching Loss	E _{ts}		-	8.79	_	
DIODE CHARACTERISTICS						
Forward Voltage	V _F	$I_F = 40 \text{ A}, \text{ T}_J = 25^{\circ}\text{C}$	-	1.51	1.81	V
		I _F = 40 A, T _J = 175°C	-	1.51	_	1
DIODE SWITCHING CHARACTERIS	TICS, INDUCTIVE	E LOAD				
Reverse Recovery Time	t _{rr}	$V_{\rm R} = 600 \text{ V}, I_{\rm F} = 20 \text{ A},$	-	147	-	ns
Reverse Recovery Charge	Q _{rr}	dI _F /dt = 500 A/µs, T _J = 25°C	-	2110	-	nC
Reverse Recovery Energy	E _{rec}		-	0.53	-	mJ
Peak Reverse Recovery Current	I _{RRM}		-	33.5	-	Α
Reverse Recovery Time	t _{rr}	$V_{\rm R} = 600 \text{ V}, I_{\rm F} = 40 \text{ A},$	-	185	-	ns
Reverse Recovery Charge	Q _{rr}	$dI_F/dt = 500 \text{ A}/\mu \text{s}, \text{ T}_J = 25^{\circ}\text{C}$	-	3612	-	nC
Reverse Recovery Energy	E _{rec}		-	0.78	-	mJ
Peak Reverse Recovery Current	I _{RRM}	1	-	43.2	_	Α
Reverse Recovery Time	t _{rr}	$V_{\rm R} = 600 \text{ V}, I_{\rm F} = 20 \text{ A},$	-	207	-	ns
Reverse Recovery Charge	Q _{rr}	dl _F /dt = 500 A/µs, T _J = 175°C	-	3670	-	nC
Reverse Recovery Energy	E _{rec}		-	1.1	-	mJ
Peak Reverse Recovery Current	I _{RRM}		-	41.5	-	Α
Reverse Recovery Time	t _{rr}	V _R = 600 V, I _F = 40 A, dI _F /dt = 500 A/μs, T _J = 175°C	-	258	-	ns
Reverse Recovery Charge	Q _{rr}		-	6684	-	nC
Reverse Recovery Energy	E _{rec}		-	1.66	_	mJ
Peak Reverse Recovery Current	I _{RRM}		_	56.5	_	Α

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

120

100

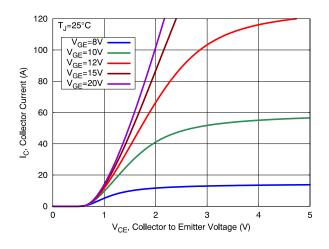
80

60

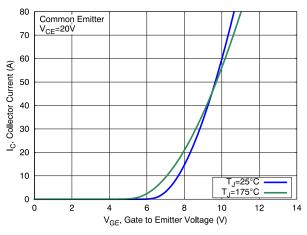
40

20

I_C, Collector Current (A)


T_J=175°C

V_{GE}=8V


V_{GE}=10V V_{GE}=12V

V_{GE}=15V

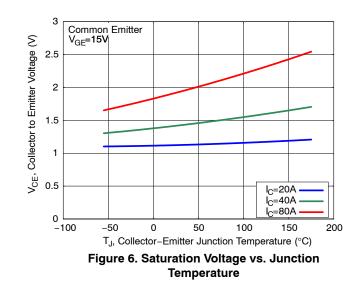

V_{GE}=20V

Figure 4. Transfer Characteristics

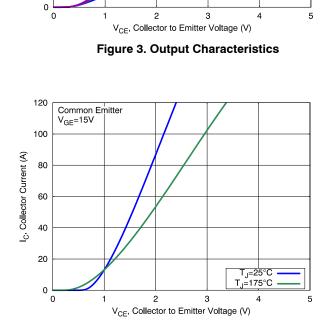


Figure 5. Saturation Characteristics

TYPICAL CHARACTERISTICS

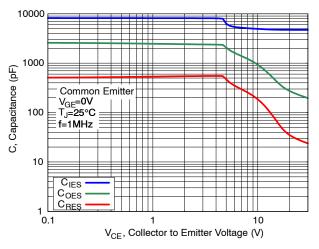
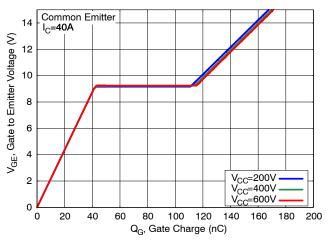
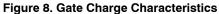




Figure 7. Capacitance Characteristics

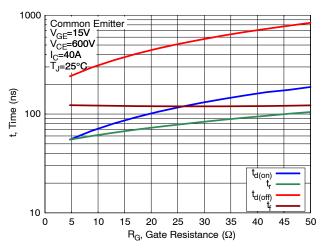


Figure 9. Switching Time vs. Gate Resistance

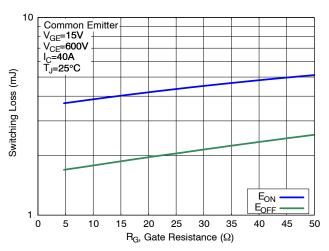


Figure 11. Switching Loss vs. Gate Resistance

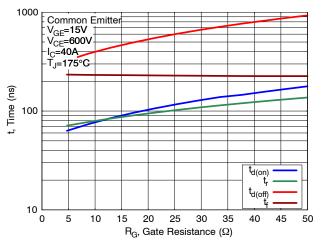
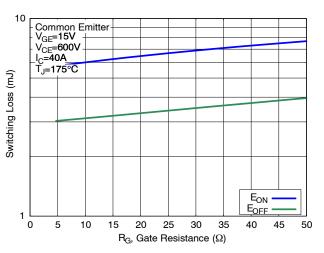
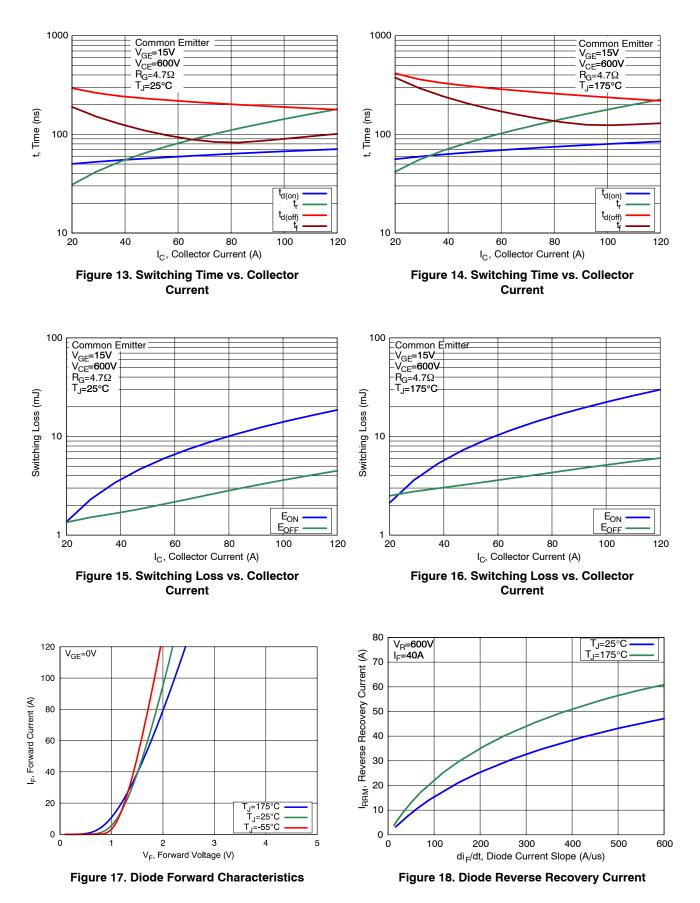
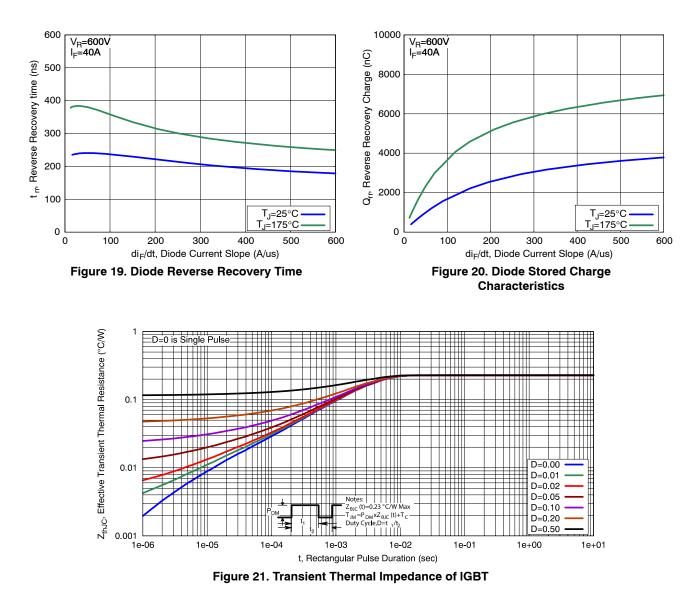
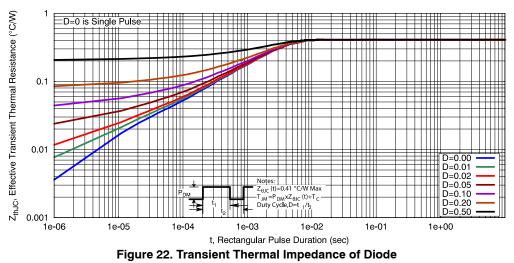
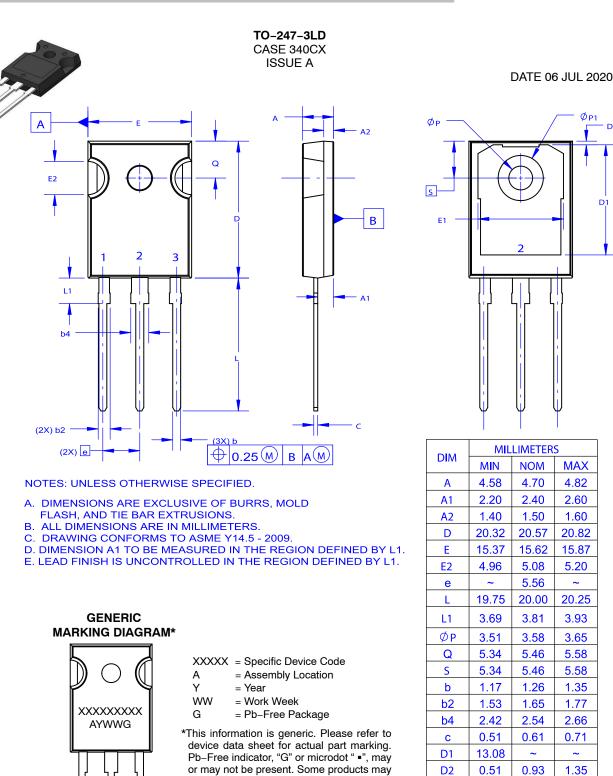


Figure 10. Switching Time vs. Gate Resistance


Figure 12. Switching Loss vs. Gate Resistance

TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS

www.onsemi.com 7

6.60 6.80 7.00 Electronic versions are uncontrolled except when accessed directly from the Document Repository. **DOCUMENT NUMBER:** 98AON93302G Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** TO-247-3LD PAGE 1 OF 1

not follow the Generic Marking.

ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

~

12.81

~

E1

ØP1

D2

ON Semiconductor

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>