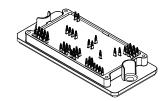
onsemi

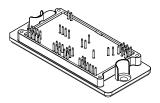
Three Level ANPC Q2Pack Module

NXH800A100L4Q2F2S1G/P1G, NXH800A100L4Q2F2S2G/P2G

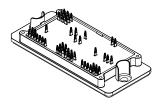
This high-density, integrated power module combines high-performance IGBTs with rugged anti-parallel diodes.

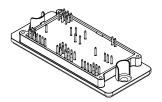

Features

- Extremely Efficient Trench with Field Stop Technology
- Low Switching Loss Reduces System Power Dissipation
- Module Design Offers High Power Density
- Low Inductive Layout
- Low Package Height
- This is a Pb–Free Device


Typical Applications

- Solar Inverters
- Uninterruptable Power Supplies Systems


PACKAGE PICTURE


Q2PACK POSITIVE PRESS FIT PINS CASE 180HG

Q2PACK POSITIVE SOLDER PINS CASE 180HH

Q2PACK NEGATIVE PRESS FIT PINS CASE 180CQ

Q2PACK NEGATIVE SOLDER PINS CASE 180BM

MARKING DIAGRAMS

See detailed marking diagrams on page 2 of this data sheet.

PIN CONNECTIONS

See detailed pin connections on page 2 of this data sheet.

ORDERING INFORMATION

See detailed ordering and shipping information on page 8 of this data sheet.

SCHEMATICS

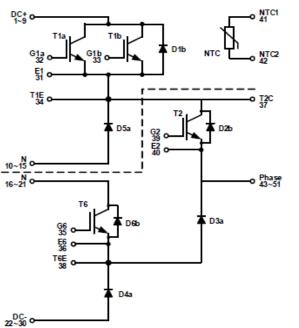


Figure 1. NXH800A100L4Q2F2X1G Schematic Diagram

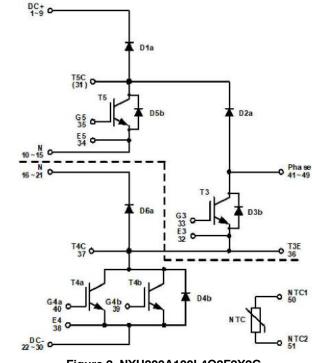
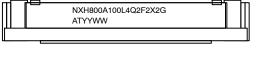


Figure 2. NXH800A100L4Q2F2X2G Schematic Diagram

	NXH800A100L4Q2F2X1G ATYYWW	
u		

NXH800A100L4Q2F2 X

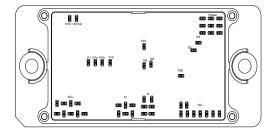
G

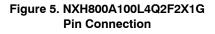

AT

YYWW

= Specific Device Code = P or S

= Pb-Free Package


- = Assembly & Test Site Code
- = Year and Work Week Code
- Figure 3. NXH800A100L4Q2F2X1G Marking Diagram



NXH800A100L4Q2F2 = X = G = AT = YYWW =

- = Specific Device Code
- = P or S
- = Pb-Free Package
- = Assembly & Test Site Code
- = Year and Work Week Code

Figure 4. NXH800A100L4Q2F2X2G Marking Diagram

PIN CONNECTIONS

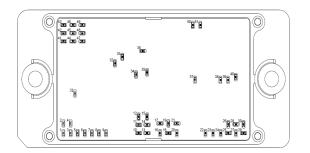


Figure 6. NXH800A100L4Q2F2X2G Pin Connection

:

Rating	Symbol	Value	Unit
OUTER IGBT (T1a, T1b, T4a, T4b)			
Collector-Emitter Voltage	V _{CES}	1000	V
Gate-Emitter Voltage Positive Transient Gate-Emitter Voltage (T _{pulse} = 5 μs, D < 0.10)	V _{GE}	±20 30	V
Continuous Collector Current @ T _C = 80°C	Ι _C	309	А
Pulsed Peak Collector Current @ $T_C = 80^{\circ}C (T_J = 175^{\circ}C)$	I _{C(Pulse)}	927	А
Maximum Power Dissipation (T _J = 175°C)	P _{tot}	714	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature (Note 1)	T _{JMAX}	175	°C
INNER IGBT (T2, T3)	• • • • •		
Collector-Emitter Voltage	V _{CES}	1000	V
Gate-Emitter Voltage Positive Transient Gate-Emitter Voltage (T _{pulse} = 5 μs, D < 0.10)	V _{GE}	±20 30	V
Continuous Collector Current @ T _C = 80°C	Ι _C	413	A
Pulsed Peak Collector Current @ $T_C = 80^{\circ}C (T_J = 175^{\circ}C)$	I _{C(Pulse)}	1239	А
Maximum Power Dissipation (T _J = 175°C)	P _{tot}	990	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature (Note 1)	T _{JMAX}	175	°C
NEUTRAL POINT IGBT (T5, T6)	I		
Collector-Emitter Voltage	V _{CES}	1000	V
Gate-Emitter Voltage Positive Transient Gate-Emitter Voltage (T _{pulse} = 5 μs, D < 0.10)	V _{GE}	±20 30	V
Continuous Collector Current @ $T_C = 80^{\circ}C$	Ι _C	224	A
Pulsed Peak Collector Current @ $T_C = 80^{\circ}C (T_J = 175^{\circ}C)$	I _{C(Pulse)}	672	A
Maximum Power Dissipation ($T_J = 175^{\circ}C$)	P _{tot}	543	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature (Note 1)	T _{JMAX}	175	°C
IGBT INVERSE DIODE (D1b, D2b, D3b, D4b, D5b, D6b)			
Peak Repetitive Reverse Voltage	V _{RRM}	1000	V
Continuous Forward Current @ $T_C = 80^{\circ}C$	١ _F	61	А
Repetitive Peak Forward Current (T _J = 175°C)	I _{FRM}	183	А
Maximum Power Dissipation (T _J = 175°C)	P _{tot}	151	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	175	°C
DIODES (D1a, D2a, D3a, D4a)			
Peak Repetitive Reverse Voltage	V _{RRM}	1000	V
Continuous Forward Current @ T _C = 80°C	۱ _F	177	А
Repetitive Peak Forward Current (T _J = 175°C)	I _{FRM}	531	А
Maximum Power Dissipation ($T_J = 175^{\circ}C$)	P _{tot}	446	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	175	°C

Table 1. ABSOLUTE MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Table 1. ABSOLUTE MAXIMUM RATINGS (T_J = 25° C unless otherwise noted) (continued)

Rating	Symbol	Value	Unit	
NEUTRAL POINT DIODES (D5a, D6a)				
Peak Repetitive Reverse Voltage	V _{RRM}	1000	V	
Continuous Forward Current @ T _C = 80°C	١ _F	238	А	
Repetitive Peak Forward Current ($T_J = 175^{\circ}C$)	I _{FRM}	714	А	
Maximum Power Dissipation ($T_J = 175^{\circ}C$)	P _{tot}	565	W	
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C	
Maximum Operating Junction Temperature	T _{JMAX}	175	°C	

Table 2. THERMAL AND INSULATION PROPERTIES (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
THERMAL PROPERTIES			
Operating Temperature under Switching Condition	T _{VJOP}	-40 to +150	°C
Storage Temperature Range	T _{stg}	-40 to +125	°C
INSULATION PROPERTIES			
Isolation Test Voltage, t = 1 s, 50 Hz	V _{is}	4000	V _{RMS}
Creepage Distance		12.7	mm
Comparative Tracking Index	CTI	> 600	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe

Operating parameters.

Characteristic	Test Conditions	Symbol	Min	Тур	Max	Unit
IGBT (T1a, T1b, T4a, T4b) CHARAG	CTERISTICS					
Collector-Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} = 1000 V	I _{CES}	_	-	20	μA
Collector-Emitter Saturation Voltage	V_{GE} = 15 V, I _C = 400 A, T _J = 25°C	V _{CE(sat)}	_	1.69	2.3	V
	V_{GE} = 15 V, I _C = 400 A, T _J = 175°C		-	1.95	—	1
Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 400 \text{ mA}$	V _{GE(TH)}	3.4	4.92	6.7	V
Gate Leakage Current	$V_{GE} = \pm 20 \text{ V}, V_{CE} = 0 \text{ V}$	I _{GES}	_	-	±2	μΑ
Turn-on Delay Time	$T_J = 25^{\circ}C$	t _{d(on)}	_	189.93	_	ns
Rise Time	V _{CE} = 600 V, I _C = 200 A V _{GE} = –9 V, 15 V	t _r	-	52.06	—	1
Turn-off Delay Time	$R_{Goff} = 23 \Omega$, $R_{Gon} = 15 \Omega$	t _{d(off)}	_	970.3	_	1
Fall Time	(T1a, T1b tested together)	t _f	-	22.56	_	1
Turn-on Switching Loss per Pulse		E _{on}	_	7.71	_	mJ
Turn-off Switching Loss per Pulse		E _{off}	_	8.12	—	1
Turn-on Delay Time	T _J = 125°C	t _{d(on)}	_	164.22	—	ns
Rise Time	V _{CE} = 600 V, I _C = 200 A V _{GE} = –9 V, 15 V	t _r	_	59.58	—	
Turn-off Delay Time	$R_{Goff} = 23 \Omega$, $R_{Gon} = 15 \Omega$ (T1a, T1b tested together)	t _{d(off)}	_	1088.34	_	1
Fall Time		t _f	_	33.6	_	1
Turn-on Switching Loss per Pulse		E _{on}	_	11.57	_	mJ
Turn-off Switching Loss per Pulse		E _{off}	_	10.77	—	1
Input Capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 100 kHz	Cies	_	49700	_	pF
Output Capacitance	(T1a, T1b tested together)	C _{oes}	_	1530	_	1
Reverse Transfer Capacitance		C _{res}	_	308	—	1
Total Gate Charge	V _{CE} = 600 V, I _C = 300 A, V _{GE} = -15 V~15 V (T1a, T1b tested together)	Qg	_	3040	_	nC
Thermal Resistance – Chip-to-Heatsink	Thermal grease, Thickness = 2.1 Mil ±2%	R _{thJH}	_	0.225	-	K/W
Thermal Resistance – Chip-to-Case	λ = 2.9 W/mK	R _{thJC}	_	0.133	_	K/W
IGBT INVERSE DIODE (D1b, D2b, I	D3b, D4b, D5b, D6b) CHARACTERIST	ICS				
Diode Forward Voltage	I _F = 100 A, T _J = 25°C	V _F	_	2.73	3.7	V
	I _F = 100 A, T _J = 175°C	1	_	2.39	_	1
		-				

 $\mathsf{R}_{\mathsf{thJH}}$

R_{thJC}

K/W

K/W

_

_

0.770

0.63

_

_

Thermal grease, Thickness = 2.1 Mil $\pm 2\%$

 $\lambda = 2.9 \text{ W/mK}$

Thermal Resistance -

Thermal Resistance - Chip-to-Case

Chip-to-Heatsink

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

$\mathsf{NXH800A100L4Q2F2S1G/P1G}, \, \mathsf{NXH800A100L4Q2F2S2G/P2G}$

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified) (continued)

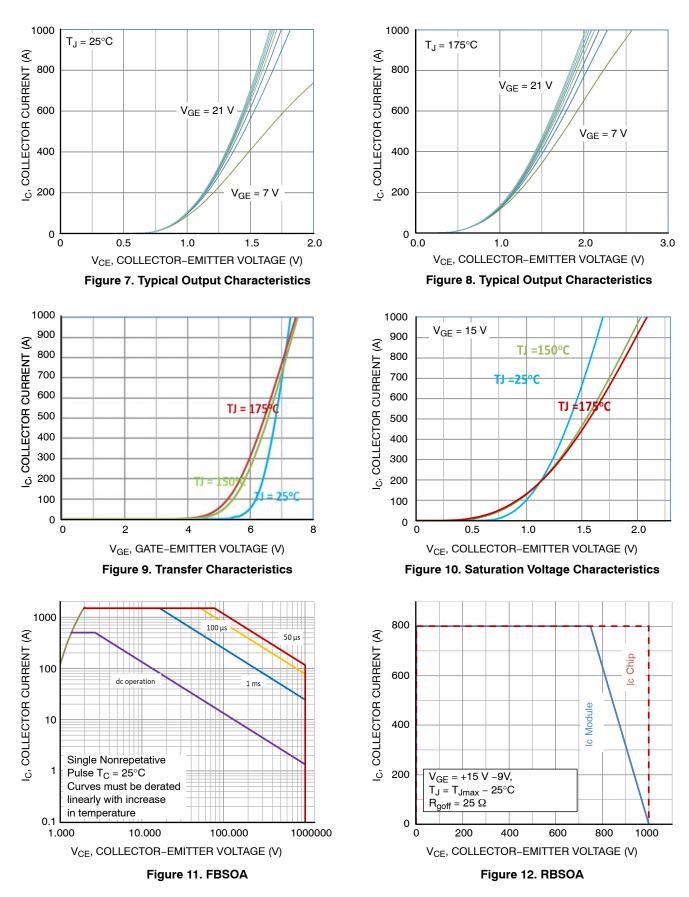
Characteristic	Test Conditions	Symbol	Min	Тур	Max	Unit
IGBT (T2, T3) CHARACTERISTICS	i					
Collector-Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} = 1000 V	I _{CES}	—	-	20	μΑ
Collector-Emitter Saturation Voltage	V_{GE} = 15 V, I _C = 600 A, T _J = 25°C	V _{CE(sat)}	_	1.75	2.3	V
	V_{GE} = 15 V, I _C = 600 A, T _J = 175°C		_	2.15	-	
Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 600 \text{ mA}$	V _{GE(TH)}	3.4	4.83	6.7	V
Gate Leakage Current	V_{GE} = ±20 V, V_{CE} = 0 V	I _{GES}	_	-	±2	μΑ
Turn-on Delay Time	$T_J = 25^{\circ}C$	t _{d(on)}	_	233.73	_	ns
Rise Time	V _{CE} = 600 V, I _C = 200 A V _{GE} = -9 V, 15 V	t _r	_	68	-	
Turn-off Delay Time	$R_{Gon} = 11 \Omega, R_{Goff} = 23 \Omega$	t _{d(off)}	_	1364.18	_	
Fall Time		t _f	_	79.12	-	
Turn-on Switching Loss per Pulse		E _{on}	_	7.83	-	mJ
Turn-off Switching Loss per Pulse		E _{off}	_	16.73	-	
Turn-on Delay Time	T _J = 125°C	t _{d(on)}	_	213.78	-	ns
Rise Time	V _{CE} = 600 V, I _C = 200 A V _{GE} = –9 V, 15 V	t _r	_	75.99	_	
Turn-off Delay Time	$R_{Gon} = 11 \Omega, R_{Goff} = 23 \Omega$	t _{d(off)}	_	1514.94	-	
Fall Time		t _f	_	47.53	-	
Turn-on Switching Loss per Pulse		Eon	_	10.87	-	mJ
Turn-off Switching Loss per Pulse	-	E _{off}		17.39	-	
Input Capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 100 kHz	C _{ies}	_	38100	_	pF
Output Capacitance	-	C _{oes}	_	1230	_	
Reverse Transfer Capacitance		C _{res}	_	226	-	
Total Gate Charge	V _{CE} = 600 V, I _C = 300 A, V _{GE} = 15 V	Qg	_	2230	-	nC
Thermal Resistance – Chip-to-Heatsink	Thermal grease, Thickness = 2.1 Mil ±2%	R _{thJH}	_	0.168	_	K/W
Thermal Resistance - Chip-to-Case	λ = 2.9 W/mK	R _{thJC}	_	0.096	-	K/W
DIODES (D1a, D2a, D3a, D4a) CHA	RACTERISTICS					-
Diode Forward Voltage	I _F = 300 A, T _J = 25°C	V _F	_	2.76	3.7	V
	I _F = 300 A, T _J = 175°C		_	2.43	-	
Reverse Recovery Time	$T_{\rm J} = 25^{\circ}C$	t _{rr}	_	105.26	_	ns
Reverse Recovery Charge	$V_{CE} = 600 \text{ V}, \text{ I}_{C} = 200 \text{ A}$ $V_{GE} = -9 \text{ V}, 15 \text{ V}, \text{ R}_{G} = 11 \Omega$	Q _{rr}	_	4.344	_	μC
Peak Reverse Recovery Current		I _{RRM}	_	106.04	-	А
Peak Rate of Fall of Recovery Current		di/dt	_	3.242	—	A/ns
Reverse Recovery Energy]	E _{rr}	I	1.304	_	mJ
Reverse Recovery Time	$T_{\rm J} = 125^{\circ}{\rm C}$	t _{rr}		176.9	—	ns
Reverse Recovery Charge	V _{CE} = 600 V, I _C = 200 A V _{GE} = -9 V, 15 V, R _G = 11 Ω	Q _{rr}	_	12.771	-	μC
Peak Reverse Recovery Current		I _{RRM}		154.24	—	А
Peak Rate of Fall of Recovery Current		di/dt		2.795	_	A/ns
Reverse Recovery Energy		E _{rr}	_	4.318	—	mJ
Thermal Resistance – Chip-to-Heatsink	Thermal grease, Thickness = 2.1 Mil ±2%	R _{thJH}	_	0.315	-	K/W
Thermal Resistance - Chip-to-Case	λ = 2.9 W/mK	R _{thJC}	_	0.213	_	K/W

$\mathsf{NXH800A100L4Q2F2S1G/P1G}, \, \mathsf{NXH800A100L4Q2F2S2G/P2G}$

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise specified) (continued)

Characteristic	Test Conditions	Symbol	Min	Тур	Max	Unit
IGBT (T5, T6) CHARACTERISTICS						
Collector-Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} = 1000 V	I _{CES}	_	-	20	μΑ
Collector-Emitter Saturation Voltage	V_{GE} = 15 V, I _C = 300 A, T _J = 25°C	V _{CE(sat)}	-	1.70	2.3	V
	V_{GE} = 15 V, I _C = 300 A, T _J = 175°C		-	2.05	-	1
Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 300 \text{ mA}$	V _{GE(TH)}	4.1	5.03	6.0	V
Gate Leakage Current	V_{GE} = ±20 V, V_{CE} = 0 V	I _{GES}	-	-	±2	μΑ
Turn-on Delay Time	$T_J = 25^{\circ}C$	t _{d(on)}	-	120.19	-	ns
Rise Time	V _{CE} = 600 V, I _C = 200 A V _{GE} = -9 V, 15 V,	t _r	_	50.18	_	
Turn-off Delay Time	$R_{Gon} = 11 \Omega, R_{Goff} = 23 \Omega$	t _{d(off)}	_	682.65	_	
Fall Time		t _f	_	39.56	_	1
Turn-on Switching Loss per Pulse		E _{on}	_	8.58	_	mJ
Turn-off Switching Loss per Pulse		E _{off}	_	7.82		-
Turn-on Delay Time	T, = 125°C	t _{d(on)}				ns
Rise Time	$V_{CE} = 600 \text{ V}, \text{ I}_{C} = 200 \text{ A}$			112.48		
	V _{GE} = –9 V, 15 V, R _{Gon} = 11 Ω, R _{Goff} = 23 Ω	t _r		57.46		
Turn-off Delay Time		t _{d(off)}	_	747.87	_	
Fall Time		t _f	-	23.765	-	
Turn-on Switching Loss per Pulse		Eon	—	13.77	-	mJ
Turn-off Switching Loss per Pulse		E _{off}	-	10.41	-	
Input Capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 100 kHz	C _{ies}	-	17400	-	pF
Output Capacitance		C _{oes}	-	654		
Reverse Transfer Capacitance		C _{res}	_	101	-	
Total Gate Charge	V_{CE} = 600 V, I_C = 300 A, V_{GE} = 15 V	Qg	_	1004	I	nC
Thermal Resistance – Chip-to-Heatsink	Thermal grease, Thickness = 2.1 Mil ±2%	R _{thJH}	-	0.264	-	K/W
Thermal Resistance – Chip-to-Case	λ = 2.9 W/mK	R _{thJC}	-	0.175	-	K/W
DIODES (D5a, D6a) CHARACTERIS	TICS					
Diode Forward Voltage	$I_F = 400 \text{ A}, \text{ T}_J = 25^{\circ}\text{C}$	V _F	-	2.83	3.7	V
	$I_F = 400 \text{ A}, \text{ T}_J = 175^{\circ}\text{C}$		_	2.42	-	
Reverse Recovery Time	$T_J = 25^{\circ}C$	t _{rr}	-	92.74	-	ns
Reverse Recovery Charge	V _{CE} = 600 V, I _C = 200 A V _{GE} = –9 V, 15 V, R _G = 15 Ω	Q _{rr}	-	5.66		μC
Peak Reverse Recovery Current		I _{RRM}	-	136.18	-	A
Peak Rate of Fall of Recovery Current		di/dt	_	3.14	_	A/ns
Reverse Recovery Energy		E _{rr}	_	2.03		mJ
Reverse Recovery Time	$T_{\rm J} = 125^{\circ}C$	t _{rr}	—	159.63	-	ns
Reverse Recovery Charge	V _{CE} = 600 V, I _C = 200 A V _{GE} = –9 V, 15 V, R _G = 15 Ω	Q _{rr}	_	17.00	_	μC
Peak Reverse Recovery Current		I _{RRM}	_	223.97	-	А
Peak Rate of Fall of Recovery Current		di/dt	—	2.71	_	A/ns
Reverse Recovery Energy		E _{rr}	-	6.80	-	mJ
Thermal Resistance – Chip-to-Heatsink	Thermal grease, Thickness = 2.1 Mil ±2%	R _{thJH}	_	0.244	_	K/W
Thermal Resistance – Chip-to-Case	λ = 2.9 W/mK	R _{thJC}	_	0.168	_	K/W

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified) (continued)


Characteristic	Test Conditions	Symbol	Min	Тур	Max	Unit
THERMISTOR CHARACTERISTICS						
Nominal Resistance	T = 25°C	R ₂₅	_	22	_	kΩ
Nominal Resistance	T = 100°C	R ₁₀₀	-	1504	-	Ω
Deviation of R25		$\Delta R/R$	-1	—	1	%
Power Dissipation		PD		187.5	1	mW
Power Dissipation Constant			_	1.5	_	mW/K
B-value	B(25/100), tolerance $\pm 3\%$		-	3980	-	К

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION

Part Number	Marking	Package	Shipping
NXH800A100L4Q2F2S1G	NXH800A100L4Q2F2S1G	Q2PACK – Case 180HH (Pb-Free/Halide-Free)	12 Units / Blister Tray
NXH800A100L4Q2F2P1G	NXH800A100L4Q2F2P1G	Q2PACK – Case 180HG (Pb-Free/Halide-Free)	12 Units / Blister Tray
NXH800A100L4Q2F2S2G	NXH800A100L4Q2F2S2G	Q2PACK – Case 180BM (Pb-Free/Halide-Free)	12 Units / Blister Tray
NXH800A100L4Q2F2P2G	NXH800A100L4Q2F2P2G	Q2PACK – Case 180CQ (Pb-Free/Halide-Free)	12 Units / Blister Tray

TYPICAL CHARACTERISTICS - IGBT T1/T4 AND D5A/D6A DIODE

TYPICAL CHARACTERISTICS - IGBT T1/T4 AND D5A/D6A DIODE (CONTINUED)

Ciss

Coss

C_{rss}

100

10

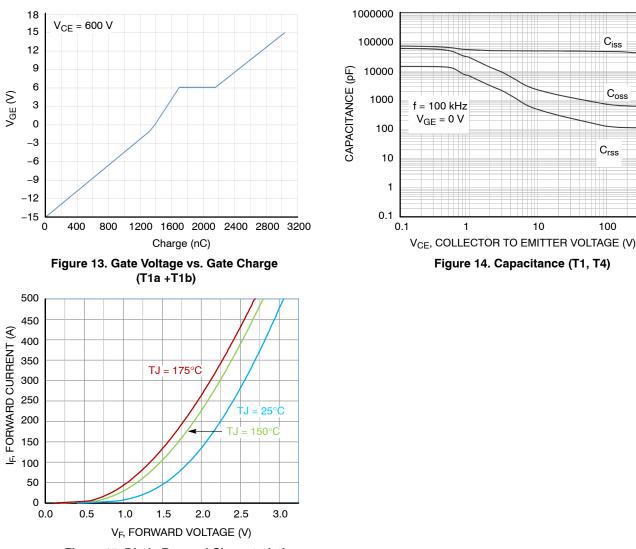
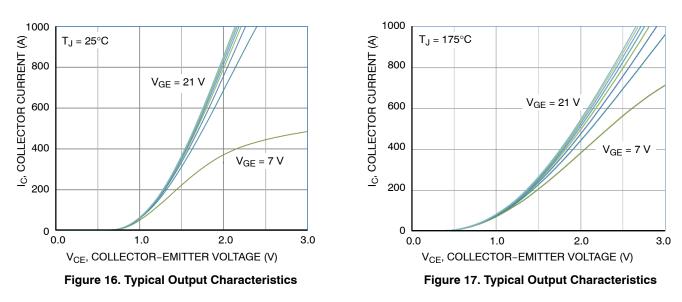
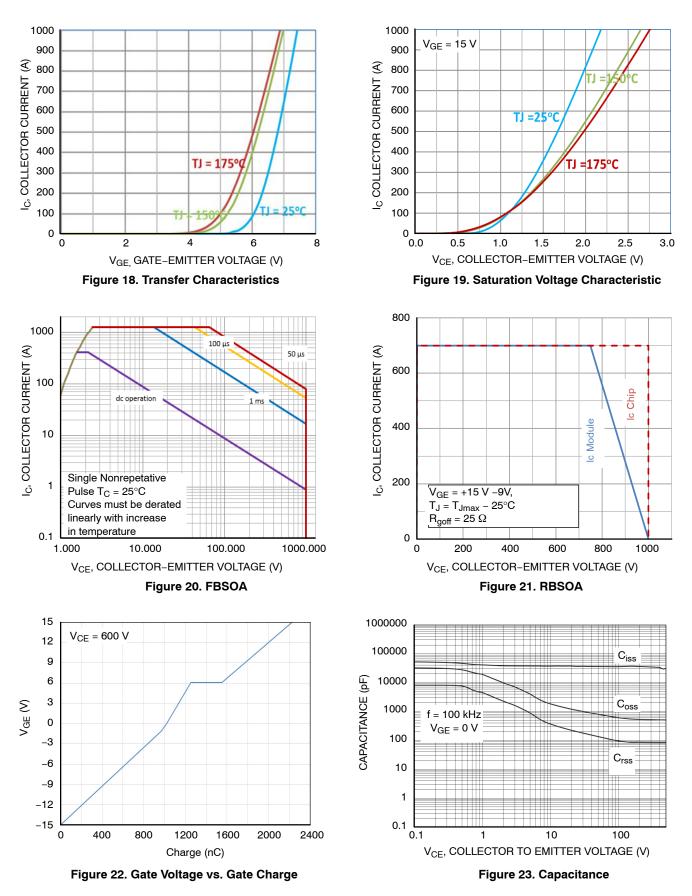




Figure 15. Diode Forward Characteristics

TYPICAL CHARACTERISTICS - IGBT T2/T3 AND D1A/D4A, D2A/D3A DIODE

TYPICAL CHARACTERISTICS - IGBT T2/T3 AND D1A/D4A, D2A/D3A DIODE (CONTINUED)

TYPICAL CHARACTERISTICS - IGBT T2/T3 AND D1A/D4A, D2A/D3A DIODE (CONTINUED)

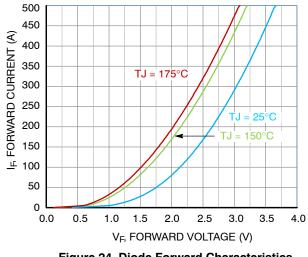
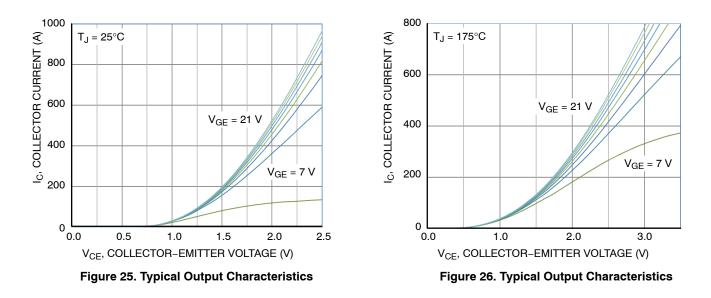
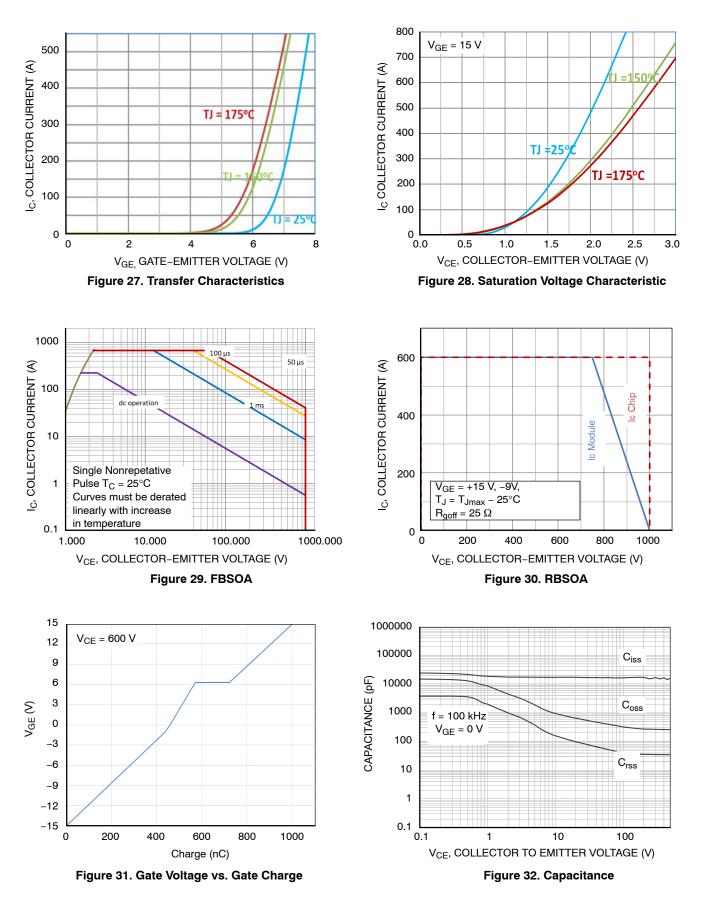
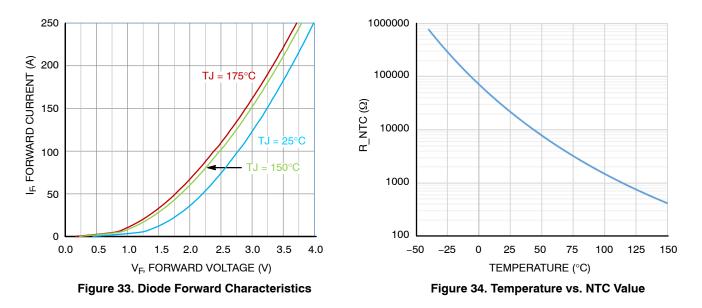
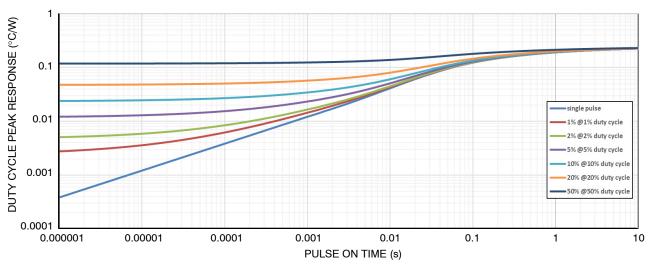
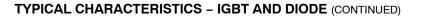




Figure 24. Diode Forward Characteristics

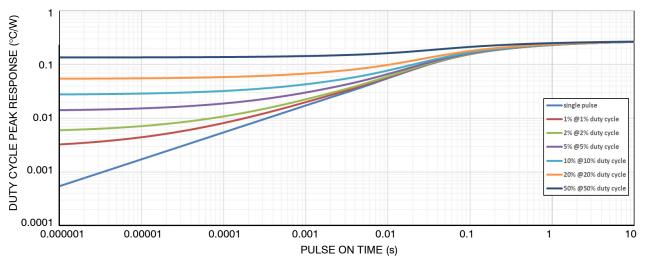

TYPICAL CHARACTERISTICS - IGBT T5/T6 AND D1B/D2B/D6B, D3B/D4B/D5B DIODE (CONTINUED)

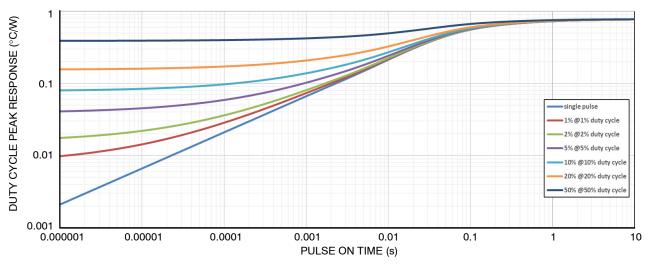

TYPICAL CHARACTERISTICS - IGBT T5/T6 AND D1B/D2B/D6B, D3B/D4B/D5B DIODE (CONTINUED)

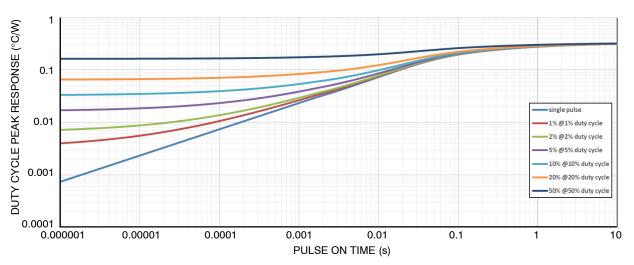
TYPICAL CHARACTERISTICS - IGBT T5/T6 AND D1B/D2B/D6B, D3B/D4B/D5B DIODE (CONTINUED)

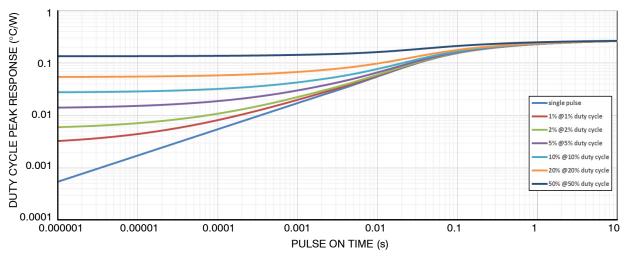


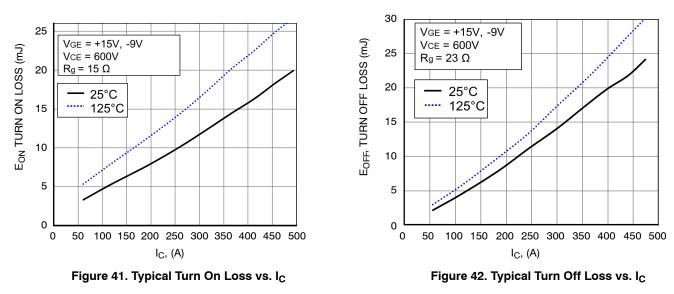




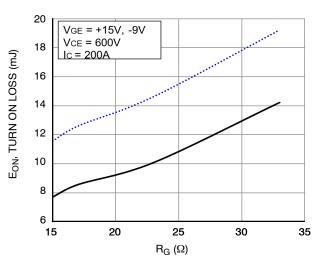

1 DUTY CYCLE PEAK RESPONSE (°C/M) 0.1 single pulse 0.01 1% @1% duty cycle 2% @2% duty cycle 5% @5% duty cycle 10% @10% duty cycl 0.001 20% @20% duty cycl 50% @50% duty cyc 0.0001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10 PULSE ON TIME (s)







TYPICAL CHARACTERISTICS - IGBT AND DIODE (CONTINUED)



TYPICAL CHARACTERISTICS - T1, D5A OR T4, D6A

TYPICAL CHARACTERISTICS - T1, D5A OR T4, D6A (CONTINUED)

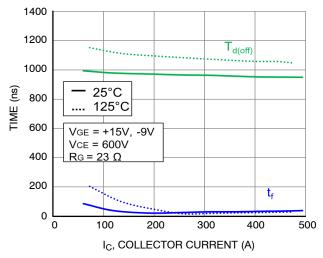
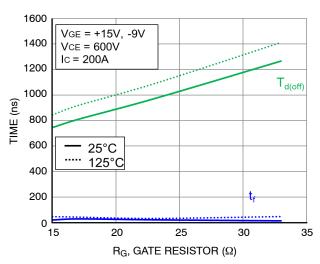



Figure 45. Typical Turn–Off Switching Time vs. I_C

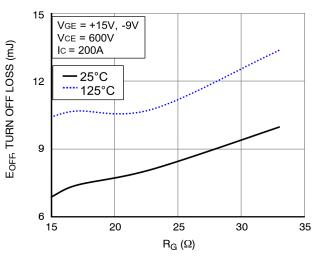


Figure 44. Typical Turn Off Loss vs. R_G

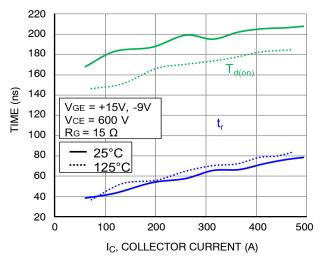


Figure 46. Typical Turn-On Switching Time vs. I_C

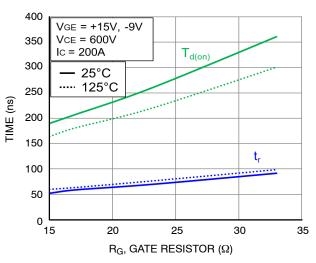
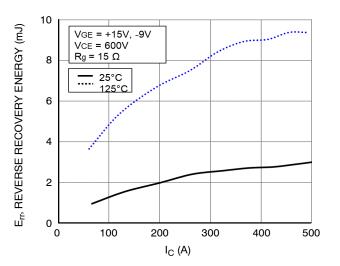



Figure 48. Typical Turn-On Switching Time vs. R_G

TYPICAL CHARACTERISTICS - T1, D5A OR T4, D6A (CONTINUED)

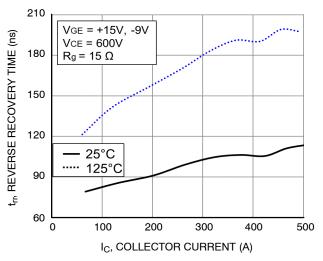


Figure 51. Typical Reverse Recovery Time vs. IC

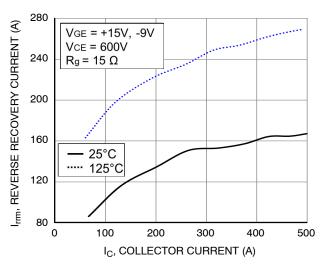


Figure 53. Typical Reverse Recovery Current vs. IC

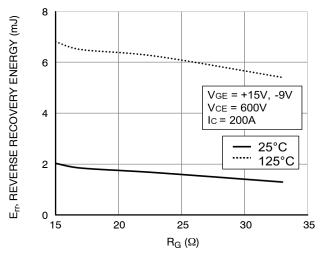


Figure 50. Typical Reverse Recovery Energy Loss vs. R_G

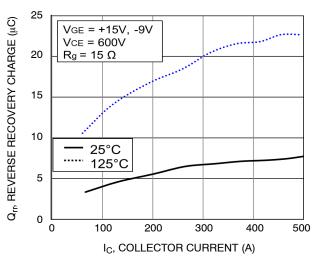


Figure 52. Typical Reverse Recovery Charge vs. IC

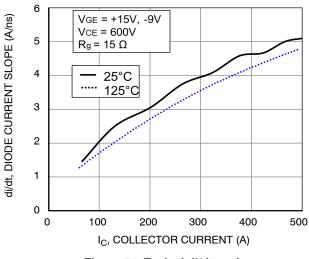
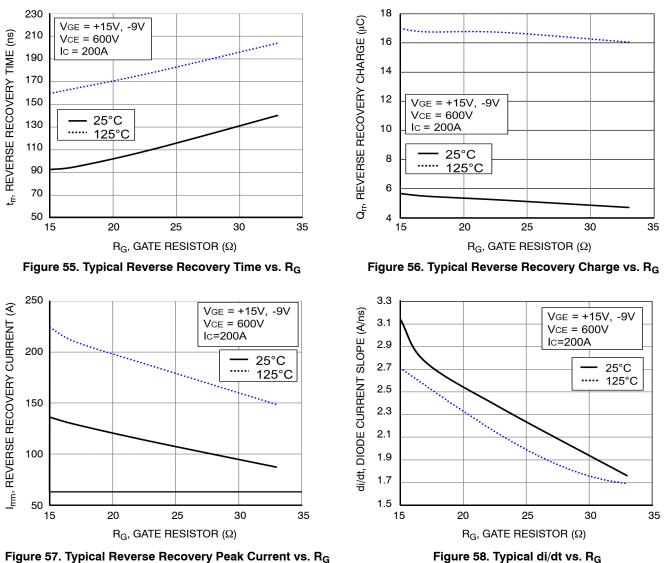
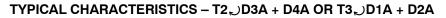
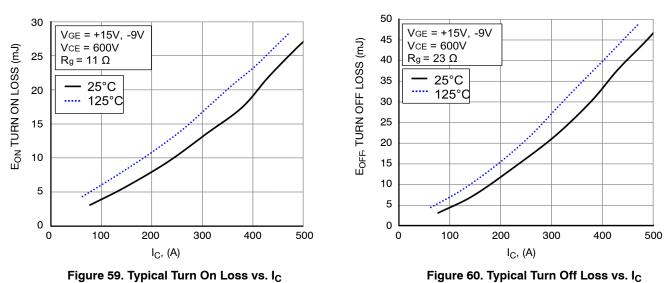





Figure 54. Typical di/dt vs. I_C

TYPICAL CHARACTERISTICS - T1, D5A OR T4, D6A (CONTINUED)

TYPICAL CHARACTERISTICS - T2, D3A + D4A OR T3, D1A + D2A (CONTINUED)

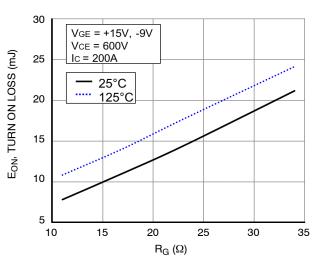
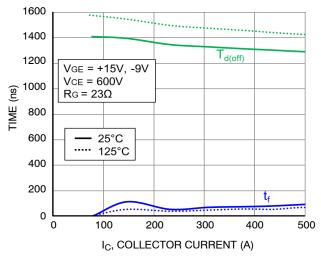
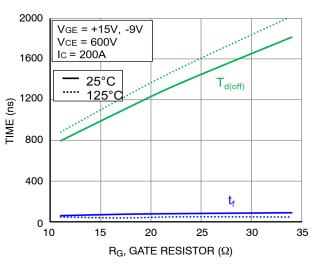




Figure 61. Typical Turn On Loss vs. R_G

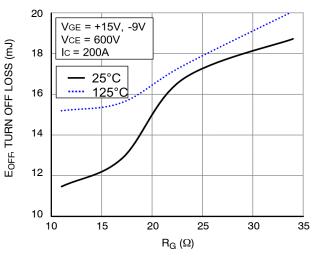


Figure 62. Typical Turn Off Loss vs. R_G

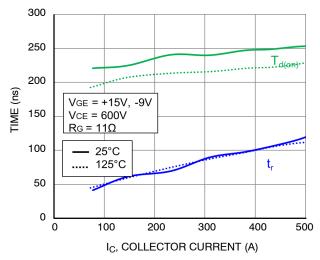


Figure 64. Typical Turn-On Switching Time vs. IC

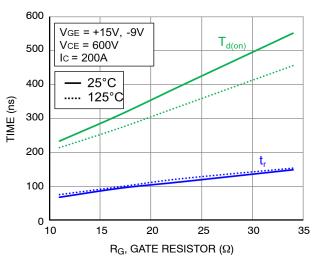
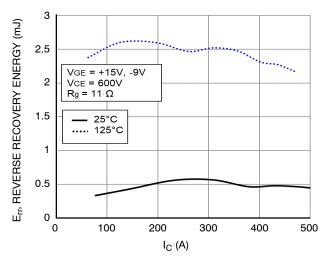



Figure 66. Typical Turn-On Switching Time vs. R_G

TYPICAL CHARACTERISTICS - T2, D3A + D4A OR T3, D1A + D2A (CONTINUED)

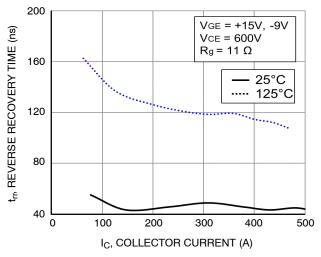


Figure 69. Typical Reverse Recovery Time vs. I_C

Figure 71. Typical Reverse Recovery Current vs. IC

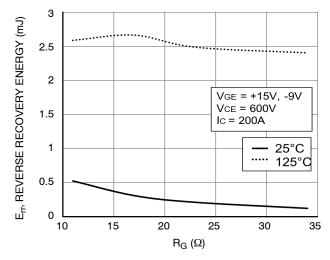


Figure 68. Typical Reverse Recovery Energy Loss vs. R_G

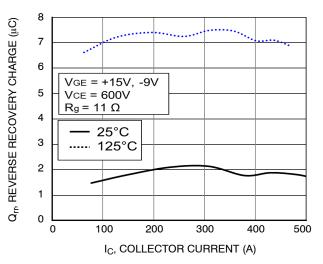


Figure 70. Typical Reverse Recovery Charge vs. IC

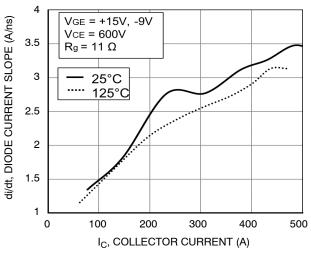


Figure 72. Typical di/dt vs. I_C

TYPICAL CHARACTERISTICS - T2, D3A + D4A OR T3, D1A + D2A (CONTINUED)

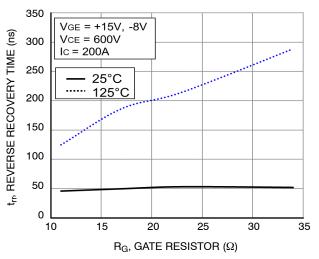


Figure 73. Typical Reverse Recovery Time vs. R_G

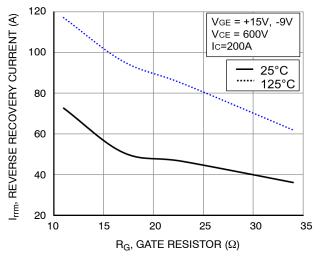


Figure 75. Typical Reverse Recovery Peak Current vs. R_G

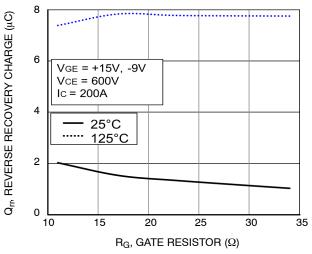
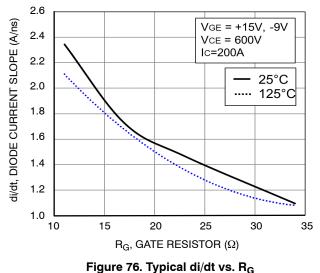
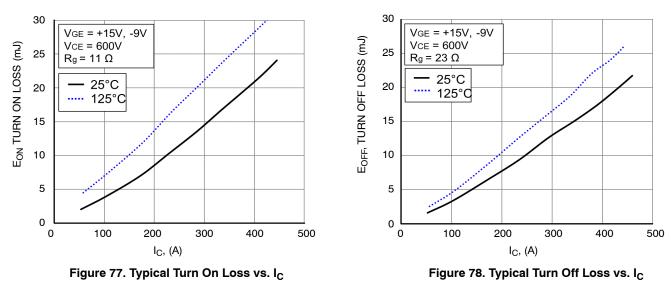
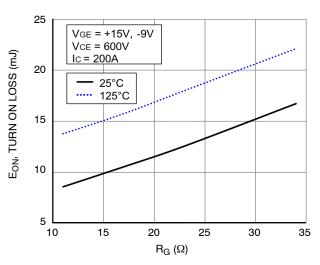
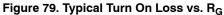
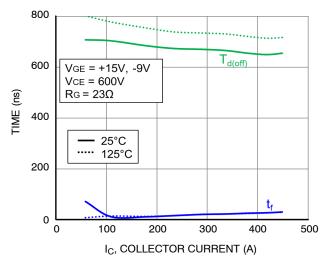
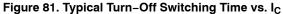


Figure 74. Typical Reverse Recovery Charge vs. R_G


Figure 76. Typical di/dt vs. F




TYPICAL CHARACTERISTICS – T6, D4A OR T5, D1A

TYPICAL CHARACTERISTICS - T6, D4A OR T5, D1A (CONTINUED)

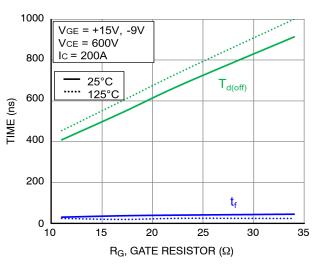


Figure 83. Typical Turn-Off Switching Time vs. R_G

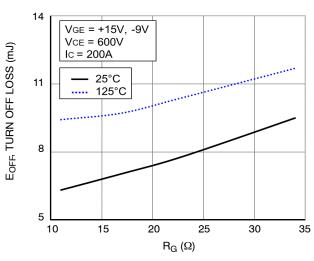


Figure 80. Typical Turn Off Loss vs. R_G

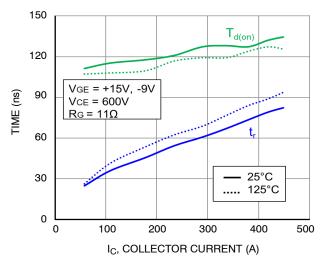


Figure 82. Typical Turn-On Switching Time vs. IC

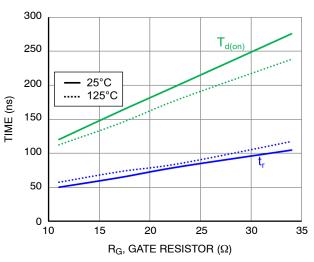
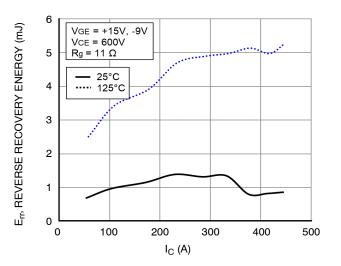



Figure 84. Typical Turn-On Switching Time vs. R_G

TYPICAL CHARACTERISTICS - T6, D4A OR T5, D1A (CONTINUED)

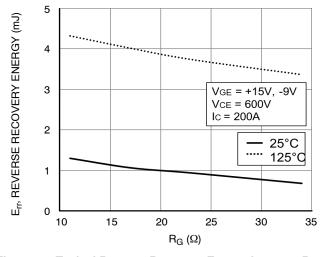


Figure 85. Typical Reverse Recovery Energy Loss vs. IC

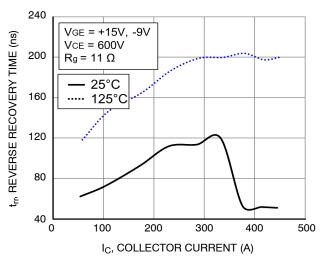


Figure 87. Typical Reverse Recovery Time vs. IC

210

180

150

120

90

60

0

VCE = 600V

25°C

100

125°C

 $R_g = 11\Omega$

.....

Irm, REVERSE RECOVERY CURRENT (A)

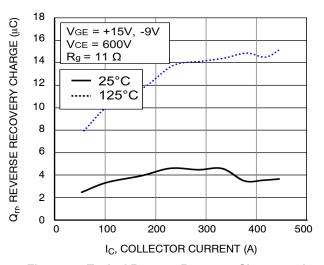


Figure 88. Typical Reverse Recovery Charge vs. I_C

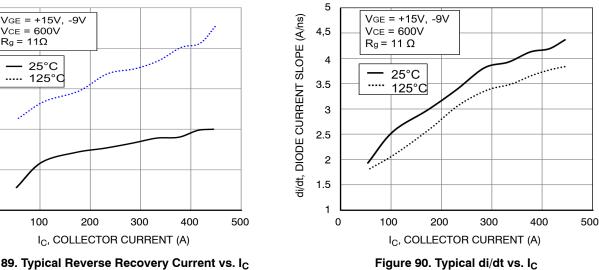


Figure 89. Typical Reverse Recovery Current vs. IC

www.onsemi.com 24

TYPICAL CHARACTERISTICS - T6, D4A OR T5, D1A (CONTINUED)

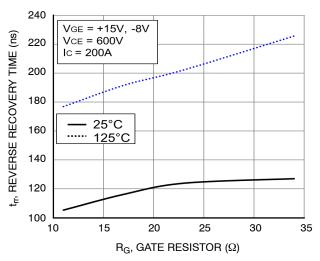


Figure 91. Typical Reverse Recovery Time vs. R_G

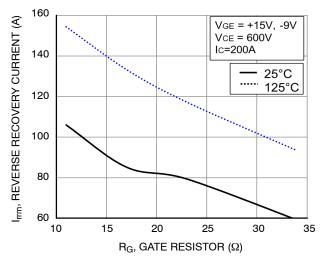


Figure 93. Typical Reverse Recovery Peak Current vs. R_G

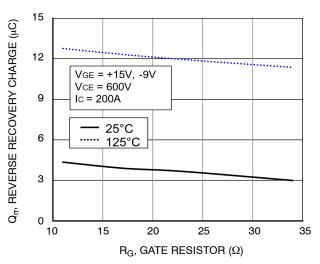


Figure 92. Typical Reverse Recovery Charge vs. R_G

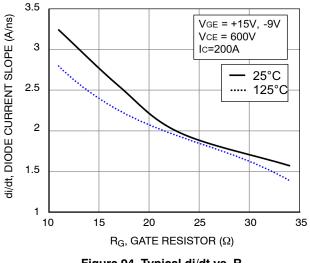
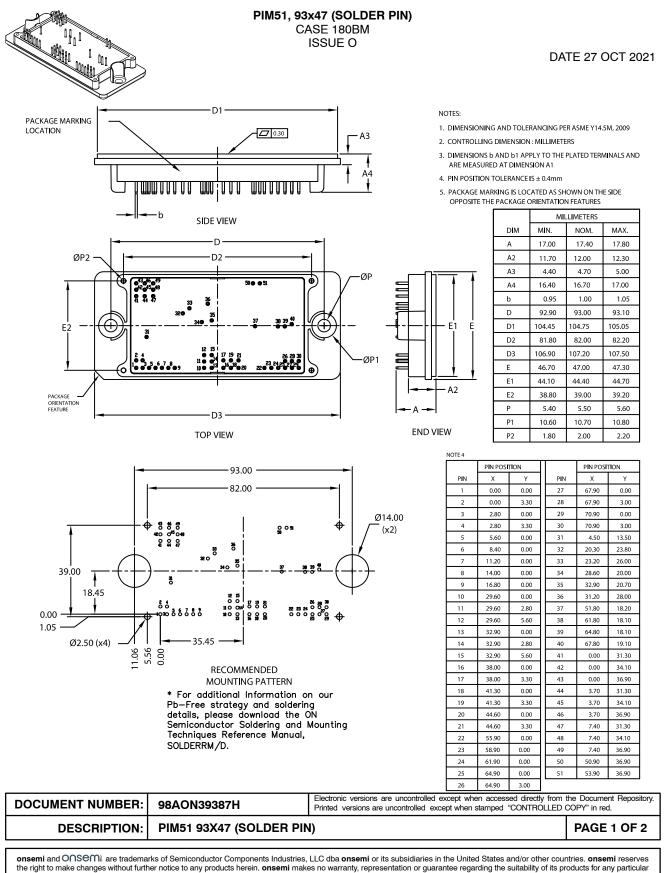



Figure 94. Typical di/dt vs. R_G

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

onsemi

onsem and OI ISCIT II are trademarks of Semiconductor Components Industres, LLC dba onsem or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemí

PIM51, 93x47 (SOLDER PIN) CASE 180BM ISSUE O

DATE 27 OCT 2021

GENERIC MARKING DIAGRAM*	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
FRONTSIDE MARKING	
2D CODE	
BACKSIDE MARKING	
XXXXX - Specific Dovice Code	*

XXXXX = Specific Device Code AT = Assembly & Test Site Code YYWW = Year and Work Week Code *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON39387H	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED	
DESCRIPTION:	PIM51 93X47 (SOLDER PI	N)	PAGE 2 OF 2
onsemi and OOSEM) are tradema	rks of Semiconductor Components Industries	LLC dba onsemi or its subsidiaries in the United States and/or other cou	ntries onsemi reserves

the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights of others.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

ONSEM¹.

AL ALA	CA	3x47 (PRESS FI SE 180CQ ISSUE O	Т)				
		330E 0			DA	ATE 28	OCT 2
PACKAGE MARKING LOCATION ØP2 E2 PACKAGE CREMITION	D1 D1 D1 D1 D1 D1 D1 D1 D1 D1		NOTES: 1. DIMENSIONING 2. CONTROLLING 3. DIMENSIONS b ARE MEASURE 4. PIN POSITION 11 5. PACKAGE MAR OPPOSITE THE FILE FILE A2 A1	DIMENSION AND b1 APP D AT DIMENS OLERANCE I KING IS LOC/	HILLIMETER LY TO THE P ION A1 5 ± 0.4mm ATED AS SHO RIENTATION MILL MIN. 16.90 14.1 11.70 4.40 16.40 16.40 1.61 0.75 92.90 104.45 81.80	RS LATED TERM	IINALS AND
FEATURE	D3	_	END VIEW	E2 P	38.80 5.40	39.00 5.50	39.20 5.60
			NOTE 4	P1 P2	10.60 1.80	10.70 2.00 PIN POS	10.80 2.20
39.00	93.00 82	● ● ● ● ● ● ● ● ● ● ● ● ● ●	PIN X 1 0. 2 0. 3 2. 4 2. 5 5. 6 8. 7 11. 8 14. 9 16. 10 29. 11 29. 13 32. 14 32. 15 32. 16 38. 17 38. 17 38. 18 41. 19 41. 20 44. 21 44. 22 55. 23 58. 24 61. 25 64.	00 0.000 3.30 3.30 80 0.000 80 3.30 80 0.000 80 3.30 80 0.000 80 0.000 80 0.000 20 0.000 80 0.000 80 0.000 50 2.80 900 5.66 900 5.60 900 5.60 900 5.60 900 5.60 900 5.60 900 5.60 900 5.60 900 5.60 900 5.60 900 5.60 900 5.60 900 5.60 900 5.60 900 5.60 900 5.60 900 5.60 900 5.60 900 5.60 900 5.00	28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	x x 67.90 67.90 70.90 70.90 23.20 23.20 23.20 32.90 31.20 51.80 61.80 64.80 67.80 0.00 0.00 0.00 3.70 3.70 3.70 7.40 7.40 50.90 53.90	Y 0.00 3.00 0.00 3.00 13.50 23.80 26.00 20.00 20.70 28.00 18.10 18.10 18.10 13.30 34.10 36.90 31.30 34.10 36.90 36.90 36.90 36.90 36.90 36.90
OCUMENT NUMBER:	98AON39256H	Electronic versions are u Printed versions are unc	26 64. uncontrolled except when a ontrolled except when stan	iccessed di	rectly from TROLLED	the Docu COPY" in	ment Repo red.
DESCRIPTION:	PIM51 93X47 (PRESS FIT)						E 1 OF

the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of theres.

onsemí

PIM51, 93x47 (PRESS FIT) CASE 180CQ ISSUE O

DATE 30 OCT 2021

GENERIC MARKING DIAGRAM*	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
FRONTSIDE MARKING	
2D CODE	
BACKSIDE MARKING	
VVVVV Specific Dovice Code	*

XXXXX = Specific Device Code AT = Assembly & Test Site Code YYWW = Year and Work Week Code *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON39256H	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	PIM51 93X47 (PRESS FIT)		PAGE 2 OF 2				
onsemi and OOSEO) are trademarks of Semiconductor Components Industries LLC dha onsemi or its subsidiaries in the United States and/or other countries onsemi reserves							

the right to make changes without further notice to any products herein. onsemi makes, LLC dua onsemi on its subsidiaries in the onited states and/of other countries. Onsemi makes have a state on any product of the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

onsemi

has be a same	CA	3x47 (PRESS FIT ASE 180HG ISSUE O) NOTES:			DATE	E 10 NC	OV 2021
			 DIMENSIONIN CONTROLLING DIMENSIONS ARE MEASUR PIN POSITION PACKAGE MA OPPOSITE TH 	5 DIMENSION 6 AND 61 AF ED AT DIMEN TOLERANCE RKING IS LO	N : MILLIMETE PPLY TO THE ISION A1 IS ± 0.4mm CATED AS SH ORIENTATION	RS PLATED TER	MINALS AND	
	SIDE VIEW			DIM	MIN.	NOM.	MAX.	
	D	- 1		A	16.90	17.30	17.70	
ØP2 -	D			A1	14.	18(REF)		
OP2				A2	11.70	12.00	12.30	
		●)/_∞ 🚽		A3	4.40	4.70	5.00	
T)	37 43 46 49			A4 b	16.40 1.61	16.70 1.66	17.00 1.71	
				b1	0.75	0.80	0.85	
E2 ()				D	92.90	93.00	93.10	
				D1	104.45	104.75	105.05	
		S \ØP1 ■		D2	81.80	82.00	82.20	
	,,,,,_,_,_,,_,,,,,,,,,,			D3 E	106.90 46.70	107.20 47.00	107.50 47.30	
			A2 A1	E1	46.70	44.40	44.70	
ORIENTATION FEATURE	D3		A	E2	38.80	39.00	39.20	
	TOP VIEW		END VIEW	Р	5.40	5.50	5.60	
				P1	10.60	10.70	10.80	
	93.00	>	NOTE 4	P2	1.80	2.00	2.20	
	82.00		PIN POSIT	ION		PIN POS	TION	
	62.00	-	PIN X	Y	PIN	х	Y	
		Ø14.00	1 0.00	0.00	27	62.50	0.00	
4	+ 0 «00« 5	(x2)	2 0.00	4.00	28 29	65.30 68.10	0.00	
			4 3.00	4.00	30	70.90	0.00	
39.00 +		(+)	5 6.00	0.00	31	13.70	19.80	
		\cup	6 6.00	4.00	32	16.70	19.80	
18.45		I	7 9.00	0.00	33	19.70	19.80	
0.00		⁶⁰⁰⁰ 0	8 9.00 9 12.00	4.00 0.00	34 35	23.20 38.00	19.80 18.60	
1.05		\backslash	10 26.90	0.00	36	41.00	19.20	
Ø2.50 (x4) 🥣	A 35.45 9.55 00 11.55 00	∕Ø1.45~1.54 PLATED	11 26.90	3.30	37	38.00	26.00	
	ت نہ ۃ RECOMMENDED	THRU HOLE	12 29.90	0.00	38	54.10	14.70	
	MOUNTING PATTERN		13 29.90 14 32.90	3.30 0.00	39 40	59.60 61.70	24.60 27.50	
			14 32.90 15 32.90	3.30	40	5.50	36.90	
			16 38.00	0.00	42	8.50	36.90	
			17 38.00	2.80	43	63.50	31.30	
			18 38.00	5.60	44	63.50	34.10	
			19 41.30 20 41.30	0.00	45 46	63.50 67.20	36.90 31.30	
			21 41.30	5.60	40	67.20	34.10	
			22 54.10	0.00	48	67.20	36.90	
			23 54.10	3.30	49	70.90	31.30	
			24 56.90 25 56.60	0.00	50 51	70.90 70.90	34.10 36.90	
			26 59.70	0.00	L 31	70.90	20.90	
DOCUMENT NUMBER:	98AON39438H	Electronic versions are un Printed versions are unco	controlled except wh	en access				
DESCRIPTION:	PIM51 93X47 (PRESS FIT)						PAGE	1 OF 2
the right to make changes without furth purpose, nor does onsemi assume ar	rks of Semiconductor Components Industries, er notice to any products herein. onsemi mak ny liability arising out of the application or use amages. onsemi does not convey any licens	es no warranty, representati of any product or circuit, a	on or guarantee rega nd specifically disclai	rding the ms any a	suitability o	of its prod	ucts for any	y particular

onsemí

PIM51, 93x47 (PRESS FIT) CASE 180HG ISSUE O

DATE 08 NOV 2021

GENERIC MARKING DIAGRAM*	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
FRONTSIDE MARKING	
2D CODE	
BACKSIDE MARKING	
VVVVV Specific Dovice Code	*

XXXXX = Specific Device Code AT = Assembly & Test Site Code YYWW = Year and Work Week Code *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON39438H	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	PIM51 93X47 (PRESS FIT)		PAGE 2 OF 2			

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

onsemi

	CA	x47 (SOLDER PII ASE 180HH ISSUE O	N)				DATE	16 NO	V 2021
PACKAGE MARKING			2. CC 3. DI AF 4. PI 5. PA	S: MENSIONING DNTROLLING MENSIONS & RE MEASURE N POSITION ¹ ACKAGE MAR PPOSITE THE	DIMENSION AND b1 AP D AT DIMEN TOLERANCE	N : MILLIMETE PLY TO THE ISION A1 IS ± 0.4mm CATED AS SH	ERS PLATED TERI	MINALS AND	
ØP2	► b SIDE VIEW D D2 				DIM A A2 A3 A4	MIN. 17.00 11.70 4.40 16.40	NOM. 17.40 12.00 4.70 16.70	MAX. 17.80 12.30 5.00 17.00	
			E [*]	1 E	b D D1 D2 D3 E	0.95 92.90 104.45 81.80 106.90	1.00 93.00 104.75 82.00 107.20	1.05 93.10 105.05 82.20 107.50	
PACKAGE ORENTATION FEATURE	D3 TOP VIEW		A	2	E E1 E2 P P1 P2	46.70 44.10 38.80 5.40 10.60 1.80	47.00 44.40 39.00 5.50 10.70 2.00	47.30 44.70 39.20 5.60 10.80 2.20	
	93.00	Ø14.00	NOTE 4	PIN POSITI X 0.00 0.00	ON Y 0.00 4.00	PIN 27 28	PIN POSI X 62.50 65.30	TION Y 0.00 0.00	
39.00			3 4 5 6 7 8	3.00 3.00 6.00 9.00 9.00	0.00 4.00 0.00 4.00 0.00 4.00	29 30 31 32 33 34	68.10 70.90 13.70 16.70 19.70 23.20	0.00 0.00 19.80 19.80 19.80 19.80	
0.00 1.05 Ø2.50 (x4)	پ ۲۵۵۵۵۵۵ ۲۵۵۵۵۵۵۵۵۵۵۵۵۵۵ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰	°°° \$	9 10 11 12 13	12.00 26.90 26.90 29.90 29.90	0.00 0.00 3.30 0.00 3.30	35 36 37 38 39	38.00 41.00 38.00 54.10 59.60	18.60 19.20 26.00 14.70 24.60	
	* For additional Information on ou Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mour Techniques Reference Manual, SOLDERRM/D.		14 15 16 17 18 19	32.90 32.90 38.00 38.00 38.00 41.30	0.00 3.30 0.00 2.80 5.60 0.00	40 41 42 43 44 45	61.70 5.50 8.50 63.50 63.50 63.50	27.50 36.90 31.30 34.10 36.90	
			20 21 22 23 24	41.30 41.30 54.10 54.10 56.90	2.80 5.60 0.00 3.30 0.00	46 47 48 49 50	67.20 67.20 67.20 70.90 70.90	31.30 34.10 36.90 31.30 34.10	
DOCUMENT NUMBER: DESCRIPTION:	98AON39619H PIM51 93X47 (SOLDER PIN	Electronic versions are ur Printed versions are unco					LED COF		
the right to make changes without furthe purpose, nor does onsemi assume an	ks of Semiconductor Components Industries, er notice to any products herein. onsemi make ny liability arising out of the application or use images. onsemi does not convey any license	es no warranty, representati of any product or circuit, a	ion or guarar nd specifical	ntee regar Ily disclain	ding the s	uitability o	f its produ	cts for any	particular

onsemí

PIM51, 93x47 (SOLDER PIN) CASE 180HH ISSUE O

DATE 16 NOV 2021

GENERIC MARKING DIAGRAM*	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
FRONTSIDE MARKING	
2D CODE	
BACKSIDE MARKING	
VVVVV Specific Dovice Code	*

XXXXX = Specific Device Code AT = Assembly & Test Site Code YYWW = Year and Work Week Code "This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON39619H	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	PIM51 93X47 (SOLDER PI	PAGE 2 OF 2				

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>